\qquad

2011
 TRIAL
 HIGHER SCHOOL CERTIFICATE

Mathematics Extension 1

Staff Involved:

AM FRIDAY 12 AUGUST

- PJR* • GIC*
- MRB • GDH
- KJL • RMH
- GPF

105 copies

General Instructions

- Reading time - 5 minutes
- Working time - 2 hours
- Write using blue or black pen
- Make sure your Barker Student Number is on ALL pages of your solutions
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- ALL necessary working should be shown in every question

Total marks - 84

- Attempt Questions 1 - 7
- All questions are of equal value
- Marks may be deducted for careless or poorly arranged working
(a) The point $P(x, y)$ divides the interval $A B$ internally in the ratio $2: 1$

If A is the point $(6,1)$ and B is the point $(12,-8)$, find the coordinates of $P(x, y)$
(b) Evaluate $\lim _{x \rightarrow 0}\left(\frac{\tan x}{3 x}\right)$
(c) Use the table of standard integrals to evaluate $\int_{0}^{\frac{\pi}{2}} \sec \frac{x}{2} \tan \frac{x}{2} d x$
(d) Solve $\frac{x}{x-4} \leq 2$
(e) Evaluate $\int_{-\frac{1}{4}}^{\frac{1}{4}} \frac{d x}{\sqrt{1-4 x^{2}}}$

Question 2 (12 marks) [START A NEW PAGE]

(a) Find the acute angle between the curves $y=\log _{e} x$ and $y=1-x^{2}$ at the point $P(1,0)$
Give your answer correct to the nearest minute.
(b) The point $P\left(2 a p, a p^{2}\right)$ is a point on the parabola $x^{2}=4 a y$ with focus $S(0, a)$
(i) Find M, the midpoint of the chord $O P$, where O is the origin

1

1
(iii) Find the point A on the parabola where the tangent is parallel to the chord $O P$
(iv) Show that A is equidistant from M and the x-axis
(c) $\triangle A B C$ is inscribed in a circle as shown below.

The tangent at C meets $A B$ produced at P and the bisector of $\angle A C B$ meets $A B$ at Q

(i) Copy and complete the diagram
(ii) Prove that $P C=P Q$
(a) Let $f(x)=\ln (\tan x)$, where $0<x<\frac{\pi}{2} \quad 3$

Show that $f^{\prime}(x)=2 \operatorname{cosec} 2 x$
(b) Use the substitution $x=2 \sin \theta$ to evaluate $\int_{0}^{1} \sqrt{4-x^{2}} d x$

3
(c) (i) State the domain and range of the function $f(x)=\cos ^{-1} 2 x$
(ii) Draw a neat sketch of the function $f(x)=\cos ^{-1} 2 x$ Clearly label all essential features
(iii) Find the equation of the tangent to the curve $f(x)=\cos ^{-1} 2 x$ at the 3 point where the curve crosses the y-axis.

Question 4 (12 marks) [START A NEW PAGE]

(a) (i) Show that $\sin (A+B)+\sin (A-B)=2 \sin A \cos B$
(ii) Hence, or otherwise, evaluate $\int_{0}^{\pi / 4} \sin 4 x \cos 2 x d x$

1
(c) The graph shown below represents the relationship between T, the temperature in C° of a cooling cup of coffee, and t, the time in minutes.

The rate of cooling of this coffee is given by $\frac{d T}{d t}=-k(T-A)$, where k and A are constants and $k>0$.
(i) Show that $T=A+B e^{-k t}$ is a solution to the differential equation $\frac{d T}{d t}=-k(T-A)$, given that B is a constant.
(ii) By examining the graph when $t=0$ and $t \rightarrow \infty$, find the values of A and B
(iii) If the temperature of the coffee is $50^{\circ} \mathrm{C}$ after 90 minutes, show that

$$
k=-\frac{1}{90} \ln \left(\frac{14}{39}\right)
$$

(iv) Hence, find the rate at which the coffee is cooling after 90 minutes. Give your answer correct to two significant figures.

