2012
 TRIAL
 HIGHER SCHOOL
 CERTIFICATE

Mathematics Extension 1

ANSWER SHEET

Section I - Multiple Choice
Choose the best response and fill in the response oval completely.

Start \rightarrow	1.	AO	BO	CO	DO
Here	2.	$\mathrm{A} \bigcirc$	BO	CO	DO
	3.	$\mathrm{A} O$	BO	CO	DO
	4.	$\mathrm{A} O$	BO	CO	DO
	5.	AO	BO	CO	DO
	6.	$\mathrm{A} \bigcirc$	BO	CO	DO
	7.	AO	BO	CO	DO
	8.	AO	BO	CO	DO
	9.	AO	BO	CO	DO
	10.	AO	BO	CO	DO

BLANK PAGE

Barker College

2012
 TRIAL HIGHER SCHOOL CERTIFICATE

Mathematics Extension 1

Staff Involved:

- RMH* - GIC
- GPF* • PJR
- BJB - BHC
- VAB

Number of copies: 90

General Instructions

- Reading time - 5 minutes
- Working time - 2 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- Show all necessary working in Questions 11-14.

Total marks - 70

Section I
Pages 2-5
10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II

Pages 6-10
60 marks

- Attempt Questions 11-14
- Allow about 1 hours 45 minutes for this section

Section I - Multiple Choice

Attempt Questions 1-10

Use the multiple-choice answer sheet for Questions $1-10$.

1. The x-coordinate of the point which divides the interval joining $A(3,1)$ and $B(-1,5)$ externally in the ratio $4: 3$ is:
(A) -13
(B) $\frac{5}{7}$
(C) 17
(D) 15
2. $\lim _{x \rightarrow 0} \frac{\tan 3 x}{2 x}$ is equal to :
(A) 0
(B) 1
(C) $\frac{3}{2}$
(D) $\frac{2}{3}$
3. $3\left(\sin ^{-1} x+\cos ^{-1} x\right)$ is equal to :
(A) 1
(B) $\frac{3 \pi}{2}$
(C) 3
(D) 3π
4.

The gradient function of $y=f(x)$ is shown above. On the curve $y=f(x), B$ would be a :
(A) maximum turning point
(B) point of inflexion
(C) horizontal point of inflexion
(D) minimum turning point
5. Given that $f^{-1}(x)=\frac{2 x}{x-1}, f(x)$ would have the equation :
(A) $\frac{x}{x+2}$
(B) $\frac{y}{y-2}$
(C) $\frac{2 y}{y-1}$
(D) $\frac{x}{x-2}$
6.

The value of x is:
(A) 9
(B) 4
(C) 5.5
(D) 1
7. A particle moves in simple harmonic motion such that $v^{2}=-4(x-5)(x+1)$, where v is velocity in m / s.

Maximum acceleration of this particle happens when:
(A) $x=5$ and -1
(B) $x=2$
(C) $x=-5$ and 1
(D) $x=0$
8. The acceleration-time graph of a particle is shown below.

NOT TO SCALE

The time(s) when the particle has a maximum velocity is :
(A) $t=2$
(B) $t=3$
(C) $t=4$
(D) $0<t<2$
9. The area bounded by the y-axis, $y=\frac{\pi}{2}$ and $y=\sin ^{-1} x$ is shaded in the diagram below.

The value of this area, in square units is:
(A) $\frac{\pi}{2}-1$
(B) 1
(C) $\frac{\pi}{2}$
(D) $1-\frac{\pi}{2}$
10. Part of the curve $y=2 \sin 2 \theta$ is drawn below.

The horizontal line $y=k$ is also drawn as shown above.
The general solution of the intersection of these two functions is:
(A) $\frac{n \pi}{2}+(-1)^{n} \frac{\pi}{4}$
(B) $2 n \pi \pm \frac{\pi}{4}$
(C) $n \pi+(-1)^{n} \frac{\pi}{2}$
(D) $\frac{n \pi}{2}+(-1)^{n} \frac{\pi}{2}$

End of Section I

(a) Solve $\frac{x}{3-2 x}<1$.

