

Student No:

2012 TRIAL HIGHER SCHOOL CERTIFICATE

Mathematics Extension 1

ANSWER SHEET

Section I – Multiple Choice

Choose the best response and fill in the response oval completely.

Start Here	1.	AO	вO	СО	DO
	2.	AO	вO	СО	DO
	3.	AO	вO	СО	DO
	4.	AO	вO	СО	DO
	5.	AO	вO	СО	DO
	6.	AO	вO	СО	DO
	7.	AO	вO	СО	DO
	8.	AO	вO	СО	DO
	9.	AO	вO	СО	DO
	10.	AO	вO	сO	DО

BLANK PAGE

Student Number:

2012 TRIAL HIGHER SCHOOL CERTIFICATE

Mathematics Extension 1

Staff Involved:

• RMH*	٠	GIC
--------	---	-----

- GPF* PJR
- BJB BHC
- VAB

Number of copies: 90

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- Show all necessary working in Questions 11 14.

Total marks – 70

(Section I) Pages 2 - 5

10 marks

- Attempt Questions 1 10
- Allow about 15 minutes for this section

Section II Pages 6 - 10 60 marks

- Attempt Questions 11 14
- Allow about 1 hours 45 minutes for this section

Friday 10th August

Section I — Multiple Choice Attempt Questions 1 - 10

Use the multiple-choice answer sheet for Questions 1 - 10.

1. The *x*-coordinate of the point which divides the interval joining A(3,1) and B(-1, 5) externally in the ratio 4 : 3 is:

(A)
$$-13$$
 (B) $\frac{5}{7}$ (C) 17 (D) 15

2.
$$\lim_{x \to 0} \frac{\tan 3x}{2x}$$
 is equal to :

(A) 0 (B) 1 (C) $\frac{3}{2}$ (D) $\frac{2}{3}$

3.
$$3(\sin^{-1}x + \cos^{-1}x)$$
 is equal to :

(A) 1 (B)
$$\frac{3\pi}{2}$$
 (C) 3 (D) 3π

The gradient function of y = f(x) is shown above. On the curve y = f(x), B would be a :

- (A) maximum turning point
- (B) point of inflexion
- (C) horizontal point of inflexion
- (D) minimum turning point

5. Given that
$$f^{-1}(x) = \frac{2x}{x-1}$$
, $f(x)$ would have the equation :

(A)
$$\frac{x}{x+2}$$
 (B) $\frac{y}{y-2}$ (C) $\frac{2y}{y-1}$ (D) $\frac{x}{x-2}$

6.

The value of *x* is:

(A) 9 (B) 4 (C) 5.5 (D) 1

4.

7. A particle moves in simple harmonic motion such that $v^2 = -4(x-5)(x+1)$, where v is velocity in m/s.

Maximum acceleration of this particle happens when:

(A)
$$x = 5$$
 and -1 (B) $x = 2$ (C) $x = -5$ and 1 (D) $x = 0$

8. The acceleration-time graph of a particle is shown below.

The time(s) when the particle has a maximum velocity is :

(A) t = 2 (B) t = 3 (C) t = 4 (D) 0 < t < 2

9. The area bounded by the y-axis, $y = \frac{\pi}{2}$ and $y = \sin^{-1} x$ is shaded in the diagram below.

The value of this area, in square units is:

(A)
$$\frac{\pi}{2} - 1$$
 (B) 1 (C) $\frac{\pi}{2}$ (D) $1 - \frac{\pi}{2}$

10. Part of the curve $y = 2\sin 2\theta$ is drawn below.

The horizontal line y = k is also drawn as shown above.