Question 5 (12 marks) [START A NEW PAGE]
(a) Evaluate $\int_{0}^{\frac{\pi}{4}} \cos x \sin ^{2} x d x$

At what rate is the surface area increasing when the radius is 20 cm ?
(c) A particle moves in such a way that its displacement $x \mathrm{~cm}$ from an origin O at any time t seconds is given by the function $x=4+\sqrt{3} \cos 3 t-\sin 3 t$
(i) Show that the particle is moving in simple harmonic motion.
(ii) Express $\sqrt{3} \cos 3 t-\sin 3 t$ in the form $R \cos (3 t+\alpha)$, where α is acute and in radians.
(iii) Find the amplitude of the motion.
(iv) Find when the particle first passes through the centre of motion.

Question 6 (12 marks) [START A NEW PAGE]

(a) Show by induction that $7^{n}+2$ is divisible by 3 , for all positive integers n
(b) Given the function $f(x)=\frac{2 x+1}{x-1}$
(i) Find any vertical and horizontal asymptotes
(ii) State the domain of the inverse function $f^{-1}(x)$
(iii) Sketch the graph of the inverse function $f^{-1}(x)$

Clearly label all critical features of the inverse function $f^{-1}(x)$
(c) A particle is moving along the x-axis so that its acceleration after t seconds is given by

$$
\ddot{x}=-e^{-\frac{x}{2}}
$$

The particle starts at the origin with an initial velocity of $2 \mathrm{~cm} / \mathrm{sec}$
(i) If v is the velocity of the particle, find v^{2} as a function of x
(ii) Show that the displacement x as a function of time t is given by

$$
x=4 \log _{e}\left(\frac{t+2}{2}\right)
$$

(a) James is standing at the top A of a tower AB which is built on level ground.

From point C, due south of the base B of the tower, the angle of elevation of the top A of the tower is 67°

From point D , which is 120 m due east of point C , the angle of elevation of the top A of the tower is 51°

(i) Calculate the height of the tower AB (to the nearest metre)
(ii) James projects a stone horizontally from the top of the tower with velocity $V \mathrm{~m} / \mathrm{s}$

If this stone lands at point D , find the value of V
(Give your answer correct to one decimal place)
You may assume the equations of motion are

$$
x=v t \cos \theta \text { and } y=v t \sin \theta-5 t^{2}(\text { Do NOT prove this })
$$

(Hint: Use point A as the origin)

Question 7 continues on page 9

Question 7 (continued)

(b) The point $R(a, b)$ lies in the positive quadrant of the number plane.

A line through R meets the positive x and y axes at P and Q respectively and makes an angle θ with the x-axis.

(i) Show that the length of PQ is equal to $\frac{a}{\cos \theta}+\frac{b}{\sin \theta}$
(ii) Hence, show that the minimum length of PQ is equal to $\left(a^{2 / 3}+b^{2 / 3}\right)^{3 / 2}$

End of Question 7

End of Paper

Blank page

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE: } \ln x=\log _{e} x, \quad x>0
\end{aligned}
$$

AR 12 MATHEMATICS EXTENSION I TRIAL HSC

 20 Auguist $2011 \therefore x^{2}-12 x+32 \geqslant 0$ uestion 1

D $M=\left(\frac{0+2 a \rho}{2}, \frac{0+a \rho^{2}}{2}\right)$

$$
M=\left(a p, \frac{a p^{2}}{2}\right)
$$

11) Gradient of $O p=\frac{a p^{2}-0}{2 a p-0}$

$$
\therefore m_{O p}=\frac{p}{2}
$$

111) A lies on the parabola

$$
x^{2}=4 a y \quad \therefore y=\frac{x^{2}}{4 a}
$$

$$
y^{\prime}=\frac{2 x}{4 a}=\frac{x}{2 a}
$$

now $\begin{array}{r}y^{\prime}=\frac{f}{2} \quad \text { since chords are } \\ \text { parallel }\end{array}$

