\qquad

Barker College

2009
 TRIAL
 HIGHER SCHOOL CERTIFICATE

Mathematics Extension 1

Staff Involved:

PM THURSDAY 20 AUGUST

- LJP*
- PJR*
- MRB
- GDH
- WMD
- RMH
- BTP

75 copies

General Instructions

- Reading time - 5 minutes
- Working time -2 hours
- Write using blue or black pen
- Make sure your Barker Student Number is on ALL pages of your solutions
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- ALL necessary working should be shown in every question

Total marks - 84

- Attempt Questions 1-7
- All questions are of equal value
- Marks may be deducted for careless or poorly arranged working

ALL questions are of equal value

Answer each question on a SEPARATE sheet of paper
\qquad

Question 1 (12 marks) [START A NEW PAGE]

(a) Find the coordinates of the point P which divides the interval joining
$\mathrm{A}(-2,3)$ and $\mathrm{B}(3,-4)$ externally in the ratio $3: 2$
(b) Evaluate $\lim _{x \rightarrow 0}\left(\frac{\sin 5 x}{2 x}\right)$
(c) Solve $\frac{3}{2 x-4}>-2$
(d) Evaluate $\int_{-1}^{1} \frac{-1}{\sqrt{2-x^{2}}} d x$
(e) Evaluate $\int_{0}^{\frac{\pi}{12}} 2 \sin ^{2} 4 x d x$

Question 2 (12 marks) [START A NEW PAGE]

(a) Find $\int 6 x^{3} \sqrt{\left(3 x^{4}-3\right)^{3}} d x$ using the substitution $u=3 x^{4}-3$
(b) The graph of $y=2 \sin ^{-1}\left(\frac{x}{3}\right)$ is shown below

(i) Write down the coordinates of Point A
(ii) Differentiate $y=2 x \sin ^{-1}\left(\frac{x}{3}\right)+2 \sqrt{9-x^{2}}$
(iii) Hence, or otherwise, find the shaded area
(c) (i) Express $\sqrt{3} \sin t+\cos t$ in the form $R \sin (t+\alpha)$
where α is in radians
(ii) Hence, or otherwise, find the solutions of the equation

$$
\sqrt{3} \sin t+\cos t=\sqrt{3} \text { for } 0 \leq t \leq 2 \pi
$$

Question 3 (12 marks) [START A NEW PAGE]
(a) Consider the function $y=(x+2)^{2}+1$
(i) Write down the entirely negative domain for which the inverse function exists
(b) Find the constant term in the expansion $\left(x^{4}+\frac{3}{x^{2}}\right)^{15}$
(c) A hot drink is placed in a closed room, where the temperature is a constant $15^{\circ} \mathrm{C}$ The cooling of the drink follows the rule

$$
\frac{d T}{d t}=-k(T-15)
$$

where k is a constant, t is the time in minutes and T is the temperature in ${ }^{\circ} \mathrm{C}$
(i) Show that $T=15+A e^{-k t}$ satisfies this equation, where A is a constant
(ii) The hot drink is initially $88^{\circ} \mathrm{C}$ and cools to $55^{\circ} \mathrm{C}$ after 11 minutes.

Find the value of the constants A and k, leaving in exact form
(iii) How long will it take for the drink to cool to $33^{\circ} \mathrm{C}$ (to the nearest second)?
(d) Prove, by mathematical induction, that for integers $n \geq 1$

$$
1^{2}+3^{2}+5^{2}+\ldots+(2 n-1)^{2}=\frac{1}{3} n(2 n-1)(2 n+1)
$$

Question 4 (12 marks) [START A NEW PAGE]
(a) $\quad N P$ is the normal to the parabola $x^{2}=4 a y$ at the point $P\left(2 a p, a p^{2}\right)$,
where N also lies on the parabola $x^{2}=4 a y$
W lies on $N P$ such that SW is parallel to the tangent to the parabola at P, where S is the focus of the parabola $x^{2}=4 a y$

You may assume the equation of the normal at P is

$$
x+p y=a p^{3}+2 a p \quad \text { (Do NOT prove this) }
$$

(i) Show that the coordinates of the point W are $\left(a p, a p^{2}+a\right)$
(ii) Hence, or otherwise, find the locus of W

Question 4 continues on page 6

Question 4 (continued)

(b) A particle is moving so that its displacement, x metres, from the origin is given by

$$
x=2 \cos \left(3 t-\frac{\pi}{6}\right)
$$

where t is in seconds
(i) Show that the motion is simple harmonic
(ii) Write down the period
(iii) Find the velocity when the particle is first at $x=\sqrt{3}$
(c) The acceleration of a particle moving along a straight path is given by

$$
\ddot{x}=-2 e^{-x}
$$

where x is in metres.
Initially, the particle is at the origin with a velocity of $2 \mathrm{~m} / \mathrm{s}$
(i) Show that $v=2 e^{-x / 2}$
(ii) Find the equation of displacement, x, in terms of t seconds