4
(b) Evaluate $\int_{-1}^{1} \frac{d x}{\sqrt{4-x^{2}}}$, leaving your answer in exact form.
(c) Evaluate $\int_{\frac{\pi}{12}}^{\frac{\pi}{4}} \cos ^{2} 2 x d x$, leaving your answer in exact form.
(d) Using the substitution $x=u-2$, or otherwise, find $\int \frac{x+1}{\sqrt{(x+2)^{3}}} d x$.
(a) Prove by induction that
$1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{1}{6} n(n+1)(2 n+1)$
for all $n \geq 1$, where n is an integer.
(b) Find the coefficient of x^{2} in the expansion of $\left(\frac{x^{4}}{2}+\frac{2}{x}\right)^{8}$.
(c) Consider the function $f(x)=3 \sin ^{-1} x$.
(i) State the domain and range of the function.
(ii) Draw a neat sketch of the function.

Clearly label all essential features.
(iii) Find the gradient of the tangent to the function $f(x)=3 \sin ^{-1} x$
at the point $\left(\frac{1}{2}, \frac{\pi}{2}\right)$.
(d)

Matt (M) and Steve (S) operate ground-level cameras at a rugby match. The cameras are aimed at the centre of the cross-bar of the goal post (G) which is 3 metres above the ground.
Matt is directly north of the centre of the goal post.
The centre of the goal post is on a bearing of 302° from Steve.
The cameras operated by Matt and Steve are set at angles of elevation of 14° and 4° respectively.
(i) Show that $\angle M T S=122^{\circ}$.
(ii) Calculate the distance between the two cameras, to the nearest centimetre.
(a) (i) Express $8 \cos \theta-6 \sin \theta$ in the form $R \cos (\theta+\alpha)$ where α is in degrees.
(ii) Hence, or otherwise, find the solutions of the equation $8 \cos \theta-6 \sin \theta=5$ for $0^{\circ} \leq \theta \leq 360^{\circ}$.
(b) A particle moves in such a way that its displacement, $x \mathrm{~cm}$, from the origin at any time is given by the function $x=2+\cos ^{2} t$ where t is in seconds.
(i) Show that acceleration is given by $\ddot{x}=10-4 x$.
(ii) Find the centre of the motion.
(iii) Find the amplitude of the motion.
(c) A ball is kicked on level ground to just clear a fence 2 m high and 40 m away. The initial velocity is $30 \mathrm{~m} / \mathrm{s}$ and the angle of projection is α.

The displacement equations are
$x=30 t \cos \alpha \quad$ and $\quad y=-5 t^{2}+30 t \sin \alpha \quad$ (DO NOT PROVE THESE).
(i) Show that $y=\frac{-x^{2}}{180} \sec ^{2} \alpha+x \tan \alpha$.
(ii) Hence, or otherwise, find the angles of projection that allow the ball to just clear the fence. Answer to the nearest degree.

End of Question 13

(a) $\quad P\left(2 p, p^{2}\right)$ and $Q\left(2 q, q^{2}\right)$ are two points on the parabola $x^{2}=4 y$. The chord $P Q$ subtends a right angle at the origin.
(i) Show that $p q=-4$.
(ii) If M is the midpoint of $P Q$, find the locus of M.
(b) Consider the function $f(x)=\frac{x+2}{x^{2}+1}$.
(i) Find the points where the curve crosses the x-axis and y-axis.
(ii) Find the x-coordinates of any stationary points, and without finding the second derivative, determine their nature.
(iii) Describe the behaviour of $y=f(x)$ as $x \rightarrow \pm \infty$.
(iv) Sketch the curve $y=f(x)$ using an appropriate scale and showing all the information above. Label the axes and any critical points.
(c) The acceleration of a particle moving along a straight path is given by
$\ddot{x}=-\frac{e^{x}+1}{e^{2 x}}$, where x is in metres.
Initially the particle is at the origin with a velocity of $2 \mathrm{~m} / \mathrm{s}$.
(i) show that $v=e^{-x}+1$.
(ii) Find the equation of the displacement, x, in terms of t.

End of Question 14
 End of Paper

STANDARD INTEGRALS

$$
\text { NOTE: } \ln x=\log _{e} x, \quad x>0
$$

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0 \text {, if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

2012 yr 12 Extension I Trial HSC
Multiple Choice
(1) $\left(\frac{x_{2} k+x_{1} l}{k+l},\right)$

$$
\begin{aligned}
& =\left(\frac{-1 x-4+3 \times 3}{-4+3},\right. \\
& =\left(\frac{4+9}{-1}\right) \\
& =(-13,0)
\end{aligned}
$$

(6)

$$
\begin{aligned}
8 x & =72 \\
x & =9
\end{aligned}
$$

(7) Max acceleration of $v=0$

$$
\therefore x=5,-1
$$

(A)

