Student Number

Ascham School

Mathematics Extension 1 Trial HSC Examination

Monday 29th July 2019 2 hours

General Instructions

- Reading time 5 minutes.
- Working time 2 hours.
- Write using black non-erasable pen.
- NESA-approved calculators may be used.
- A Reference Sheet is provided.
- In Questions 11–14, show relevant mathematical reasoning and/or calculations.

Total marks – 70

Section I Pages 3 – 6 10 marks

- Use the Multiple Choice Answer Sheet provided to answer Q1-10.
- Allow about 15 minutes for this section.

Section II Pages 7 – 13 60 marks

- Answer Questions 11-14.
- Answer each question in a new booklet.
- Label all sections clearly with your name/number and teacher's initials.
- Allow about 1 hour and 45 minutes for this section.

Section I

10 marks Attempt Questions 1–10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1–10.

1 *A*, *B*, *C* and *D* are points on the circumference of the circle centre *O*. $\angle OBC = 35^\circ$, $\angle ADC = 130^\circ$ and $\angle AOB = \alpha$. The size of α is:

2 Consider the function $f(x) = x^2 + 6x$. Select the largest domain of f(x) for which there exists an inverse function $f^{-1}(x)$.

- (A) $x \ge 0$
- (B) $x \ge -3$
- (C) $x \ge -6$
- (D) $x \ge -9$

- 3 Suppose $x^3 3x^2 + a \equiv (x-2)Q(x) + 1$, where Q(x) is a polynomial. The correct value of a is:
 - (A) –2
 - (B) 2
 - (C) 1
 - (D) 5

4 A primitive function of $\frac{1}{1+4x^2}$ is:

(A)
$$\frac{1}{4} \tan^{-1}(2x) + C$$

(B)
$$\frac{1}{2}\tan^{-1}(2x) + C$$

(C) $\frac{1}{4}\tan^{-1}\left(\frac{x}{2}\right) + C$

(D)
$$\frac{1}{2}\tan^{-1}\left(\frac{x}{2}\right) + C$$

5 If $\frac{dP}{dt} = 0.2(P-10)$ and P = 30 when t = 0, which of the following is an expression for P?

(A)
$$P = 10 + 20e^{0.2t}$$

(B)
$$P = 20 + 10e^{0.2t}$$

(C)
$$P = 20 + 30e^{0.2t}$$

(D)
$$P = 30 + 20e^{0.2t}$$

6 The gradient of the tangent to the curve $y = \tan^{-1}(\sin x)$ at x = 0 is:

- (A) undefined
- (B) 0
- (C) 1
- (D) –1
- 7 The displacement x of a particle at time t is given by:

$$x = 5\sin 2t + 12\cos 2t.$$

What is the amplitude of the particle?

- (A) 12
- (B) 13
- (C) 17
- (D) 26

8 Choose the correct value of $\lim_{x \to 0} \frac{\cos(2x) - 1}{x^2}$.

- (A) –2
- (B) –1
- (C) 1
- (D) 2

9 The rise and fall of the tide is assumed to be simple harmonic, with the time between low and high tide being six hours.

The water depth at a harbour entrance at high and low tides are 14 metres and 10 metres respectively.

If *t* is the number of hours after low tide, and *y* is the water depth in metres, which equation models this information?

(A)
$$y = 12 - 2\cos(6t)$$

(B)
$$y = 12 - 2\cos\left(\frac{\pi t}{6}\right)$$

(C)
$$y = 12 + 2\cos\left(\frac{\pi t}{6}\right)$$

(D)
$$y = 12 + 2\cos(6t)$$

10 In the figure, *ABC* is a triangle on a horizontal plane and *AD* is a vertical flag pole. If BC = a, which of the following expressions is equal to *AD*?

Section II

60 marks Attempt Questions 11–14 Allow about 1 hour and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available. In Questions 11–14, you should include relevant mathematical reasoning and/ or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.

(a) Evaluate
$$\int_{0}^{1} \frac{dx}{\sqrt{2-x^{2}}}$$
. 2
(b) Solve $\frac{2}{3-x} \le 1$. 3

(c) A is the point
$$(-1, 1)$$
, B is the point $(3, 5)$ and C is the point (x, y) .

- (i) Find the coordinates of the point C which divides the interval joining AB externally in the ratio 3:1.
- (ii) Parallel lines are drawn through A, B and C and intersect with the line l at the points D, E and F respectively, as shown in the diagram.What is the ratio of DE : EF ?