End of Question 4

Question 5 (12 marks) [START A NEW PAGE]

Point of Projection \longrightarrow (a)

Greg is about to have a shot at goal in a game of basketball.
From the point where the ball leaves his hand, the distance to the top of the basket is 3 metres horizontally and 0.5 m vertically.
Greg shoots at the optimal angle of 45°.
You may assume the equations of motion are

$$
x=v t \cos 45^{\circ} \text { and } y=v t \sin 45^{\circ}-5 t^{2} \text { (Do NOT prove this) }
$$

(i) Find the velocity of projection, v, required by Greg for the centre of the ball to land in the centre of the basket.
(ii) Find the maximum vertical height above the basket that the ball reaches during Greg's shot.
(iii) Find the speed of the ball on entry into the basket.

Question 5 continues on page 6

Question 5 (continued)

(b) The graph below shows the cubic function $f(x)=(x-a)(x-b)(x-c)$ where $x=a, x=b$ and $x=c$ are the x-intercepts.

The derivative of this function is given by

$$
f^{\prime}(x)=(x-a)(x-b)+(x-a)(x-c)+(x-b)(x-c) \quad \text { (Do NOT prove this) }
$$

which is the product rule extended, ie. $y^{\prime}=u v w^{\prime}+u w v^{\prime}+v w u^{\prime}$
The point M lies on this cubic function $y=f(x)$ such that the x-value of M is $x=\frac{a+b}{2}$, ie. the mid-value of $x=a$ and $x=b$.
(i) Show that the coordinates of M are $\left(\frac{a+b}{2},-\frac{1}{8}(a-b)^{2}(a+b-2 c)\right)$
(ii) Show that the gradient of the tangent at M is given by

$$
f^{\prime}\left(\frac{a+b}{2}\right)=-\frac{(a-b)^{2}}{4}
$$

(iii) Find the gradient of the straight line passing through M and the point (c, 0).
(iv) What can you conclude about the tangent at M and its x-intercept?

End of Question 5

Question 6 (12 marks) [START A NEW PAGE]

(a) Ros buys a new 1 metre tall plasma television.

She mounts it on a vertical wall, placing it so that the base of the television is
1 metre above her (horizontal) eyeline from where she sits in her favourite armchair.
Let the distance from her eye to the wall be x metres and the angle from her eye to the top and base of the television be $\boldsymbol{\theta}$ (the viewing angle).
Let α be the angle of elevation to the base of the television.

(i) Show that $\theta=\tan ^{-1}\left(\frac{2}{x}\right)-\tan ^{-1}\left(\frac{1}{x}\right)$
(ii) Find the value of x which gives the maximum viewing angle.
(iii) Hence, find the maximum viewing angle of θ, to the nearest degree.

Question 6 (continued)

(b)

Three points W, X and Y lie on a straight level path, where $W X=X Y=40$ metres . The base B of a flagpole $T B$ is level with the path. M is the midpoint of $W X$. The angles of elevation to the top of the flagpole from the points W, X and Y are α, α and β respectively.
(i) Prove that $\triangle B W X$ is isosceles.
(ii) Find the length of $B M$.
(iii) Hence, or otherwise, show that the height of the flagpole is given by

$$
h=\frac{40 \sqrt{2}}{\sqrt{\cot ^{2} \beta-\cot ^{2} \alpha}}
$$

Question 7 (12 marks) [START A NEW PAGE]

(a) In how many ways can five boys and two girls be arranged in a row if
(i) there are no restrictions 1
(ii) the girls must be together $\quad \mathbf{2}$
(iii) there are exactly two boys separating the girls
(b) Laurence was asked to sketch the graph of the curve $y=\frac{x}{\log _{e}\left(x^{2}\right)}$
(i) He was about to change $\log _{e}\left(x^{2}\right)$ to $2 \log _{e} x$, but then realised this would actually alter the graph itself. Briefly explain why.
(ii) Accurately describe the domain.
(iii) Find the derivative of the curve.
(iv) Find the two turning points of this curve and determine their nature.
(v) Sketch the graph of this curve clearly labelling all critical features.