(c)
(9) $x=\sin y$
(3)

$$
\begin{gather*}
\left(\sin ^{-1} x+\cos \right. \tag{B}\\
\therefore \frac{3 \pi}{2}
\end{gather*}
$$

$$
=[-\cos y]_{0}^{\pi / 2}
$$

$$
=-\cos \frac{\pi}{2}+\cos 0
$$

(4)

(B)
(C)
(10)
(5) $x=\frac{2 y}{y-1}$

$$
\begin{align*}
x y-x & =2 y \\
x y-2 y & =x \\
y(x-2) & =x \tag{D}\\
y & =\frac{x}{x-2}
\end{align*}
$$

n	0	1	2	
$\frac{n \pi}{2}+(-1)^{n} \frac{\pi}{4}$	$\frac{\pi}{4}$	$\frac{\pi}{4}$	$\frac{3 \pi}{4}$	

QuII(a) $\frac{(3-2 x)^{2} x}{(3-2 x)}<1(3-2 x)^{2}$

$$
\begin{gathered}
x(3-2 x)<(3-2 x)^{2} \\
x(3-2 x)-(3-2 x)^{2}<0 \\
(3-2 x)[x-(3-2 x)]<0 \\
(3-2 x)(3 x-3)<0
\end{gathered}
$$

(b)

$$
\begin{aligned}
{\left[\sin ^{-1} \frac{x}{2}\right]_{-1}^{1} } & =\frac{\pi}{6}-\frac{\pi}{6} \\
& =\pi / 3
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \cos 2 x=2 \cos ^{2} x-1 \\
& \cos ^{2} x=\frac{1}{2}(1+\cos 2 x) \\
& \begin{aligned}
\frac{1}{2} \int_{\frac{\pi}{12}}^{\frac{\pi}{4}}(1+\cos 4 x) d x & =\frac{1}{2}\left[x+\frac{1}{4} \sin 4 x\right]^{\pi / 4} \\
& \left.=\frac{1}{2} \int\left(\frac{\pi}{4}+\frac{1}{4} \times 0\right)-\left(\frac{\pi}{12}+\frac{1}{4} \sin \frac{\pi}{3}\right)\right] \\
& =\frac{1}{2}\left(\frac{\pi}{4}-\frac{\pi}{12} \times \frac{\sqrt{3}}{2}\right) \\
& =1 / 2\left(\frac{\pi}{4}-\frac{\pi \sqrt{3}}{24}\right)
\end{aligned}
\end{aligned}
$$

(d)

$$
\begin{aligned}
& \begin{array}{l}
u=x+2 \\
\frac{d u}{d x}=1
\end{array} \quad \int \frac{u-1}{u^{3 / 2}} d u \\
& d u=d x \quad=\int\left(u^{-1 / 2}-u^{-3 / 2}\right) d u \\
& =\frac{u^{1 / 2}}{1 / 2}-\frac{u^{-1 / 2}}{-1 / 2}+c \\
& =2 \sqrt{u}+\frac{2}{\sqrt{n}}+c=2 \sqrt{x+2}+\frac{2}{\sqrt{x+2}}+c
\end{aligned}
$$

Qu 12
(a) Prove true for $n=1$

$$
\begin{array}{rlrl}
\angle H S & =1^{2} & \text { ANS } & =\frac{1}{6} \times 1 \times(1+1) \times(2+1) \\
& =1 & & =\frac{1}{6} \times 1 \times 2 \times 3 \\
& =1
\end{array}
$$

\therefore True for $n=1$
Assume true for $n=k$

$$
1^{2}+2^{2}+\ldots+k^{2}=\frac{1}{6} k(k+1)(2 k+1)
$$

Prove true for $n=k+1$

$$
\begin{aligned}
\angle H 5 & =1^{2}+2^{2}+\cdots+k^{2}+(k+1)^{2} \\
k+5 & =\frac{1}{6}(k+1)(2 k+1)+(k+1)^{2} \\
& =\frac{k+1}{6}[k(2 k+1)+6(k+1)] \\
& =\frac{k+1}{6}\left(2 k^{2}+k+6 k+6\right) \\
& =\frac{k+1}{6}\left(2 k^{2}+7 k+6\right) \\
& =\frac{k+1}{6}(2 k+3)(k+2) \\
& \left.=\frac{1}{6}(k+1)(k+1)+1\right)(2(k+1)+1) \\
& =S_{k+1}
\end{aligned}
$$