NOT TO SCALE

2

1

Question 11 continues on the following page.

- (d) An oil leak spreads on the ground in the shape of a circle. The radius of the circle increases from 0 cm, at a constant rate of 5 cm s⁻¹.
 At what rate is the area of the circle increasing when the radius is 10 cm? Express your answer in exact form.
- (e) The rate at which a body cools in air is proportional to the difference between its temperature (T) and the constant temperature of the surrounding air (S).

As a result, it follows that:

$$T = S + Be^{kt},$$

where t is the time in hours and B and k are constants.

A metal cake tin has a temperature of 180° C when removed from an oven. In a room, the temperature of the surrounding air is 20° C. The cake tin takes 10 minutes to cool to 60° C.

(i) Show that
$$k = \frac{\ln(0.25)}{10}$$
. 2

(ii) Hence, find the time it takes for the cake tin to cool to 40° C when removed from the oven.

2

Question 12 (15 marks) Use a SEPARATE writing booklet.

(a) Use the substitution
$$u = \sqrt{x}$$
 to find $\int \frac{dx}{x + \sqrt{x}}$, $x > 0$. 3

(b) One of the roots of the equation $x^3 - kx^2 + 1 = 0$ is the sum of the other two roots.

(i) Show that
$$x = \frac{k}{2}$$
 is a root of the equation. 2

- (ii) Find the value of k.
- (c) In the diagram, the points *P*, *W*, *X* and *Z* lie on a circle and *WX* produced meets the tangent from *Z* at the point *Y*. It is known that XY = 3 cm and $YZ = 3\sqrt{3}$ cm.

Copy the diagram onto your paper.

- (i) Find the length of *XW*, giving reasons.
- (ii) If XZ is the diameter of a smaller circle passing through X, Y and Z, find the size of $\angle WPZ$, giving reasons.

Question 12 continues on the following page.

2

3

- (d) Consider the point $P(2ap, ap^2)$ which lies on the parabola $x^2 = 4ay$. From the point *P*, the tangent to the parabola meets the *x*-axis at *T*. The normal to the parabola at *P* meets the *y*-axis at *N*.
 - (i) With the help of the Reference Sheet, show that the coordinates of the points T and N are:

$$T(ap, 0)$$
 and $N(0, ap^2 + 2a)$. 2

(ii) Find the locus of the midpoint *M*, of *TN*.

NOT TO SCALE

Question 13 (15 marks) Use a SEPARATE writing booklet.

(a) Consider the equation
$$\tan^{-1} x - \frac{x}{2} = 0$$
.

Using x = 2 as the first approximation to one of the roots, use one application of Newton's method to find a better approximation to this root, correct to 2 decimal places. **3**

- (b) Find the exact volume of the solid obtained by rotating $y = \cos^{-1} x$ about the y-axis between y = 0 and $y = \pi$.
- (c) Consider the function $f(x) = 2\sin^{-1}\sqrt{x} \sin^{-1}(2x-1)$.
 - (i) Find the domain of f(x). 1
 - (ii) Show that f'(x) = 0. 2
 - (iii) Sketch the graph of y = f(x).

(d) A particle moves in a straight line such that its velocity v m/s is given by $v = 2\sqrt{4x-1}$ when it is x metres from the origin. If $x = \frac{1}{4}$ when t = 0, find the:

- (i) equation for \ddot{x} . 2
- (ii) equation for the displacement (x) in terms of time (t).

_

3

Question 14 (15 marks) Use a SEPARATE writing booklet.

(a) A particle moves in a straight line such that its acceleration $\ddot{x} \text{ m/s}^2$ is given by $\ddot{x} = 12 - 4x$ when it is x metres from the origin.

Initially, the particle is positioned at x = 6 with velocity $v = -2\sqrt{7}$ m/s.

- (i)Explain why the particle moves in simple harmonic motion and state the
value of n and the centre of motion.2(ii)Hence show that $v^2 = 28 + 24x 4x^2$.2(iii)Over what range of x-values is the particle moving?1(iv)Find the maximum speed of the particle.1
- (b) Use the principle of mathematical induction to prove that $2^{3n} 3^n$ is divisible by 5 for all integers $n \ge 1$.

Question 14 continues on the following page.