End of Paper

2009 Year- 12 Extersibn 1 Mathematics Trial HSC

Question 1

$$
\text { (a) } \begin{aligned}
& \left(\frac{k x_{2}+l x_{1}}{k+l}, \frac{k y_{2}+l y_{1}}{k+l}\right) \\
& (-2,3)(3,-4) 31-2 \\
& x_{1}, y_{1}, x_{2}, k \\
& P= \\
& =\left(\frac{3 \times 3+-2 \times-2}{3-2}, \frac{3 \times-4+-2 \times 3}{3-2}\right) \\
& =\left(\frac{9+4}{1}, \frac{-12-6}{1}\right) \\
& =(13,-18)
\end{aligned}
$$

(b) $\lim _{x \rightarrow 0}\left(\frac{\sin 5 x}{5 x} \times \frac{5}{2}\right)$

$$
=1 \times \frac{5}{2}
$$

$$
=\frac{5}{2}
$$

$$
\text { (c) } \begin{aligned}
& (2 x-4)^{2} \times \frac{3}{(2 x-4)}>-2(2 x-4)^{2} \\
& \therefore 3(2 x-4)^{2}>-2(2 x-4)^{2} \\
& \therefore 2(2 x-4)^{2}+3(2 x-4)>0 \\
& \therefore(2 x-4)[2(2 x-4)+3]>0 \\
& \therefore(2 x-4)(4 x-5)>0
\end{aligned}
$$

$$
\therefore x<5 / 4 \text { or } x>2
$$

(d) $-\left[\sin ^{-1}\left(\frac{x}{\sqrt{2}}\right)\right]_{-1}^{1}$

$$
=-\left[\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)-\sin ^{-1}\left(-\frac{1}{\sqrt{2}}\right)\right]
$$

$$
=-\left[\frac{\pi}{4}+\frac{\pi}{4}\right]
$$

$$
=-\frac{\pi}{2}
$$

$$
\begin{aligned}
& \text { (e) } \cos 2 x=1-2 \sin ^{2} x \\
& \therefore \cos 8 x=1-2 \sin ^{2} 4 x \\
& \therefore \int_{0}^{\pi / 2} 2 \sin ^{2} 4 x d x=\int_{0}^{\pi / 2} 2 x \frac{1}{2}(1-\cos 8 x) d x \\
& =\int_{0}^{\frac{\pi}{12}} 1-\cos 8 x \cdot d x \\
& =\left[x-\frac{1}{8} \sin 8 x\right]_{0}^{\pi / 12} \\
& =\left(\frac{\pi}{12}-\frac{1}{8} \sin \left(\frac{2 \pi}{3}\right)\right)-\left(0-\frac{1}{8} \sin 0\right) \\
& =\frac{\pi}{12}-\frac{1}{8} \times \frac{\sqrt{3}}{2} \\
& =\frac{\pi}{12}-\frac{\sqrt{3}}{16}
\end{aligned}
$$

Question 2

$$
\begin{aligned}
& \text { (a) } u=3 x^{4}-3 \\
& \therefore \frac{d u}{d x}=12 x^{3} \quad \therefore \frac{d u}{2}=6 x^{3} d x \\
& \therefore \int\left(6 x^{3} \sqrt{\left(3 x^{4}-3\right)^{3}} d x=\int \frac{1}{2} \sqrt{u^{3}} d u\right. \\
& =\frac{1}{2} \int u^{3 / 2} d u \\
& =\frac{1}{2} \times \frac{2}{5} u^{5 / 2}+C \\
& =\frac{1}{5}\left(3 x^{4}-3\right)^{5 / 2}+C \text { or } \frac{\sqrt{\left(3 x^{4}-3\right)^{5}}}{5}+C
\end{aligned}
$$

(b) i) Domain: $-1 \leq \frac{x}{3} \leq 1$

$$
\therefore-3 \leq x \leq 3 \quad \therefore A(3, \pi)
$$

Range: $-\pi \leq y \leq \pi$

$$
\begin{aligned}
\text { (ii) } \frac{d y}{d x} & =2 x \sin ^{-1}\left(\frac{x}{3}\right)+2 x x \frac{1}{3} \\
& =2 \sin ^{-1}\left(\frac{x}{3}\right)+\frac{2 x}{\sqrt{1-\frac{x^{2}}{9}}}\left(9-x x^{2} x^{-2}\right) \\
& =2 \sin ^{-1}\left(\frac{x}{3}\right)+\frac{2 x}{\frac{3-x^{2}}{9}}-\frac{2 x}{\sqrt{9-x^{2}}}-\frac{2 x}{\left.\sqrt{9-x^{2}}\right)^{1 / 2}} \\
& =2 \sin ^{-1}\left(\frac{x}{3}\right)
\end{aligned}
$$