If statement true for $n=k$, then the for $n=k+1$.
Since true for $n=1$, then true for foe $n=2$
\& as true for $n=2$, then true for $x=3$ \& 10 on.
\therefore True for all $n \geqslant 1$ (where n is an mteger)

Qu 12 (Contrived)

$$
\left.\begin{array}{l}
\text { (b) }{ }^{{ }^{8} C_{r}}\left(\frac{x^{4}}{2}\right)^{8-r}\left(\frac{2}{x}\right)^{r} \\
={ }^{8} C_{r}\left(\frac{1}{2}\right)^{8-r} \cdot 2^{r} \cdot x^{32-5 r} \\
32-5 r=2
\end{array} \quad \therefore \text { Coeffirieat }^{30}=5 r \quad=8 C_{6} \times\left(\frac{1}{2}\right)^{2} \times 2^{6}\right)
$$

OR

$$
\begin{gathered}
(1+x)^{8}=1+8 x+28 x^{2}+56 x^{3}+70 x^{4}+56 x^{5}+\left(28 x^{6}+8 x^{7}+1 x^{8}\right. \\
\left(\frac{x^{4}}{2}+\frac{2}{x}\right)^{8}=\left(\frac{x^{4}}{2}\right)^{8}+8\left(\frac{x^{4}}{2}\right)^{7}\left(\frac{2}{x}\right)+28\left(\frac{x^{4}}{2}\right)^{6}\left(\frac{2}{x}\right)^{2}+\cdots \\
x^{32} \xrightarrow{-5} \xrightarrow{x^{27}} x_{-5}^{22} \\
28\left(\frac{x^{4}}{2}\right)^{2}\left(\frac{2}{x}\right)^{6}=\frac{28 \times 64 x^{2}}{4} \therefore 448
\end{gathered}
$$

(c) i)

$$
\begin{array}{ll}
D: \quad-1 \leq x \leq 1 \\
R: \quad-\frac{3 \pi}{2} \leqslant y \leq \frac{3 \pi}{2}
\end{array}
$$

ii)

Qu 12 (Continued)
iii) $f^{\prime}(x)=\frac{3}{\sqrt{1-x^{2}}}$ En of tangent $\left(\frac{1}{2}, \frac{\pi}{2}\right)$

$$
\begin{array}{rlr}
f^{\prime}(12)=\frac{3}{\sqrt{1-1 / 4}} & y-\frac{\pi}{2}=\frac{6}{\sqrt{3}}\left(x-\frac{1}{2}\right) \\
=3 \div \frac{\sqrt{3}}{2} & \sqrt{3} y-\frac{\pi \sqrt{3}}{2}=6 x-3 \\
=\frac{6}{\sqrt{3}} & \text { or } \\
=2 \sqrt{3} & y-\frac{\pi}{2}=2 \sqrt{3}(x-1 / 2) \\
& y=2 \sqrt{3} x-\sqrt{3}+\frac{\pi}{2} \\
y=2 \sqrt{3} x-\left(\sqrt{3}-\frac{\pi}{2}\right)
\end{array}
$$

(d) i)

$$
\angle M T S=180-58 \quad \text { (conterior } \angle 1 \text { in } / / \text { lines) }
$$

$$
=122^{\circ}
$$

ii)

$$
M T=3 \cot 14^{\circ}
$$

$$
\begin{aligned}
x^{2} & =\left(3 \cot 14^{\circ}\right)^{2}+\left(3 \cot 4^{\circ}\right)^{2}-2\left(3 \cot 14^{\circ}\right)\left(3 \cot 4^{\circ}\right) \cos 12^{\circ} \\
& =2532.46 \\
x & =50.32 x
\end{aligned}
$$