(c) Jon Snow fires arrows with an initial velocity V m/s at an angle of 60° to the horizontal. The path of any arrow from the origin is given by the displacement functions below, where t is the time in seconds and g is the acceleration due to gravity in m/s²:

$$x = \frac{Vt}{2}$$
(DO NOT PROVE THESE)
$$y = -\frac{1}{2}gt^{2} + \frac{Vt\sqrt{3}}{2}$$

- (i) Show that the Cartesian equation of an arrow's path is: $y = \sqrt{3}x \frac{2gx^2}{V^2}$. 1
- (ii) Jon stood at the <u>bottom</u> of a hill inclined at an angle β to the horizontal. When he fired an arrow, it landed 100 metres up the hill at point A.

Use the result of part (i) to show that:

(iii) Jon climbs the hill. Jon turns around and is now standing at the <u>top</u> of the same hill, looking down the hill. When he shoots an arrow at the same velocity and angle of projection, the arrow lands 150 metres <u>down</u> the hill, at point *B*.

End of Exam

Ascham Yr. 12 Mathematics Ext. 1 Trial Exam 2019

() Reflex
$$\angle AOC = 2x \angle AOC$$

 $= 266^{\circ}$
 $(\angle at centre is twice $\angle ot circonference)$
 $\angle OCB = 35^{\circ}$ (base $\angle s isosceles \triangle equal)$
 $\angle BCC = 186^{\circ} - 2x35^{\circ}$ ($\angle sm of \triangle)$
 $= 110^{\circ}$
 $x = 266^{\circ} - (10^{\circ})$
 $x = 266^{\circ} - (10^{\circ})$
 $x = -3$
 $\therefore \angle Lorgert$ domain for $f^{-1}(x)$ is
 $x \ge -3$ or $x \le -3$ or B
(a) If $P(x) = x(x+6)$
 $d = x \ge -3$
 $\therefore \angle Lorgert$ domain for $f^{-1}(x)$ is
 $x \ge -3$ or $x \le -3$ or B
(b) If $P(x) = x(x+6)$
 $d = 1$
 $\therefore a = 5$ or B
(c) $f = (x-2)Q(x) + 1$
 $Hence 2^{3} - 3(2)^{\circ} + a = 1$
 $\therefore a = 5$ or D
 $(a) = 1 + 4a = 1$
 $\therefore a = 5$ or D
 $(a) = 1 + 4x^{\circ}$
 $f = 1 + (\frac{1}{2} + x^{\circ})$
 $f = \frac{1}{2} + (\frac{1}{2} + x^{\circ})$
 $f = \frac{1}{2} + (\frac{1}{2} + x^{\circ})$
 $f = \frac{1}{2} + (\frac{1}{2} - x^{\circ$$

(5) If
$$dP = k(P-B)$$
, then
 $P = B + Ae^{kL}$
Given $dP = 0.2(P-1B)$
then $P = 10 + Ae^{0.2t}$
 $\therefore A$
[since when $30 = 10 + Ae^{5}$]
 $\#en A = 20$]
(6) If $f(x) = tan^{-1}(sinx)$
 $f'(x) = \frac{1}{1+sin^{3}x} \times cosx$
 $fow f'(0) = \frac{cos(0)}{1+sin^{5}(0)} = \frac{1}{1+0} = 1$
 $= \frac{1}{1+sin^{5}(0)} = \frac{1}{1+sin^{5}(0)}$

 \bigcirc

(9)
$$H_{1}^{y}$$

 a_{1}^{y}
 a_{1}^{y}
 a_{1}^{y}
 a_{2}^{y}
 a_{2}^{y}

b)
$$\frac{2}{3-\pi} \leq 1$$
, $\pi \leq 73$
 $\frac{2(3-\pi)^{2}}{3-\pi} \leq 1(3-\pi)^{2}$
 $2(3-\pi) \leq (3-\pi)^{2} \leq 0$
 $(3-\pi) \left[2-(3-\pi)\right] \leq 0$
 $(3-\pi) \left[2-(3-\pi)\right] \leq 0$
 $(3-\pi) \left(\pi-1\right) = (3-\pi)^{2}$
 $(3-\pi)^{2}$
 $(3-\pi)^{2}$