The general solution of the intersection of these two functions is:

(A)
$$\frac{n\pi}{2} + (-1)^n \frac{\pi}{4}$$
 (B) $2n\pi \pm \frac{\pi}{4}$ (C) $n\pi + (-1)^n \frac{\pi}{2}$ (D) $\frac{n\pi}{2} + (-1)^n \frac{\pi}{2}$

End of Section I

Question 11 (15 marks)

(a) Solve
$$\frac{x}{3-2x} < 1$$
. 4

(b) Evaluate
$$\int_{-1}^{1} \frac{dx}{\sqrt{4-x^2}}$$
, leaving your answer in exact form. 3

(c) Evaluate
$$\int_{\frac{\pi}{12}}^{\frac{\pi}{4}} \cos^2 2x \, dx$$
, leaving your answer in exact form. 4

(d) Using the substitution x = u - 2, or otherwise, find $\left| -\frac{1}{u} \right|$

$$\int \frac{x+1}{\sqrt{(x+2)^3}} \, dx \,. \tag{4}$$

End of Question 11

Question 12 (15 marks)

Prove by induction that (a)

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{1}{6}n(n+1)(2n+1)$$

for all $n \ge 1$, where *n* is an integer.

Find the coefficient of x^2 in the expansion of $\left(\frac{x^4}{2} + \frac{2}{x}\right)^8$. (b) 3

Consider the function $f(x) = 3\sin^{-1} x$. (c)

> (i) State the domain and range of the function. 2

Draw a neat sketch of the function. (ii) Clearly label all essential features.

(iii) Find the gradient of the tangent to the function $f(x) = 3\sin^{-1} x$ 2

at the point
$$\left(\frac{1}{2}, \frac{\pi}{2}\right)$$
.

Question 12 continues on page 8

3

Matt (M) and Steve (S) operate ground-level cameras at a rugby match. The cameras are aimed at the centre of the cross-bar of the goal post (G) which is 3 metres above the ground. Matt is directly north of the centre of the goal post.

The centre of the goal post is on a bearing of 302° from Steve.

The cameras operated by Matt and Steve are set at angles of elevation of 14° and 4° respectively.

(i) Show that $\angle MTS = 122^{\circ}$.

(ii) Calculate the distance between the two cameras, to the nearest centimetre.

3

1

End of Question 12

Question 13 (15 marks)

[START A NEW BOOKLET]

Marks

4

(a)	(i)	Express $8\cos\theta - 6\sin\theta$ in the form $R\cos(\theta + \alpha)$ where α is in degrees.	2
	(ii)	Hence, or otherwise, find the solutions of the equation $8\cos\theta - 6\sin\theta = 5$ for $0^\circ \le \theta \le 360^\circ$.	3
(b)	A pa time	rticle moves in such a way that its displacement, x cm, from the origin at any is given by the function $x = 2 + \cos^2 t$ where t is in seconds.	
	(i)	Show that acceleration is given by $\ddot{x} = 10 - 4x$.	2
	(ii)	Find the centre of the motion.	1
	(iii)	Find the amplitude of the motion.	1

(c) A ball is kicked on level ground to just clear a fence 2 m high and 40 m away. The initial velocity is 30 m/s and the angle of projection is α .

The displacement equations are

$$x = 30t \cos \alpha$$
 and $y = -5t^2 + 30t \sin \alpha$ (DO NOT PROVE THESE).

(i) Show that
$$y = \frac{-x^2}{180} \sec^2 \alpha + x \tan \alpha$$
. 2

(ii) Hence, or otherwise, find the angles of projection that allow the ball to just clear the fence. Answer to the nearest degree.

End of Question 13

Question 14 (15 marks)

[START A NEW BOOKLET]

Marks

1

1

(a)	$P(2p, p^2)$ and $Q(2q, q^2)$ are two points on the parabola $x^2 = 4y$.
	The chord PQ subtends a right angle at the origin.

(i) Show that
$$pq = -4$$
. 1

(ii) If M is the midpoint of PQ, find the locus of M. 2

(b) Consider the function
$$f(x) = \frac{x+2}{x^2+1}$$
.

- (i) Find the points where the curve crosses the *x*-axis and *y*-axis. 1
- (ii) Find the *x*-coordinates of any stationary points, and without finding the second derivative, determine their nature.3
- (iii) Describe the behaviour of y = f(x) as $x \to \pm \infty$.
- (iv) Sketch the curve y = f(x) using an appropriate scale and showing all the information above. Label the axes and any critical points.
- (c) The acceleration of a particle moving along a straight path is given by

$$\ddot{x} = -\frac{e^x + 1}{e^{2x}}$$
, where x is in metres.