(Q2) (cont)

$$
\begin{aligned}
& \text { (b) (iii) Area }=\int_{0}^{3} 2 \sin ^{-1}\left(\frac{x}{3}\right) d x \\
& =\left[2 x \sin ^{-1}\left(\frac{x}{3}\right)+2 \sqrt{9-x^{2}}\right]_{0}^{3} \\
& =\left[\left(2 \times 3 \sin ^{-1}(1)+2 \sqrt{9-9}\right)\right. \\
& \left.=\left(6 \times \frac{\pi}{2}+0\right)-\left(0 \times 0 \sin ^{-1} 0+2 \sqrt{9-0}\right)\right] \\
& =(3 \pi-6) \text { units }^{2}
\end{aligned}
$$

(c) (i) $\sqrt{3} \sin t+\cos t=R \sin (t+\alpha)$ $=R \sin t \cos \alpha+R \cos t \sin \alpha$

$$
\begin{aligned}
\therefore \sqrt{3} & =R \cos \alpha \quad \therefore \cos \alpha=\frac{\sqrt{3}}{R} \\
1 & =R \sin \alpha
\end{aligned}
$$

$$
1=R \sin \alpha \therefore \sin \alpha=\frac{1}{R}
$$

$$
\begin{array}{rl}
R / 1 \quad \therefore R & =\sqrt{3+1} \\
R & R \\
\sqrt{3} & =2 \\
\tan \alpha & =\frac{1}{\sqrt{3}} \\
\therefore \alpha & =\pi / 6 \\
\therefore \sqrt{3} \sin t+\cos t & =2 \sin \left(t+\frac{\pi}{6}\right)
\end{array}
$$

(ii) $\sqrt{3} \sin t+\cos t=\sqrt{3}$

$$
\begin{aligned}
& \therefore 2 \sin \left(t+\frac{\pi}{6}\right)=\sqrt{3} \\
& \therefore \sin \left(t+\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2} \\
& \therefore t+\frac{\pi}{6}=\frac{\pi}{3}, \pi-\frac{\pi}{3}, 2 \pi+\frac{\pi}{3}, 3 \pi-\frac{\pi}{3}, \ldots \\
& \therefore t=\frac{\pi}{3}-\frac{\pi}{6}, \frac{2 \pi}{3}-\frac{\pi}{6}, \frac{7 \pi}{3}-\frac{\pi}{6}, \ldots \\
& t=\frac{\pi}{6}, \frac{3 \pi}{6}, \frac{33 \pi}{6} \\
& \therefore t=\frac{\pi}{6}, \frac{\pi}{2}
\end{aligned}
$$

Questive 3
(a) (1) $(x+2)^{2}=(y-1)$ Vertex $(-2,1)$

(ii) Doman of $f^{-1}(x): x \geqslant 1$
(b)

$$
\begin{aligned}
\text { hereal term } & ={ }^{15} C_{r}\left(x^{4}\right)^{15-r}\left(\frac{3}{x^{2}}\right)^{r} \\
& ={ }^{15} C_{r} x^{60-4 r} 3^{r}\left(x^{-2}\right)^{r} \\
& ={ }^{15} C_{r} 3^{r} x^{60-6 r}
\end{aligned}
$$

constant terin wher $60-6 r=0$

$$
\therefore r=10
$$

\therefore Constant term is ${ }^{15} C_{10} 3^{10}$

$$
\begin{aligned}
& (e)(i) T-15=A e^{-k t} \\
& \frac{d T}{d t}=0+-k A e^{-k t} \\
& =-k(T-15)
\end{aligned}
$$

(ii) When $t=0, T=88$

$$
\begin{aligned}
\therefore 88 & =15+A e^{\circ} \\
\therefore A & =88-15 \\
& =73
\end{aligned}
$$

$$
\begin{aligned}
& \text { whent }=11, T=55 \\
& \therefore 55=15+73 e^{-11 k} \\
& \therefore 40=73 e^{-1 k} \\
& \therefore \frac{40}{73}=e^{-11 k} \\
& \therefore-11 k=\log _{e}\left(\frac{40}{73}\right) \\
& \therefore k=-\frac{1}{11} \ln \left(\frac{40}{73}\right)_{-k t}
\end{aligned}
$$

(iii) $33=15+73 e^{-k t}$
$\therefore 18=73 e^{-k t}$
$\therefore \frac{18}{73}=e^{-k t}$
$\therefore-k t=\ln \left(\frac{18}{73}\right)$

$$
\therefore t=\frac{\ln \left(\frac{18}{73}\right)}{+\frac{1}{11} \ln \left(\frac{40}{73}\right)}=25.6 \mathrm{~min} \div \frac{25 \mathrm{~min}}{36 \mathrm{sec}}
$$