U

d)
$$A = \pi r^{2}$$

 $dA = 2\pi r$
 $dT = dA + dr$
 $at = dA + dr$
 $at = arr + x5$
is when $r = 10$
 $dA = 100\pi$ cm²/s /
 at (3 marks)
e) i) $T = S + Be^{kt}$
 $180 = 20 + 8e^{kx0}$
 $\therefore B = 160^{\circ}$
So $T = 20 + 160e^{kt}$
when $t = 10$, $T = 60$
 $60 = 20 + 160e^{10k}$
 $10 (\pm) = 10k$
 $10 (\pm) =$

$$\frac{(\text{Question } 12)}{(\text{Question } 12)}$$
(a) If $u = \sqrt{x}$, $\frac{du}{dx} = \frac{1}{2}x^{-\frac{1}{2}}$
 $du = \frac{dx}{2\sqrt{x}}$
 $dx = 2\sqrt{x} du$
 $\therefore dx = 2\sqrt{y} du$
 $\int \frac{dx}{2x+\sqrt{x}}$
 $= \int \frac{2u}{\sqrt{(u+1)}} du$
 $= \int \frac{2u}{\sqrt{(u+1)}} du$
 $= 2\ln((u+1) + C$
 $= 2\ln((u+1) + C$
 $= 2\ln((u+1) + C$
 $(3male)$
b) i) Let roots be $\alpha, \beta, \alpha+\beta$
sum of roots $= -\frac{16}{\alpha}$
 $\alpha+\beta+\alpha+\beta=-\frac{1}{2}$
 $(\alpha+\beta)=k$
 $\alpha+\beta=-\frac{1}{2}$
 $(1)(\frac{k}{2})^{3}-k(\frac{k}{2})^{2}+1=0$
 $\frac{k^{3}}{2}-\frac{k^{3}}{4}=-1$
 $\frac{k^{3}-k^{3}}{2}=-8$
 $\therefore k=2$ (1mal)

Normal at P: x+py=ap3+2ap (7) At N, where x=0: $O + py = ap^3 + 2ap$ $y = \frac{ap^3 + 2ap}{p}$ y= ap +29 ". N is (0, ap2+2a) (Imade) ii) Midpoint (M) of TN $0 + ap^2 + 2a$ 2 $=\left(\begin{array}{c} \alpha p+0\\ 2\end{array}\right)$ y= ap+ $\mathcal{X} = \frac{ap}{2}$ and $\frac{2\pi}{a}$... (1) sub. eqn (1) into (2): $9\left(\frac{2x}{\alpha}\right)^2 + 2q$ $\frac{4x^2}{a}$ + 29 $\frac{2x^2}{a} + a$ (2 months)

Quertion 13
a) If
$$f(x) = ton^{4}x - \frac{x}{2}$$

then $f'(x) = \frac{1}{1+x^{4}} - \frac{1}{2}$
 $x_{\pm} = x_{\pm} - \frac{f(x_{\pm})}{(1+x^{4})} - \frac{1}{2}$
 $x_{\pm} = x_{\pm} - \frac{f(x_{\pm})}{(1+x^{4})} - \frac{1}{2}$
 $x_{\pm} = 2 - \left[\frac{+ton^{4}(2) - \frac{2}{2}}{1+x^{4}} - \frac{1}{2} \right]$
 $x_{\pm} = 2 - \left[\frac{+ton^{4}(2) - \frac{2}{2}}{1+x^{4}} - \frac{1}{2} \right]$
 $x_{\pm} = 2 - 357...$
 $x_{\pm} = 2 - 357...$
 $x_{\pm} = 2 - 356 (2d + p)$
 $x_{\pm} = 2 - 356 (2d + p)$

6

之

d) i) $\ddot{x} = \frac{d}{dx} \left(\frac{1}{2} \sqrt{1}\right)$ $\ddot{x} = \frac{d}{dx} \left[\frac{1}{2} \left(2\sqrt{4x-1} \right)^2 \right]$ $\ddot{x} = \frac{d}{dx} \left[2(4x - 1) \right]$ $\frac{1}{2}$ $\frac{1}{2}$ = $8ms^{-2}$ (2 mortes) $ii) \frac{dx}{dt} = 2\sqrt{4x-1}$ $dt = \frac{1}{2\sqrt{4x-1}}$ 5 $t = \left(\frac{(4x-1)^{-\frac{1}{2}}}{2} dx \right)$ 12 $t = \frac{(4x-1)^{\frac{1}{2}}}{2x \frac{1}{2} \times 4} + C$ $t = \sqrt{4x-1} + C$ when t=0, $st=\frac{1}{4}$ $0 = \sqrt{4(\frac{1}{4}) - 1} + C$ ち ° C=0 $\therefore t = \sqrt{4x-1}$ 4+ = J4=-1 $16t^2 = 4x - 1$ $4x = 16t^2 + 1$ $x = \frac{16t^2 + 1}{4}$ (3mortes)

