Baulkham Hills 1998 3U Trial HSC

Question 1

(a) Solve

$$\frac{x}{x-3} > 10$$

- (b) Solve for $0^{\circ} \le x \le 360^{\circ}$ $\sin x + \cos x + 1 = 0$
- (c) Find the acute angle between the lines 5x + 4y + 3 = 0 and 3x + 8y 1 = 0
- (d) If A and B are the points (-3, -4) and (2, -1), find the co-ordinates of the point P dividing AB externally in the ratio 4:7
- (e) Show that (x 3) is a factor of $2x^3 11x^2 + 12x + 9$ and hence find the factors of this polynomial

Question 2

(a) O and P are the centres of the circles; AXB is a straight line. Prove that $\angle AOY = \angle BPY$

(b) $P(2ap, ap^2)$ and $Q(2aq, ap^2)$ are two points on the parabola $x^2 = 4ay$. PQ subtends a right angle at the vertex O

- i. Show that pq = -4
- ii. Prove that the equation of the normal at P is given by $x + py = 2ap + ap^3$
- iii. Write down the equation of the normal at Q, and hence determine the point of intersection of these normal.
- iv. Find the equation of the locus of R, and describe it geometrically

Question 3

(a) Find $\int x\sqrt{3+x^2} dx$, using the substitution $u = 3 + x^2$

(b) Find c^x

```
\int_0^x 2\sin^2 x \ dx
```

Question 3 (continued)

(c) Assume that the rate at which the body warms in air is proportional to the difference between its temperature and the constant temperature A of the surrounding air.

This rate can be expressed by the differential equation

$$\frac{dT}{dt} = K(T - A)$$

where t is time in minutes, and K is a constant

- i. Show that $T = A + Ce^{kt}$, where C is a constant, is a solution of the differential equation.
- A cooled body warms from 10°C to 15°C in 20 minutes. The air temperature around the body is 28°C.
 Find the temperature of the body after a further 20 minutes have elapsed. Give your answer to the nearest degree
- iii. By referring to the equation for T, explain the behaviour of T as *t* becomes large.

Question 4

- (a) The acceleration of a body P is given by $a = 18x(x^2 + 1)$ where x cm is the displacement at time t sec. Initially P starts from the origin with velocity 3 cm/s
 - i. Show that $v = 3(x^2 + 1)$
 - ii. Find x in terms of t
- (b) A ball projected from a horizontal plane with initial velocity V m/s and an angle of projection of α where $\tan \alpha = \frac{3}{4}$. The ball just clears a wall which is 27m high and 96m from the point of projection. Let *g*, the acceleration due to gravity be 10m/s²
 - i. Show that the horizontal and vertical displacements are given by $x = \frac{4}{5}Vt$ and $y = \frac{3}{5}Vt 5t^2$
 - ii. Find the time to reach the wall in seconds
 - iii. Show that the speed of projection is 40 m/s
 - iv. Find the greatest height to which the ball will rise above the plane.

Question 5

- (a) A particle moves along the *x*-axis with acceleration $\ddot{x} = 4 \cos 2t$. If the particle is initially at rest at the origin O, find expressions for
 - i. the velocity v in terms of t
 - ii. the position x in terms of t
 - iii. Express \ddot{x} in terms of x and hence show that the motion is simple harmonic
 - iv. Find the centre and period of the motion
 - v. Sketch the graph of x in terms of t for $0 \le t \le \pi$

(b)

- i. Write down a primitive function of $e^{f(x)} \cdot f'(x)$
- ii. Hence evaluate

$$\int_{0}^{1} \frac{e^{\cos^{-1}x}}{\sqrt{1-x^{2}}} dx$$
(Leave your answer in exact form)

(c) Find the inverse function f^{-1} of the function f, defined by $f(x) = 2 \log_e x + 3$ Express the result in the form y in terms of x

Question 6

- (a) Prove by induction that n(n + 3) is divisible by 2 for all positive integers n
- (b) Find the term independent of x in the expansion of $\left(2x^2 + \frac{1}{x}\right)^{12}$
- (c) Find the relationship between p, q, r if the roots of the equation $x^3 + px^2 + qx + r = 0$ are in an arithmetic progression.

Question 7

- (a) Use Newton's method once, and a first approximation of x = 2 to solve $x^2 2 \sqrt{x} = 0$ to 2 decimal places.
- (b) A right circular cone with vertex downwards and a semi-vertical angle 60° is being filled with water.
 - i. Show that when the height of the water in the cone is h cm, then the volume of water is πh^3 cm³
 - ii. If the height of the water is increasing at the constant rate of $\frac{1}{2}cm/s$, find the rate of the increase of the volume when the height is 6 cm.

```
(c)
```

i. Prove that

$$\frac{2}{(x^2+1)(x^2+3)} = \frac{1}{x^2+1} - \frac{1}{x^2+3}$$

ii. Hence determine the value of

$$\int_{-1}^{\sqrt{3}} \frac{dx}{(x^2+1)(x^2+3)}$$