Q3)(cont.)
(d) Prove true for $n=1$

$$
\begin{aligned}
\text { LHS } & =(2-1)^{2} \text { RUS }
\end{aligned}=\frac{1}{3} \times 1 \times(2-1) \times(2+1)
$$

\therefore True for $n=1$
Assume true for $n=k$

$$
i e 1^{2}+3^{2}+\cdots+(2 k-1)^{2}=\frac{1}{3} k(2 k-1)(2 k+1)
$$

Now prove true for $n=k+1$

$$
\begin{aligned}
R H S & =\frac{1}{3} k(2 k-1)(2 k+1)+(2(k+1)-1)^{2} \\
& =\frac{1}{3} k(2 k-1)(2 k+1)+(2 k+1)^{2} \\
& =\frac{1}{3}(2 k+1)[k(2 k-1)+3(2 k+1)] \\
& =\frac{1}{3}(2 k+1)\left(2 k^{2}+5 k+3\right) \\
& =\frac{1}{3}(2 k+1)(2 k+3)(k+1) \\
& =\frac{1}{3}(k+1)(2(k+1)-1)(2(k+1)+1)
\end{aligned}
$$

\therefore Statement is true for $n=k+1$
Since statement is true for $n=1$ and $n=k+1$, then it is true for $n=2,3,4, \ldots$ ie for all integers $n \geqslant 1$
Question 4
(a)(i) Gradient of $S W=p, y$-int $=a$
\therefore Eq of SW is $y=p x+a$

$$
\begin{aligned}
& \left.x+p y=a p^{3}+2 a p\right\} \\
& \quad y=p x+a \\
& \therefore x+p(p x+a)=a p^{3}+2 a p \\
& \therefore x+p^{2} x+a p=a p^{3}+2 a p \\
& \therefore p^{2} x+x=a p^{3}+a p \\
& \therefore x\left(p^{2}+1\right)=a p\left(p^{2}+1\right) \\
& \therefore x=a p \\
& y=p \times a p+a \\
& =a p^{2}+a \quad \therefore W\left(a p, a p^{2}+a\right)
\end{aligned}
$$

(ii) $a p=x$

$$
\therefore p=\frac{x}{a}
$$

$$
y=a p^{2}+a
$$

$$
\begin{aligned}
& y=a\left(\frac{x}{a}\right)^{2}+a \\
& y=\frac{x^{2}}{a}+a \quad\left(\text { OR } x^{2}=a(y-a)\right)
\end{aligned}
$$

(b) (i)

$$
\begin{aligned}
\text { (i) } x & =2 \cos \left(3 t-\frac{\pi}{6}\right) \\
\dot{x} & =2 \times-3 \sin \left(3 t-\frac{\pi}{6}\right) \\
\ddot{x} & =-2 \times 9 \cos (3 t-\pi / 6) \\
& =-9 \times 2 \cos \left(3 t-\frac{\pi}{6}\right)
\end{aligned}
$$

$\ddot{x}=-9 x$ which is in the form $\ddot{x}=-n^{2} x$ where $n=3$

$$
\therefore S H M
$$

(ii) Period $=\frac{2 \pi}{3}$
(iii) $\sqrt{3}=2 \cos \left(3 t-\frac{\pi}{6}\right)$

$$
\cos \left(3 t-\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}
$$

$$
\begin{aligned}
& \cos \left(3 t-\frac{\pi}{6}\right)=\frac{\pi}{2} \\
& \therefore 3 t-\frac{\pi}{6}=\frac{\pi}{6}, \cdots \\
& \therefore 3 t=\frac{\pi}{3}, \cdots \\
& \therefore t=\frac{\pi}{4}, \cdots \\
& 3 t-\frac{\pi}{6}=-\frac{\pi}{6} \\
& \therefore t=0 \\
& \therefore=-6 \sin \left(-\frac{\pi}{6}\right)
\end{aligned}
$$

$$
\text { when } \begin{aligned}
t=\frac{\pi}{9}, v & =-6 \sin \left(3 \times \frac{\pi}{9}-\frac{\pi}{6}\right)=-6 \times \frac{-1}{2} \\
& =-6 \sin \left(\frac{\pi}{6}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =-6 \sin \left(\frac{\pi}{6}\right) \\
& =-6 \times \frac{1}{2} \\
& =-3 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (c) (i) } \frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=-2 e^{-x} \\
& \therefore \frac{1}{2} v^{2}=2 e^{-x}+c
\end{aligned}
$$

$$
\begin{aligned}
& \text { When } x=0, v=2 \\
& \therefore \frac{4}{2}=2 e^{0}+c \\
& \therefore 2=2+c \quad \therefore c=0 \\
& \therefore \frac{1}{2} v^{2}=2 e^{-x} \\
& \therefore v^{2}=4 e^{-x} \\
& \therefore v= \pm \sqrt{4 e^{-x}}
\end{aligned}
$$