Initially the particle is at the origin with a velocity of 2 m/s.

(i) show that
$$v = e^{-x} + 1$$
. **3**

(ii) Find the equation of the displacement, x, in terms of t. 3

End of Question 14 End of Paper

STANDARD INTEGRALS

$$\int x^n dx \qquad = \frac{1}{n+1} x^{n+1}, \ n \neq -1; \ x \neq 0, \ \text{if } n < 0$$

$$\int \frac{1}{x} dx \qquad = \ln x, \ x > 0$$

$$\int e^{ax} dx \qquad = \frac{1}{a} e^{ax}, \ a \neq 0$$

$$\int \cos ax dx \qquad = \frac{1}{a} \sin ax, \ a \neq 0$$

$$\int \sin ax dx \qquad = -\frac{1}{a} \cos ax, \ a \neq 0$$

$$\int \sec^2 ax dx \qquad = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec^2 ax dx \qquad = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec ax \tan ax dx \qquad = \frac{1}{a} \sec ax, \ a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx \qquad = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx \qquad = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx \qquad = \ln \left(x + \sqrt{x^2 - a^2}\right), \ x > a > 0$$

NOTE : $\ln x = \log_e x$, x > 0

2012 41 12 Extension I Trial HSC Multiple Choice (i) $\left(\frac{x_{i}k + x_{i}l}{k+l}\right)$ $= \left(\frac{-1 \times -4 + 3 \times 3}{-4 + 3} \right)$ (7) Max acceleration & V=0 -: x=5, -1 $=\left(\begin{array}{c} 4+9\\ -1\end{array}\right)$ = (-13,0) (A \checkmark (8) $\begin{array}{c} (2) \quad \lim_{X \to 0} \quad \frac{3}{2} \times \frac{\lim_{X \to 0} \quad 3x}{3x} \end{array}$ Ł B) З 2 4 \bigcirc = 3 2 9 $\mathcal{K} = siny$ $\int_{0}^{T/L} siny dy$ $\int_{0}^{T/L} \frac{A_{z}}{2} \int_{0}^{T} sin x dx$ $\gamma = 0$ (3) $(\sin^{-1}x + \cos^{-1}x) = \frac{1}{2}$ $= \left[\frac{-\cos y}{0} \right]_{0}^{\frac{\pi}{2}}$ $\therefore 3I$ (B) $= -\cos\pi + \cos\theta$ (4) + 0 + / - / 0 + 1 5 s 1 B) (\mathcal{C}) 44 10 42 Period = TT $\begin{array}{c} \textcircled{5} \qquad \chi = \frac{2y}{y-1} \\ y = 1 \end{array}$ 1.5T. П 4 -3r $(\widehat{A})^{-}$ $\begin{array}{rcl} \chi y - \chi &= & \chi y \\ \chi y - & \chi &= & \chi \\ \chi (\chi - & \chi) &= & \chi \\ \chi &= & \chi \\ \chi &= & \chi \\ \chi &= & \chi \\ \end{array}$ 0 1 4 n 1 ↓ + (-1) ^ II 5T TT 4