$$
\frac{x}{2 a}=\frac{p}{z}
$$

$$
\text { If } x=a p, y-\frac{(a p)^{2}}{4 a}=\frac{a p^{2}}{4}
$$

$$
\therefore A\left(a \rho, \frac{a p^{2}}{4}\right)
$$

1v) Distance of A from x-axis

$$
=\text { its } y \text { value }
$$

$\therefore d_{1}=\frac{a \rho^{2}}{4}$ units

$\frac{d A_{j}}{d t}=\frac{d A}{d r} \times \frac{d r}{d t}$

$$
\begin{aligned}
& A=4 \pi r^{2} \\
& \frac{d A}{d t}=8 \pi r
\end{aligned}
$$

$$
R=\sqrt{(\sqrt{3})^{2}+1^{2}}=\sqrt{4}=2
$$

$$
\begin{aligned}
\frac{d A}{d t} & =8 \pi r \times \frac{d r}{d t} \\
& =8 t \phi \phi \times \frac{5}{A \pi r y}
\end{aligned}
$$

$$
\therefore \quad 2 \cos \left(3 t+\frac{\pi}{6}\right)
$$

$$
=\frac{10}{r}
$$

$$
\text { iiI) } 50, x=4+2 \cos \left(3 t+\frac{\pi}{6}\right)
$$

$$
\text { since }-1 \leq \cos \left(3 x+\frac{\pi}{6}\right) \leq 1
$$

when $r=20 \mathrm{~cm}$.

$$
\text { then } x \text { can be between }
$$

$\frac{d A}{d t}=\frac{10}{20}=\frac{1}{2}$

$$
(4+2) \mathrm{cm} \text { and }(4-2) \mathrm{cm}
$$

- rate at which surface
area is increasing is $\frac{1}{2} \mathrm{~cm}^{2} / \mathrm{s}$
c) 1) $x=4+\sqrt{3} \cos 3 t-\sin 3 t$ $\dot{x}=-3 \sqrt{3} \sin 3 t-3 \cos 3 t$
$\ddot{x}=-9 \sqrt{3} \cos 3 t+9 \sin 3 t$
$\dot{x}=-9(\sqrt{3} \cos 3 t-\sin 3 t+4)$

$$
=-9(x-4)
$$

lIst time

$$
3 t+\frac{\pi}{6}=\frac{\pi}{2}, \frac{3 \pi}{2}, \cdots
$$

$$
\text { which is SHM, } n=3 \text {, centre is }
$$

$$
\therefore \quad 3 t+\frac{\pi}{6}=\frac{\pi}{2}
$$

$$
3 \pi=\frac{\pi}{3}
$$

$\sqrt{3} \cos 3 t-\sin 3 t=R \cos 3 t \cos \alpha-R \sin 3 t \sin \alpha \quad t=\frac{\pi}{9}$

> Equating both sides:

$$
\left.\begin{array}{rl}
\text { fig both sides: } \\
R \cos \alpha=\sqrt{3} \\
R \sin \alpha=1
\end{array}\right\} \text { (1) } \begin{aligned}
& \text { (2) }
\end{aligned} \quad \begin{aligned}
& \quad \begin{array}{l}
\text { particle first passes } \\
\text { through } x=4
\end{array} \quad \text { after } t=\frac{\pi}{9} \text { see }
\end{aligned}
$$

$$
\begin{array}{r}
\text { (2) } \div(1) \quad \tan \alpha=\frac{1}{\sqrt{3}} \\
\alpha=\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)=\frac{\pi}{6}
\end{array}
$$

le $2 \leq x \leq 6$
the centre is $x=4$
\therefore amplitude is 2 cm
iv) solve:

$$
4+2 \omega s\left(3 t+\frac{\pi}{6}\right)=4
$$

$$
2 \cos \left(3 t+\frac{\pi}{6}\right)=0
$$

$$
\cos \left(3 t+\frac{\pi}{6}\right)=0
$$

\therefore statement is true ur $n=4+i$
\therefore statement is true for $n=1$, $n=k$ and $n=k+1$
\therefore it is true for all positive integers n
b) 1) $f(x)=\frac{2 x+1}{x-1}$
vertical asymptote $x=1$