But when $x=0, V=2$

$$
\begin{aligned}
& \therefore V=+2 \sqrt{e^{-x}} \\
& \therefore V=2\left(e^{-x}\right)^{1 / 2} \quad \therefore V=2 e^{-\frac{x}{2}}
\end{aligned}
$$

(24) (cont.)

$$
\begin{aligned}
& \text { (c) (ii) } \frac{d x}{d t}=2 e^{\frac{-x}{2}} \\
& \therefore \frac{d t}{d x}=\frac{1}{2 e^{-x / 2}} \\
& =\frac{1}{2} e^{x / 2} \\
& \therefore t=\frac{1}{2} \times 2 e^{\frac{x}{2}}+C \\
& t=e^{x / 2}+c
\end{aligned}
$$

When $t=0, x=0$

$$
\begin{aligned}
& 0=e^{0}+c \quad \therefore c=-1 \\
& \therefore t=e^{x / 2}-1 \\
& \therefore t+1=e^{\frac{x}{2}} \\
& \therefore \frac{x}{2}=\log _{e}(t+1) \\
& \therefore x=2 \ln (t+1)
\end{aligned}
$$

Question 5
(a) (i) $x=\frac{v t}{\sqrt{2}}$ and $y=\frac{v t}{\sqrt{2}}-5 t^{2}$
$x=3$ gives $3=\frac{v t}{\sqrt{2}}$
And $y=0.5$

$$
\begin{aligned}
& \therefore 0.5=\frac{v}{\sqrt{2}} \times \frac{3 \sqrt{2}}{v}-5 \times\left(\frac{3 \sqrt{2}}{v}\right)^{2} \\
& 0.5=3-5 \times \frac{9 \times 2}{v^{2}} \\
& \therefore-2.5=-\frac{90}{v^{2}} \\
& \therefore 2.5 v^{2}=90 \\
& \therefore v^{2}=36 \\
& \therefore V=6 \mathrm{~m} / \mathrm{s} \quad(\text { since } v>0)
\end{aligned}
$$

(ii) Max height when $\dot{y}=0$

$$
\begin{aligned}
y & =\frac{6 t}{\sqrt{2}}-5 t^{2} \\
\therefore \dot{y} & =\frac{6}{\sqrt{2}}-10 t \\
0 & =\frac{6}{\sqrt{2}}-10 t \\
10 t & =\frac{6}{\sqrt{2}} \\
t & =\frac{3}{\sqrt[3]{2}}
\end{aligned}
$$

(a)(ii) (cont.) When $t=\frac{3}{5 \sqrt{2}}$

$$
\begin{aligned}
y & =\frac{6}{\sqrt{2}} \times \frac{3}{5 \sqrt{2}}-5 \times\left(\frac{3}{5 \sqrt{2}}\right)^{2} \\
& =\frac{18}{5 \times 2}-5 \times \frac{9}{25 \times 2} \\
& =1.8-0.9 \\
& =0.9 \mathrm{~m}
\end{aligned}
$$

it. $0.4 \mathrm{~m}(0.40 \mathrm{~cm})$ above basket
(iii) $x=3 \mathrm{in}$ basket

$$
\text { (iii) } x=3 \text { in basked } \frac{3 \sqrt{2}}{\sqrt{2}}=\frac{\sqrt{2}}{2} \sec
$$

So

$$
\begin{aligned}
\dot{x} & =\frac{6}{\sqrt{2}} \text { and } \dot{y}=\frac{1}{3}= \\
& =\frac{6 \sqrt{2}}{2} \quad \\
& =\frac{6 \sqrt{2}}{3 \sqrt{2}}
\end{aligned}
$$

$$
\therefore \text { speed }=\sqrt{26} \mathrm{~m} / \mathrm{s}
$$

$$
\text { (b)(i) } \begin{aligned}
f\left(\frac{a+b}{2}\right) & =\left(\frac{a+b}{2}-a\right)\left(\frac{a+b}{2}-b\right)\left(\frac{a+b}{2}-c\right) \\
& =\left(\frac{a+b-2 a}{2}\right)\left(\frac{a+b-2 b}{2}\right)\left(\frac{a+b-2 c}{2}\right) \\
& =\frac{1}{2}(b-a)(a-b) \frac{1}{2}(a+b-2 c) \\
& =\frac{1}{8}(b-a)(a-b)(a+b-2 c) \\
& =-\frac{1}{8}(a-b)(a-b)(a+b-2 c) \\
& =-\frac{1}{8}(a-b)^{2}(a+b-2 c)
\end{aligned}
$$