 $\begin{array}{c} Q_{4} \left[\left(a \right) \left(3 - 2x \right)^{2} \times \left(2 - 2x \right)^{2} \right] \\ & \left(3 - 2x \right) \\ \times \left(3 - 2x \right) \times \left(3 - 2x \right)^{2} \\ \times \left(3 - 2x \right) - \left(3 - 2x \right)^{2} \times \left(0 \\ \left(3 - 2x \right) \right) \\ \left(3 - 2x \right) \left[\times \left(3 - 2x \right) \right] < 0 \\ & \left(3 - 2x \right) \left(3x - 3 \right) < 0 \end{array}$ X<1, x>3/2 (b) $\int \sin^{-1} x \int = \pi - -\pi$ = 11/2 (c) $\cos 2x = 2\cos^2 x - 1$ $\cos^2 x = \frac{1}{2}(1 + \cos 2x)$ $\frac{1}{2} \int_{-\pi}^{\pi} (1 + \cos 4x) dx = \frac{1}{2} \left[x + \frac{1}{4} \sin 4x \right]_{1/2}^{1/4}$ $= \frac{1}{2} \left(\left(\frac{\pi}{4}, \frac{1}{4} \times 0 \right) - \left(\frac{\pi}{12} + \frac{1}{4} \frac{\sin \pi}{3} \right) \right)$ $= \frac{1}{2} \left(\frac{\pi}{4} - \frac{\pi}{12} \times \frac{\sqrt{3}}{2} \right)$ $= \frac{1}{2} \left(\frac{17}{4} - \frac{17\sqrt{3}}{14} \right)$ $du = dx = \int \left(u^{-l_{k}} - u^{-3_{k}} \right) du$ $= \frac{u''_{2} - u''_{2} + c}{\frac{u'_{2}}{2} - \frac{1}{2}}$ $= 2\sqrt{u} + 2 + c = 2\sqrt{x+2} + \frac{2}{2+c}$ \sqrt{u} \sqrt{u} \sqrt{u}

Que 12 (a) Prove true for n=1LHS = 1^2 RHS = $4 \times 1 \times (1+1) \times (2+1)$ = / = 1 x 1 x 2 x 3 = 1 : True for n=1 Assume true for n=k 1²+2²+...+ k²= + k (k+1)(2k+1) Prove true for n= k+1 $LHS = \frac{1}{1+2^{2}} + \dots + k^{2} + (k+1)^{2}$ RHS = 1k(k+1)(2k+1) + (k+1) $= \frac{k+1}{6} \left(\frac{k(2k+1)}{6} + \frac{6(k+1)}{7} \right)^{-1}$ $= \frac{k+1}{6} \left(2k^2 + k + 6k + 6 \right)$ $= \frac{k_{H}}{2k^{2}+7k+6}$ 5 kH (2k+3) (k+2) $= \frac{1}{6} \frac{(k+1)}{(k+1)+1} \frac{2(k+1)+1}{2}$ = Shit / If statement the for n=k, then true for n=k+1. Since the for n=1, then true for for n=2 & as true for n=2, then the for n=3 & so on. .: Thue for all n71 (where n is an integer)

Qu 12 (controyed) (b) $8C \left(\frac{x^{4}}{2}\right)^{8-r} \left(\frac{2}{x}\right)^{r}$ = $8C_{r} \left(\frac{1}{2}\right)^{8-r} 2^{r} \cdot x^{32-5r}$ 32 - 5r = 2 : Coefficient $<math display="block">30 = 5r = {}^{8}C_{0} \times (\frac{1}{2})^{2} \times 2^{6}$ $\therefore r = 6 = 448$ OR $(1+2t)^8 = 1 + 8x + 28x^2 + 56x^3 + 70x^4 + 56x^5 + (28x^6 +) 8x^7 + 1x^8$ $\frac{\left(\frac{x^{4}+2}{x}\right)^{8}}{x} = \frac{\left(\frac{x^{4}}{2}\right)^{8} + 8\left(\frac{x^{4}}{2}\right)^{7}\left(\frac{2}{x}\right) + 28\left(\frac{x^{4}}{2}\right)^{6}\left(\frac{2}{x}\right)^{2} + \dots$ $28(x^{4})^{2}(\frac{2}{x})^{6} = \frac{28 \times 64}{4} \times \frac{2}{4} = \frac{448}{4}$ $\begin{array}{c} (c) \quad i \end{pmatrix} \quad \begin{array}{c} D: \quad -1 \leq \chi \leq 1 \\ R: \quad -3\pi \leq \gamma \leq 3\pi \\ 2 \end{array}$ li) 311-一近