Question 19	. 6
$\alpha)i) \qquad \dot{x} = 12 - 4x$	
$\ddot{x} = -4(x-3)$	
$\dot{z} = -(2)^2 (x-3)$	
since is of the form is = -n²(x-b)	
the particle moves in SHH where	
n = a and centre is $x = 3$	b) step Prove true for n=1
2 2 (2mortes	$2^{3(1)} - 3' = 8 - 3$
$ii) \dot{x} = \frac{d}{dx} \left(\frac{1}{a}v^2\right)$	= 5 V which is divisible by 5
$12-4x = \frac{d}{dx} \left(\frac{1}{d}v^{2}\right) \qquad \frac{1}{2}$	it is true for n=1
$\int dx = \frac{1}{2} x^2$	Step 2) Assume it is true for n=k
$\int [2 - tx dx = \frac{1}{2} v$	i.e. 2 ^{3k} - 3 ^k = 5M (MEZ)
$12x - \frac{4x}{2} + C = \frac{1}{2}v$	3. 2 = 5M + 3k *
when $x = 6$ $V = -2\sqrt{7}$	Step 3) Prove it is true for n=k+1
$12(6) - 2(6)^{2} + C = \frac{1}{2}(-2\sqrt{5})^{2}$	1.e. RTP $2^{3(k+1)} 3^{k+1} = 50$ (QER)
$72 - 72 + c = \frac{1}{2}(28)$	$LHS = 2^{3k+3} - 3^{k+1}$
c = 19	$= 2^{3k} x^{3} - 3^{k} x^{3}$
$\frac{1}{2}v^2 = 12x - 2x^2 + 19$	$=(5M+3^{k})8-3^{k}3using*$
$v_{0}^{2} = 28 + 24x - 4x^{2}$	= $40H + 8(3^{k}) - 3(3^{k})$
(as required) (2 months)	= 104 + 5(3)
	$= 5(8M + 3^{k})$
(ii) Solve $28 + 24x - Tx = 0$	which is divisible by 5
fx = a(x = 7) = 0	Hence it is proved true by Mathematical
+(3z-3z-1)=0	Alterrate: Solution: (3marks)
+ (S(-)) (S(+)) C	Step (2) 23- 3- = 517
o. Ster or ster	Stop 3 LHS = 2 x 2 3 3
so porticle more more	$=2^{3k}(8)-3(2^{3k}-5M)$
ronge -1 = 4 = /	$= 8(2^{3k}) - 3(2^{3k}) + 15M$
(T) Max speed occurs at x = 3 (centre)	$= 5(2^{3k}) + 15M$
$v^2 = 28 + 24(3) - 4(3)^2$ of motion	$= 5(2^{31}+3M)$
$\sqrt{2} = 64$ so max sped = $\sqrt{64}$ = $8m/s\sqrt{(mak)}$	which is divisible by 5