(ii) $f^{\prime}\left(\frac{a+b}{2}\right)=\left(\frac{a+b}{2}-a\right)\left(\frac{a+b}{2}-b\right)+\left(\frac{a+b}{2}-a\right)\left(\frac{a+b}{2}-c\right)$

$$
+\left(\frac{a+b}{2}-b\right)\left(\frac{a+b}{2}-c\right)
$$

$$
\begin{aligned}
\therefore f^{\prime}\left(\frac{a+b}{2}\right)= & \left(\frac{a+b-2 a}{2}\right)\left(\frac{a+b-2 b}{2}\right)+\left(\frac{a+b-2 a}{2}\right)\left(\frac{a+b-2 c}{2}\right) \\
& +\left(\frac{a+b-2 b}{2}\right)\left(\frac{a+b-2 c}{2}\right) \\
= & \frac{1}{4}(b-a)(a-b)+\frac{1}{4}(b-a)(a+b-2 c)+\frac{1}{4}(a-b)(a+b-2 c \\
= & -\frac{1}{4}(a-b)(a-b)-\frac{1}{4}(a-b)(a+b-2 c)+\frac{1}{4}(a-b)(a+b-2 c, \\
= & -\frac{1}{4}(a-b)^{2}
\end{aligned}
$$

(Q5) (cant.)
(b)

$$
\text { i) } \begin{aligned}
m= & \frac{\left(-\frac{1}{8}(a-b)^{2}(a+b-2 c)-0\right)}{\left(\frac{a+b}{2}-c\right)} \times \frac{2}{2} \\
= & \frac{-\frac{1}{4}(a-b)^{2}(a+b-2 c)}{(a+b-2 c)} \\
= & -\frac{1}{4}(a-b)^{2}
\end{aligned}
$$

(iv) Since the gradients in Parts(ii) k (iii) are equal, the tangent at M must pass through $x=c$

Question 6
(a) (i)

$$
\begin{aligned}
& \tan \alpha=\frac{1}{x} \\
& \therefore \alpha=\tan ^{-1}\left(\frac{1}{x}\right)
\end{aligned}
$$

$\tan (\theta+\alpha)=\frac{2}{x}$

$$
\therefore \theta+\alpha=\tan ^{-1}\left(\frac{2}{x}\right)
$$

$$
\therefore \theta=\tan ^{-1}\left(\frac{2}{x}\right)-\alpha
$$

$$
\therefore \theta=\tan ^{-1}\left(\frac{2}{x}\right)-\tan ^{-1}\left(\frac{1}{x}\right)
$$

(ii) $\theta=\tan ^{-1}\left(2 x^{-1}\right)-\tan ^{-1}\left(x^{-1}\right)$

$$
\begin{aligned}
\therefore \frac{d \theta}{d x} & =\frac{-2 x^{-2}}{1+\frac{4}{x^{2}}}-\frac{-x^{-2}}{1+\frac{1}{x^{2}}} \\
& =\frac{\frac{-2}{x^{2}}}{1+\frac{4}{x^{2}}}+\frac{\frac{1}{x^{2}}}{1+\frac{1}{x^{2}}} \\
& =\frac{-2}{x^{2}+4}+\frac{1}{x^{2}+1}
\end{aligned}
$$

Maximum when $\frac{d \theta}{d x}=0$

$$
\begin{aligned}
& \therefore 0=\frac{-2}{x^{2}+4}+\frac{1}{x^{2}+1} \\
& \therefore \frac{2}{x^{2}+4}=\frac{1}{x^{2}+1} \\
& \therefore 2 x^{2}+2=x^{2}+4 \\
& \therefore x^{2}=2 \\
& \therefore x=\sqrt{2} \quad-\sqrt{2}
\end{aligned}
$$

Test $x=\sqrt{2} \quad($ since $x>0)$

x	1	$\sqrt{2}$	2
$\frac{d \theta}{d x}$	$\frac{1}{10}$	0	$-\frac{1}{20}$

\therefore Max when $x=\sqrt{2}$
(iii) M ax vienity angl $l e=\tan ^{-1}\left(\frac{2}{\sqrt{2}}\right)-\tan ^{-1}\left(\frac{1}{\sqrt{2}}\right.$,

$$
\begin{aligned}
& =\tan ^{-1}(\sqrt{2})-\tan ^{-1}\left(\frac{1}{\sqrt{2}}\right) \\
& =54^{\circ} 44^{\prime} 8.2^{\prime \prime}-35^{\circ} 15^{\prime} 51.8^{\prime \prime} \\
& =19^{\circ} 28^{\prime} 16.39^{\prime \prime}
\end{aligned}
$$