$$
(a=x-1 \neq 0)
$$

horizontal asymptote
$\lim _{x \rightarrow \infty} \frac{2 x+1}{x-1}=\lim _{x \rightarrow \infty} \frac{\frac{2 x}{x}+\frac{1}{x}}{\frac{x}{x}-\frac{1}{2 x}}$
$=\lim _{x \rightarrow \infty} \frac{2+\frac{1}{x}}{1-\frac{1}{x}}$
$=\frac{2+0}{1-0}$
$=2$
$\therefore y=2$ is horiz. asymptote
ii) Domain of $f^{-1}(x)$ is the
same as range of $f(x)$
$x \neq 2$

$$
\begin{aligned}
& \text {) } \frac{1}{2} v^{2}=\int-e^{-\frac{x}{2}} d x \\
& \text {) } \frac{1}{2} v^{2}=-\frac{e^{-\frac{x}{2}}}{-\frac{1}{2}}+c \\
& \frac{1}{2} v^{2}=2 e^{-\frac{x}{2}}+c \\
& =0, v=2 \\
& 2=2+c \\
& \therefore c=0 \\
& \therefore v^{2}=4 e^{-\frac{x}{2}} \\
& \text {) } v= \pm \sqrt{4 e^{-x^{2}}} \\
& v= \pm 2 e^{-\frac{x}{4}} \\
& \text { of } x=0, v=2 \quad \therefore \text { take } \\
& \text { positive } v \\
& V=2 e^{-\frac{x}{4}} \\
& \frac{d x}{d t}=2 e^{-\frac{x}{4}}=\frac{2}{e^{\frac{x}{4}}} \\
& \therefore \int \frac{e^{\frac{x}{4}}}{2} d x=\int d t \\
& \frac{1}{2}\left(\frac{e^{\frac{x}{x}}}{\frac{1}{4}}\right)=t+k \\
& \frac{1}{2} \times 4 e^{\frac{x}{4}}=t+k \\
& 2 e^{\frac{x}{4}}=t+k \\
& t=0, x=0 \quad 2=0+k \\
& \begin{array}{c}
\therefore k=2 \\
2 e^{\frac{x}{4}}=t+2
\end{array} \\
& e^{\frac{x}{1}}=\frac{t+2}{2} \\
& \frac{x}{4}=\log _{e}\left(\frac{t+2}{2}\right) \\
& x=4 \log _{2}\left(\frac{t+2}{2}\right) \\
& \text { b) } \\
& \text { (b) } \begin{aligned}
\text { In lenght } P Q & =Q R+R P \\
\text { In } \triangle R T P: \sin \theta & =\frac{b}{R P} \\
\therefore R P & =\frac{b}{\sin \theta}
\end{aligned} \\
& \text { In } \triangle Q R S: \cos \theta-\frac{a}{R Q} \\
& R Q=\frac{a}{\cos \theta} \\
& t=\frac{174}{5} \\
& P Q=\frac{a}{\cos \theta}+\frac{b}{\sin \theta} \\
& \text { then } x=V t \\
& \begin{aligned}
& h=174^{h \tan 39^{\circ}}=V \times 3.9 \\
& V=\frac{174 \times \tan 39^{\circ}}{5.9}
\end{aligned} \\
& \text { 11) let, } L=\frac{a}{\cos \theta}+\frac{b}{\sin \theta} \\
& \text { In the base } \triangle B D C \\
& \text { use Pythaguras' Theorem snce } \\
& \angle B C D=90^{\circ} \\
& B D^{2}=B C^{2}+120^{2} \\
& (h \tan 39)^{2}=(h \tan 23)^{2}+120^{2} \\
& h^{2}\left(\tan ^{2} 39-\tan ^{2} 23\right)=120^{2} \\
& h^{2}=\frac{120^{2}}{\tan ^{2} 39-\tan ^{2} 23} \\
& h=\frac{120}{\sqrt{\tan ^{2} 39-\tan ^{2} 23}} \\
& \therefore h=174 \mathrm{~m} \text { (nearest } \mathrm{m} \text {) } \\
& \text { 11) } \text { 10, }_{\left(0,0^{\circ}\right.}^{A} \rightarrow z^{V} \\