Qu 13

$$
\begin{aligned}
\text { a) i) } \begin{array}{rl}
R \cos (\theta+\alpha) & =R[\cos \theta \cos \alpha-\sin \theta \sin \alpha] \\
& =10\left(\cos \theta\left(\frac{8}{10}\right)-\frac{6}{10} \sin \theta\right) \\
& \therefore \cos \alpha=\frac{8}{10} \\
\underbrace{10}_{8}]_{6} & x=36^{\circ} 52^{\prime}
\end{array} \quad \therefore 10 \cos \left(\theta+36^{\circ} 52^{\prime}\right)
\end{aligned}
$$

ii) $10 \cos \left(0+36^{\circ} 52^{\prime}\right)=5$

$$
\begin{aligned}
\cos \left(\theta+36^{\circ} 52^{\prime}\right) & =0.5 \\
\theta+36^{\circ} 52^{\prime} & =60^{\circ} \text { or } 300^{\circ} \\
-\theta & =23^{\circ} 08^{\prime} \text { or } 263^{\circ} 8^{\prime}
\end{aligned}
$$

b) i)
$\cos ^{2} t=x-2$

$$
\text { i) } \begin{aligned}
x & =2+(\cos t)^{2} \\
\frac{d x}{d t} & =-2 \sin t \cos t \\
& =-\sin 2 t \\
\frac{d^{2} x}{d t^{2}} & =-2 \cos 2 t \\
& =-2\left(2 \cos ^{2} t-1\right) \\
& =-4(x-2)+2 \\
& =-4 x+8+2 \\
& =10-4 x
\end{aligned}
$$

ii)

$$
\begin{array}{ll}
a=0 & \\
0=10-4 x & \\
& =10-4 x+8
\end{array}
$$

$$
\therefore x=2.5 \quad \text { (centre of motion) }
$$

iii)

$$
\begin{gathered}
\text { i) } 0 \leqslant \cos ^{2} t \leqslant 1 \\
\therefore 2 \leqslant x \leqslant 3 \\
\text { amplitude }=1 / 2 \mathrm{~cm}
\end{gathered}
$$

OR
i)

$$
\begin{aligned}
& v=0 \\
& 0=-\sin 2 t
\end{aligned}
$$

OR

$$
\begin{aligned}
\frac{d x}{d t} & =-2 \sin t \cos t \\
\frac{d x}{d t^{2}} & =-2 \sin t(-\sin t)+(-2 \cos t) \cos t \\
& =2 \sin ^{2} t-2 \cos ^{2} t \\
& =2\left(\sin ^{2} t-\cos ^{2} t\right) \\
& =2\left(1-\cos ^{2} t-\cos ^{2} t\right) \\
& =2\left(1-2 \cos ^{2} t\right) \\
& =2-4 \cos ^{2} t \\
& =2-4(x-2) \\
& =2-4 x+8 \\
& =10-4 x
\end{aligned}
$$

$$
\begin{aligned}
& 2 t=0, \pi, 2 \pi, \ldots \\
& t=0, \frac{\pi}{2}, \pi, \cdots
\end{aligned}
$$

$t=0, x=3 \mathrm{~cm}$

$$
t=\frac{\pi}{2}, x=2 \mathrm{~cm}
$$

\therefore amplitude

$$
=1 / 2 \mathrm{~cm}
$$

Qu 13 Continued
c)

i)

$$
\begin{aligned}
t=\frac{x}{30 \cos x} \quad \therefore y & =\frac{-5 x^{2}}{900 \cos ^{2} \alpha}+\frac{30 x \sin x}{30 \cos x} \\
y & =\frac{-x^{2} \sec ^{2} x+x \tan \alpha}{180}
\end{aligned}
$$

$$
\text { ii) } \begin{aligned}
2 & =\frac{-40^{2} \sec ^{2} \alpha+40 \tan \alpha}{180} \\
360 & =-40^{2} \sec ^{2} \alpha+7200 \tan \alpha \\
360 & =-40^{2}\left(\tan ^{2} \alpha+1\right)+7200 \tan \alpha \\
-9 & =40\left(\tan ^{2} \alpha+1\right)-180 \tan \alpha \\
0 & =40 \tan ^{2} \alpha-180 \tan \alpha \times 49 \\
\tan \alpha & =\frac{180 \pm \sqrt{180^{2}-4(40)(44)}}{2(40)} \\
& =\frac{180 \pm \sqrt{24560}}{80} \\
\therefore \alpha & =76^{\circ} 38^{\prime}, 16^{\circ} 14^{\prime} \\
\therefore & \alpha=16^{\circ}, 77^{\circ}
\end{aligned}
$$