(i) From
$$x = \frac{V_{\pm}}{2}$$
, $t = \frac{2x}{\sqrt{2}}$
sub. into $y = -\frac{1}{2}g(\frac{2x}{\sqrt{2}})^{2} + V(\frac{2x}{\sqrt{2}})\frac{15}{2}$
 $y = -\frac{2}{\sqrt{2}}g(\frac{2x}{\sqrt{2}})^{2} + V(\frac{2x}{\sqrt{2}})\frac{15}{2}$
 $y = -\frac{2}{\sqrt{2}}g(\frac{2x}{\sqrt{2}})^{2} + V(\frac{2x}{\sqrt{2}})\frac{15}{2}$
 $(s = \frac{150 \text{ sin}\beta}{\sqrt{2}} + x\sqrt{3}$
 $(s = \frac{150 \text{ sin}\beta}{\sqrt{2}}$
(as required) (Inorth)
(i) $\frac{100}{100 \text{ sin}\beta}$
 $100 \text{ coc}\beta$
Sub. $x = 100 \text{ coc}\beta$
 $sub. $x = 100 \text{ sin}\beta$
 $100 \text{ coc}\beta$
Sub. $x = 100 \text{ coc}\beta$
 $sub. $x = 100 \text{ coc}\beta$
 $r = \sqrt{3} - \frac{2}{3000} \cos^{2}\beta$
 $r = 100 \text{ sin}\beta = 100 \text{ sin}\beta$ into
 $y = \sqrt{3} x - \frac{2}{\sqrt{3}} \frac{2}{\sqrt{3}}$
 $r = 100 \text{ sin}\beta = 100 \text{ sin}\beta$ into
 $y = \sqrt{3} x - \frac{2}{\sqrt{3}} \frac{2}{\sqrt{3}}$
 $r = \sqrt{3} - \frac{2}{3000} \cos^{2}\beta$
 $r = \sqrt{3} - \frac{2}{\sqrt{3}} \frac{2}{\sqrt{3}}$
 $r = 100 \text{ sin}\beta = 100 \text{ sin}\beta$ $-\frac{2}{3000000} \cos^{2}\beta$
 $r = 100 \text{ sin}\beta = 100 \text{ sin}\beta$ $-\frac{2}{3000000} \cos^{2}\beta$
 $r = \frac{100 \text{ sin}\beta}{100 \text{ coc}\beta} - \frac{20000000000}{\sqrt{3}}$
 $r = \frac{100 \text{ sin}\beta}{100 \text{ coc}\beta} - \frac{2000000000}{\sqrt{3}}$
 $r = \frac{100 \text{ sin}\beta}{100 \text{ coc}\beta} - \frac{2000000000}{\sqrt{3}}$
 $r = \frac{100 \text{ sin}\beta}{100 \text{ coc}\beta} - \frac{2000000000}{\sqrt{3}}$
 $r = \frac{100 \text{ sin}\beta}{100 \text{ coc}\beta} - \frac{20000000000}{\sqrt{3}}$
 $r = \frac{100 \text{ sin}\beta}{100 \text{ coc}\beta} - \frac{2000000000}{\sqrt{3}}$
 $r = \frac{100 \text{ sin}\beta}{100 \text{ coc}\beta} - \frac{200000000}{\sqrt{3}}$
 $r = \frac{100 \text{ sin}\beta}{100 \text{ coc}\beta} - \frac{2000000000}{\sqrt{3}}$
 $r = \frac{100 \text{ sin}\beta}{100 \text{ coc}\beta} - \frac{2000000000}{\sqrt{3}}$
 $r = \frac{100 \text{ sin}\beta}{100 \text{ coc}\beta} - \frac{2000000000}{\sqrt{3}}$
 $r = \frac{100 \text{ sin}\beta}{100 \text{ coc}\beta} - \frac{200000000}{\sqrt{3}}$
 $r = \frac{100 \text{ coc}\beta}{100 \text{ coc}\beta} - \frac{2000000000}{\sqrt{3}}$
 $r = \frac{100 \text{ coc}\beta}{100 \text{ coc}\beta} - \frac{200000000}{\sqrt{3}}$
 $r = \frac{100 \text{ coc}\beta}{100 \text{ coc}\beta} - \frac{100 \text{ coc}\beta}{100 \text{ coc}\beta} - \frac{100 \text{ coc}\beta}{100 \text{ coc}\beta} - \frac{100 \text{ coc}\beta}{100 \text{ coc}\beta}$
 $r = \frac{100 \text{ coc}\beta}{100 \text{ coc}\beta} - \frac{100 \text{ coc}\beta}{100 \text{ coc}\beta} - \frac{100 \text{ coc}\beta}{1$$$

Alternate solution to iii)
Rearraging eqn ():

$$g\cos\beta = \frac{\tan\beta - \sqrt{3}}{-200}$$
sub. into eqn (2):

$$\tan\beta = 300 \left(\frac{\tan\beta - \sqrt{3}}{-200}\right) - \sqrt{3}$$

$$200 \tan\beta = -300 (\tan\beta - \sqrt{3}) - 200\sqrt{3}$$

$$200 \tan\beta = -300 \tan\beta + 300\sqrt{3} - 200\sqrt{3}$$

$$500 \tan\beta = 100\sqrt{3}$$

$$\tan\beta = \frac{100\sqrt{3}}{500}$$

$$\tan\beta = \frac{\sqrt{3}}{5}$$

$$\beta = \tan^{-1} \left(\sqrt{\frac{3}{5}}\right)$$