Qu 12 (Continued) Eqn of tangent $\left(a\left(\frac{1}{2},\frac{\pi}{2}\right)\right)$ $\begin{array}{rcl} iii) & f'(x) &= & 3\\ & & \sqrt{1-x^2}\\ & f'(x) &= & 3\\ & & \sqrt{1-1}y \end{array}$ $\frac{y-\frac{\pi}{2}}{2} = \frac{6}{\sqrt{3}} \left(x - \frac{1}{2} \right)$ = 3:5 $\frac{\sqrt{3}y-\pi\sqrt{3}=6x-3}{2}$ = <u>6</u> V3 oR. $\begin{array}{l} y - \overline{T} = 2\sqrt{3} \left(x - \frac{1}{L} \right) \\ y = 2\sqrt{3} x - \sqrt{3} + \frac{T}{2} \\ y = 2\sqrt{3} x - \left(\sqrt{3} - \frac{T}{2} \right) \end{array}$ = 2/3 N (d) i) LMTS = 180-58 (cointerior L'' in // lines) Ť 58A = 122° ii) MT = 3 cot 14° 3 T Μ $\kappa^{2} = (3 \cot 14^{\circ})^{2} + (3 \cot 4^{\circ})^{2} - 2(3 \cot 14^{\circ})(3 \cot 4^{\circ})\cos 12^{\circ}$ M 300/40 = 2532.46 X = 50.32 m

Qu 13 a) i) $R\cos(\theta + \alpha) = R \int \cos \theta \cos \alpha - \sin \theta \sin \alpha \int \frac{1}{2} = 10 \left(\cos \theta \left(\frac{3}{10} \right) - \frac{6}{10} \sin \theta \right)$ $\therefore COJ A = \frac{S}{10}$ 10 A T 6 $K = 36^{\circ} 52'$:: $10 \cos(0 + 36^{\circ} 52')$ ii) $10\cos(0+36^{\circ}52')=5$ $(0+36^{\circ}52') = 0.5$ 0+36°52'= 60° or 300° 20 = 23°08' or 263°8' b) i) $\chi = 2 + (\cos t)^2 \cos^2 t = x - 2$ dx = -2 sint cost dtdx = -2sintcostdtOR = - sin2t $\frac{d^2 c}{dt^2} = -2\sin t \left(-\sin t\right) + \left(-2\cos t\right)\cos t$ $\frac{dt^2}{dt^2} = 2\sin^2 t - 2\cos^2 t$ $\frac{dx}{dt^{2}} = -2\cos 2t \\ = -2(2\cos^{2}t - 1)$ = 2 (sin²t - cos²t) = -4(x-2)+2 = 2 (1-cos2t-cos2t) = 2 (1-2 cos2t) = -4x+8+2 = 10 - 4x $= 2 - 4\cos^2 t$ = 2 - 4 (x-2) ii) a=0 = 2 - 4x+8 0 = 10 - 4x510-4X :: x = 2.5 (centre of motion) $iii) O \leq \cos^2 t \leq 1$ V=0 1.26x 53 0 = - sin 2t amplitude = 1/2 cm 2t=0, T, 2TT, OR t=0, π, π,... t=0, x=3 cm : amplitude $t=\frac{\pi}{2}, x=2 \text{ cm}$ = $\frac{1}{2} \text{ cm}$

Qu 13 Continued c)YN 30 2 **>**<u>x</u> 40 i) t = x $\therefore y = -5x^2 + 30x \sin \alpha$ $30\cos \alpha$ $900\cos^2 \alpha$ $30\cos \alpha$ $y = -x^2 \sec^2 x + x \tan \alpha$ $\overline{180}$ ii) $2 = -\frac{40^2 \sec^2 \alpha + 40 \tan \alpha}{180}$ 360 = -40² sec² x + 7200 tan x $360 = -40^{2} (tan^{2} \kappa + 1) + 7200 tan \alpha$ -9 = 40 (tan² \kappa + 1) - 180 tan \alpha 0 = 40 tan² \kappa - 180 tan \kappa + 49 $\frac{1}{2(40)} = \frac{180 \pm \sqrt{180^2 - 4(40)(49)}}{2(40)}$ = 180 ± $\sqrt{24560}$ = 80 :. $\alpha = 76^{\circ}38^{\circ}$, 16°14' 16°14' $\alpha < 76^{\circ}38$ $\therefore \alpha = 16^{\circ}, 77^{\circ}$