Qer 14
a)

$$
\begin{gathered}
\text { i) } m_{O p} \times M_{O Q}=-1 \\
\frac{p^{2}-0}{2 p-0} \times \frac{q^{2}-0}{2 q-0}=-1 \\
\frac{p}{2} \times q=-1 \\
2 q=-4
\end{gathered}
$$

ii)

$$
\begin{aligned}
M & =\left(\frac{2 p+2 q}{2}, \frac{p^{2}+q^{2}}{2}\right) \\
& =\left(p+q, \frac{p^{2}+q^{2}}{2}\right) \\
y & =\frac{1}{2}\left((p+q)^{2}-2 p q\right) \\
& =\frac{1}{2}\left(x^{2}-2 x-4\right) \\
y & =\frac{1}{2} x^{2}+4
\end{aligned}
$$

b) i) $0=\frac{x+2}{x^{2}+1}$ (x-intercept)

$$
\begin{array}{rc}
\therefore x=-2 & (-2,0) \\
y & \therefore \frac{0+2}{0+1} \\
=2 & (y \text {-intercept }) \\
& (0,2)
\end{array}
$$

Question 14 Continued

$$
\text { ii) } \begin{aligned}
& f^{\prime}(x)=\frac{\left(x^{2}+1\right)(1)-(x+2)(2 x)}{\left(x^{2}+1\right)^{2}} \\
&=\frac{-x^{2}-4 x+1}{\left(x^{2}+1\right)^{2}} \\
& f^{\prime}(x)=0 \quad \text { when }-x^{2}-4 x+1=0 \\
& 0=x^{2}+4 x-1 \\
& x=\frac{-4 \pm \sqrt{16-4(1)(-1)}}{2} \\
& x=\frac{-4 \pm \sqrt{20}}{2} \\
&=-2 \pm \sqrt{5}
\end{aligned}
$$

x	-5	$-2-\sqrt{5}$	0	$-2+\sqrt{5}$	1
$f^{\prime}(x)$	$-4 / 26^{2}$	0	1	0	$-4 / 4$

Min Max

$$
\text { iii) } \begin{aligned}
& \lim _{x \rightarrow \infty}\left(\frac{x+2}{x^{2}+1}\right)=\lim _{x \rightarrow \infty}\left(\frac{\frac{x}{x^{2}}+\frac{2}{x^{2}}}{\frac{x^{2}}{x^{2}}+\frac{1}{x^{2}}}\right) \\
&=\frac{0}{1} \\
&=0^{+} \\
& x \rightarrow \infty, y \rightarrow 0^{+} \\
& x \rightarrow-\infty, y \rightarrow 0^{-}
\end{aligned}
$$

Question 14 Continued
i)

(c) i) $a=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)$

$$
\begin{aligned}
\frac{1}{2} v^{2} & =\int\left(-e^{-x}-e^{-2 x}\right) d x \\
& =e^{-x}+\frac{1}{2} e^{-2 x}+c
\end{aligned}
$$

when $x=0, v=2$

$$
\begin{aligned}
\therefore & \frac{2^{2}}{2}=e^{0}+\frac{1}{2} e^{0}+c \\
c & =1 / 2 \\
\frac{1}{2} v^{2} & =e^{-x}+\frac{1}{2} e^{-2 x}+\frac{1}{2} \\
v^{2} & =2 e^{-x}+e^{-2 x}+1 \\
& =e^{-2 x}+2 e^{-x}+1 \\
& =\left(e^{-x}+1\right)^{2} \\
\therefore v & = \pm\left(e^{-x}+1\right)
\end{aligned}
$$

When $x=0, v=2$

$$
\therefore \quad v=e^{-x}+1
$$

Qu 14 Continued
ii)

$$
\begin{aligned}
& \frac{d x}{d t}=e^{-x}+1 \\
& \frac{d t}{d x}=\frac{1}{e^{-x}+1} \\
& t=\int \frac{1}{e^{-x}+1} d x \\
& =\int \frac{e^{x}}{e^{x}} \cdot \frac{1}{e^{-x}+1} d x \\
& =\int \frac{e^{x}}{e^{x}+e^{x}} d x \\
& =\log \left(1+e^{x}\right) \times c
\end{aligned}
$$

when $t=0, x=0$

$$
\begin{aligned}
0 & =\ln \left(e^{0}+1\right)+c \\
\therefore c & =-\ln 2 \\
\therefore t & =\ln \left(e^{x}+1\right)-\ln 2 \\
& =\ln \left(\frac{e^{x}+1}{2}\right) \\
e^{t} & =\frac{e^{x}+1}{2} \\
2 e^{t} & =e^{x}+1 \\
e^{x} & =2 e^{t}-1 \\
x & =\ln \left(2 e^{t}-1\right)
\end{aligned}
$$