& \text { honzontal projection } \therefore \theta=0 \\
& x=v t \cos \theta, y=v t \sin \theta-5 t^{2} \\
& \begin{array}{l}
=0 \\
x=V t, \quad y=-5 t^{2} .
\end{array} \\
& \text { At pount D, } y=-1.74 \\
& -174=-5 t^{2} \\
& =23.8817 . \\
& \therefore \quad V=23.9 \mathrm{~m} / \mathrm{s} \\
& \text { (2. } L=a \sec \theta+b \operatorname{cosec} \theta \\
& \text { to minimise length, solve } \\
& \frac{d L}{d \theta}=0 \text { for } \theta \\
& L^{\prime}=a \sec \theta \tan \theta+-b \operatorname{cosec} \theta \cot \theta \\
& =a \times \frac{1}{\cos \theta} \times \frac{\sin \theta}{\cos \theta}-b \times \frac{1}{\sin \theta} \times \frac{\cos \theta}{\sin \theta} \\
& \begin{array}{l}
=\frac{a \sin \theta}{\cos ^{2} \theta}-\frac{b \cos \theta}{\sin ^{2} \theta}=0 \quad \begin{array}{l}
\text { for } \\
\therefore \frac{a \sin \theta}{\cos ^{2} \theta} \\
\therefore \frac{b \cos \theta}{\sin ^{2} \theta}
\end{array} \quad \$ \quad l
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& a \sin ^{3} \theta=b \cos ^{3} \theta \quad P Q=a^{\frac{2}{3}} \sqrt{a^{\frac{2}{7}+b^{\frac{2}{3}}}}+b^{\frac{2}{3}} \sqrt{a^{2 / 3}+b^{2 / 3}} \\
& \therefore \tan ^{3} \theta=\frac{b}{a} \\
& \tan \theta=\sqrt[3]{\frac{b}{a}}=\frac{b^{\frac{1}{3}}}{a^{\frac{1}{3}}} \\
& \theta=\tan ^{-1}\left(\sqrt[3]{\frac{b}{a^{2}}}\right) \\
& \begin{array}{l}
=\sqrt{a^{2 / 3}+b^{2 / 5}}\left(a^{2 / 3}+b^{2 / 3}\right) \\
=\left(a^{2 / 3}+b^{2 / 3}\right)^{1 / 2}\left(a^{2 / 3}+b^{2 / 3}\right)
\end{array} \\
& =\left(a^{2 / 3}+b^{2 / 3}\right)^{3 / 2} \\
& \text { !! whew! } \\
& \therefore \theta=\tan ^{-1}\left(\sqrt[3]{\frac{b}{a}}\right) \text { gives the }
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \text { min length of } P Q \text { is } \\
& \quad \text { equal to }\left(a^{2 / 3}+b^{2 / 3}\right)^{3 / 2}
\end{aligned}
$$ (* it is a min. length sure there is no max. value for $P Q$, sauce $0,5 \theta \rightarrow 0$, length $P(\rightarrow \infty$) now, since $\tan \theta=\frac{b^{\frac{1}{3}}}{a^{\frac{1}{3}}}$

$\therefore \quad \sin \theta=\frac{b^{\frac{1}{3}}}{\sqrt{a^{2 / 3}+b^{2 / 3}}}$
$\cos \theta=\frac{a^{\frac{1}{3}}}{\sqrt{a^{2 / 3}+b^{2 / 3}}}$
\therefore minimum length of $P Q$:

$$
\begin{aligned}
& P Q=\frac{a}{\cos \theta}+\frac{b}{\sin \theta} \\
&=\frac{a}{\frac{a^{1 / 3}}{\sqrt{a^{2 / 3}+b^{2 / 3}}}+\frac{b}{\sqrt{a^{3 / 3}+b^{2 / 3}}}} \\
&=a^{1 / 3} \\
& a^{2 / 3} \sqrt{a^{2 / 3}+b^{1 / 3}}+b \sqrt{a^{2 / 3}+b^{2 / 3}}
\end{aligned}
$$