Qu 14 a) i) m × m = -1 $\frac{p^{2}-0}{2p-0} \times \frac{q^{2}-0}{2q-0} = -1$ $\frac{p \times q}{2} = -1$ $\frac{p \times q}{2} = -4$ ii) $M_{=}\left(\frac{2p+2q}{2}, \frac{p^{2}+q^{2}}{2}\right)$ = $\left(\frac{p+q}{2}, \frac{p^{2}+q^{2}}{2}\right)$ $Y = \frac{1}{2} \left(\left(p + q \right)^2 - 2pq \right)$ $= \frac{1}{2} \left(x^2 - 2x - 4 \right)$ $y = \frac{1}{2}x^2 + 4$ b) i) $0 = \frac{x+2}{x^2+1}$ (x-intercept) x + i $\therefore x = -2 \quad (-2, 0)$ $y = 0 + 2 \quad (y - intercept)$ 0 + i(0, 2)= 2

Question 14 Continued ii) $f'(x) = (x^{2}+i)(1) - (x+2)(2x)$ $(x^{2}+1)^{2}$ $= -x^{2}-4x + 1$ $(x^{2}+1)^{2}$ f'(x) = 0 when $-x^{2}-4x + 1 = 0$ $0 = x^2 + 4x - 1$ $\frac{x}{2} = -4 + \sqrt{16 - 4(1)(-1)}$ -4 ± √20 2- $\chi = \chi$ = -2 ± 15 -2+15 - 5 -2-55 $\boldsymbol{\chi}$ 0 / -4/262 f'(x) -4/4 1 ٥ 0 Max Min $\frac{\frac{x}{x^2} + \frac{2}{x^2}}{\frac{x^2}{x^2} + \frac{1}{x^2}}$ lim 111) line (X+2 X-200 (x2+1) X700 0 ٤..... 1 = 0⁺ $\chi \rightarrow \infty, \quad y \rightarrow 0^{\dagger}$ $\chi \rightarrow -\infty, \quad y \rightarrow 0^{-1}$

Question 14 Continued y. iv) -2-15 -2+15 .2 (c) i) $a = d \left(\frac{1}{2}v^2\right)^{-1}$ $\frac{1}{2}V^{2} = \int \left(-e^{-2x} - e^{-2x}\right) dx$ $= e^{x} + \frac{1}{2}e^{-2x} + C$ When x=0, v=2 $\therefore 2^2 = e^2 + \frac{1}{2}e^2 + c$ C = 1/2 $\frac{1}{2}v^{2} = e^{-k} + \frac{1}{2}e^{-2k} + \frac{1}{2}e^{-2k}$ $\frac{V^{2} = 2e^{-x} + e^{-2x} + 1}{= e^{-2x} + 2e^{-x} + 1}$ = $(e^{-x} + 1)^{2}$ $\therefore V = \frac{+}{-} \left(e^{-x} + 1 \right)$ When X=0, V=2 :. V= e⁻¹ +1

 $\frac{Q_{H} 14 \text{ (ontinged})}{\text{ii}}$ $\frac{d\kappa}{dt} = e^{-\chi} + 1$ $\frac{dt}{dx} = \frac{1}{e^{-x} + 1}$ $t = \int \frac{1}{p^{-x_{+1}}} dx$ $= \int \frac{e^{x}}{e^{x}} \frac{1}{e^{-x}} \frac{dx}{dx}$ $= \int \frac{e^{x}}{e^{x} + e^{x}} dx$ $= \log \left(1 + e^{x}\right) + C$ When t=0, x=0 $0 = h(e^{\circ}+1) + c$ $\therefore c = -h2$ $\therefore t = \ln \left(e^{x} + i \right) - \ln 2$ $= \ln \left(\frac{e^{3c} + i}{2} \right)$ $e^{t} = \frac{e^{x} + 1}{2}$ $2e^{t} = \frac{e^{x} + 1}{2}$ $e^{x} = 2e^{t} - 1$ $\kappa = \ln(2e^{t} - 1)$