$\doteqdot 19^{\circ}$ (nearest degree)
(b) (i) $\tan \alpha=\frac{h}{W B} \quad \therefore W B=\frac{h}{\tan \alpha}=$ h cot α

Also, $\tan \alpha=\frac{h}{B X} \quad \therefore B X=\frac{h}{\tan \alpha}=h \cot \alpha$
$\therefore \triangle B W X$ is isosceles ($W B=B X$ ie. 2$)$ equal sides
(ii) ${ }^{B}$

$$
\begin{aligned}
& B M=\sqrt{h^{2} \cot ^{2} \alpha-20^{2}} \\
&=\sqrt{h^{2} \cot ^{2} \alpha-400} \\
&\left(10 \& B M=\sqrt{h^{2} \cot ^{2} \beta-3600}\right)
\end{aligned}
$$

(iii) $\tan \beta=\frac{h}{B Y} \quad \therefore B Y=h \cot \beta$

$h^{2} \cot ^{2} \beta=\left(h^{2} \cot ^{2} \alpha-400\right)+60^{2}$
$h^{2} \cot ^{2} \beta=h^{2} \cot ^{2} \alpha-400+3600$
$h^{2} \cot ^{2} \beta-h^{2} \cot ^{2} \alpha=3200$
$h^{2}\left(\cot ^{2} \beta-\cot ^{2} \alpha\right)=3200$
$h^{2}=\frac{3200}{\left(\cot ^{2} \beta-\cot ^{2} \alpha\right)}$
$\therefore h=\frac{\sqrt{3200}}{\sqrt{\cot ^{2} \beta-\cot ^{2} \alpha}} \quad($ since $h>0)$
$\therefore h=\frac{40 \sqrt{2}}{\sqrt{\cot ^{2} \beta-\cot ^{2} \alpha}}$

Question 7
(a)(i) $7!={ }^{7} P_{7}=5040$ mays
(ii)

$$
\begin{aligned}
& \text { G } \angle B B B B B 7 \\
& B G G B B B B \text { (Each of these } \\
& B B G C B B B \text { can be arranged } \\
& \text { BBBGGBB } 5!\times 2!\text { ways } \\
& \begin{array}{l}
\text { BBBBGGB } \\
\text { BBBBBGG }
\end{array} \therefore \text { Total }=6!\times 2! \\
& =1440 \mathrm{mags}^{\mathrm{m}}
\end{aligned}
$$

(iii) $G B B G B B B)$ Each of these $B G B B C B B$ can be arranged $\left.\begin{array}{l}\text { BBGBBGB } \\ B B B G B B G\end{array}\right) 5!\times 2!$ ways
BBBGBBG - Total $=4 \times 5!\times 2$!

$$
=960 \text { mays }
$$

(b) (i) $\log _{e}\left(x^{2}\right)$ has a domain of all real x but $x \neq 0$
$2 \log _{e} x$ ally has a domain of $x>0$, so half, of thecwre would be deleted/bost
(ii) $x \neq 0$ since $\log _{e} 0$ is uncterined

And since $\log _{e} 1=0$ and $\frac{x}{0}$ is undefined thus $x \neq \pm 1$
\therefore Domain is all real x but $x \neq 0, x \neq \pm 1$
(iii) $\frac{d y}{d x}=\frac{\left(\ln x^{2}\right)_{x} 1-x_{x} \frac{2 x}{x^{2}}}{\left(\ln x^{2}\right)^{2}}$

$$
=\frac{\ln x^{2}-2}{\left(\ln x^{2}\right)^{2}}
$$

(iv) stat pts when $\frac{d y}{d x}=0$

$$
\begin{aligned}
& \therefore 0=\frac{\ln x^{2}-2}{\left(\ln x^{2}\right)^{2}} \\
& \therefore 2=\ln x^{2} \\
& \therefore x^{2}=e^{2} \\
& \therefore x= \pm \sqrt{e^{2}} \\
& \therefore x=e \text { or } x=-e \\
& y=\frac{e}{2} \quad y=\frac{e}{2}
\end{aligned}
$$

\therefore Maxturnhy $\rho+$ @ $\left(-e,-\frac{e}{2}\right)$

\therefore Min turing $p^{+} Q\left(e, \frac{e}{2}\right)$

when $x=\frac{1}{2}, y=\frac{0.5}{\ln 0.25}<0$ when $x=-\frac{1}{2}, y=\frac{-0.5}{\operatorname{lo.25}}>0$

