Baulkham Hills 1998 3U Trial HSC

Question 1

(a) Solve
$\frac{x}{x-3}>10$
(b) Solve for $0^{\circ} \leq x \leq 360^{\circ} \quad \sin x+\cos x+1=0$
(c) Find the acute angle between the lines $5 x+4 y+3=0$ and $3 x+8 y-1=0$
(d) If A and B are the points $(-3,-4)$ and $(2,-1)$, find the co-ordinates of the point P dividing $A B$ externally in the ratio 4: 7
(e) Show that $(x-3)$ is a factor of $2 x^{3}-11 x^{2}+12 x+9$ and hence find the factors of this polynomial

Question 2

(a) O and P are the centres of the circles; AXB is a straight line. Prove that $\angle A O Y=\angle B P Y$

(b) $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a p^{2}\right)$ are two points on the parabola $x^{2}=4 a y$. PQ subtends a right angle at the vertex O
i. Show that $p q=-4$
ii. Prove that the equation of the normal at P is given by $x+p y=2 a p+a p^{3}$
iii. Write down the equation of the normal at Q, and hence determine the point of intersection of these normal.
iv. Find the equation of the locus of R , and describe it geometrically

Question 3

(a) Find $\int x \sqrt{3+x^{2}} d x$, using the substitution $u=3+x^{2}$
(b) Find

$$
\int_{0}^{x} 2 \sin ^{2} x d x
$$

Question 3 (continued)

(c) Assume that the rate at which the body warms in air is proportional to the difference between its temperature and the constant temperature A of the surrounding air.
This rate can be expressed by the differential equation
$\frac{d T}{d t}=K(T-A)$
where t is time in minutes, and K is a constant
i. Show that $T=A+C e^{k t}$, where C is a constant, is a solution of the differential equation.
ii. A cooled body warms from $10^{\circ} \mathrm{C}$ to $15^{\circ} \mathrm{C}$ in 20 minutes. The air temperature around the body is $28^{\circ} \mathrm{C}$. Find the temperature of the body after a further 20 minutes have elapsed. Give your answer to the nearest degree
iii. By referring to the equation for T , explain the behaviour of T as t becomes large.

Question 4

(a) The acceleration of a body P is given by $a=18 x\left(x^{2}+1\right)$ where $x \mathrm{~cm}$ is the displacement at time t sec. Initially P starts from the origin with velocity $3 \mathrm{~cm} / \mathrm{s}$
i. Show that $v=3\left(x^{2}+1\right)$
ii. \quad Find x in terms of t
(b) A ball projected from a horizontal plane with initial velocity $\mathrm{V} \mathrm{m} / \mathrm{s}$ and an angle of projection of α where $\tan \alpha=\frac{3}{4}$. The ball just clears a wall which is 27 m high and 96 m from the point of projection. Let g, the acceleration due to gravity be $10 \mathrm{~m} / \mathrm{s}^{2}$
i. Show that the horizontal and vertical displacements are given by

$$
x=\frac{4}{5} V t \text { and } y=\frac{3}{5} V t-5 t^{2}
$$

ii. Find the time to reach the wall in seconds
iii. Show that the speed of projection is $40 \mathrm{~m} / \mathrm{s}$
iv. Find the greatest height to which the ball will rise above the plane.

Question 5

(a) A particle moves along the x-axis with acceleration $\ddot{x}=4 \cos 2 t$. If the particle is initially at rest at the origin O , find expressions for
i. the velocity v in terms of t
ii. the position x in terms of t
iii. Express \ddot{x} in terms of x and hence show that the motion is simple harmonic
iv. Find the centre and period of the motion
v. Sketch the graph of x in terms of t for $0 \leq t \leq \pi$
(b)
i. Write down a primitive function of $e^{f(x)} \cdot f^{\prime}(x)$
ii. Hence evaluate
$\int_{0}^{1} \frac{e^{\cos ^{-1} x}}{\sqrt{1-x^{2}}} d x$
(Leave your answer in exact form)
(c) Find the inverse function f^{-1} of the function f, defined by $f(x)=2 \log _{e} x+3$

Express the result in the form y in terms of x

Question 6

(a) Prove by induction that $n(n+3)$ is divisible by 2 for all positive integers n
(b) Find the term independent of x in the expansion of $\left(2 x^{2}+\frac{1}{x}\right)^{12}$
(c) Find the relationship between p, q, r if the roots of the equation $x^{3}+p x^{2}+q x+r=0$ are in an arithmetic progression.

Question 7

(a) Use Newton's method once, and a first approximation of $x=2$ to solve $x^{2}-2-\sqrt{x}=0$ to 2 decimal places.
(b) A right circular cone with vertex downwards and a semi-vertical angle 60° is being filled with water.
i. Show that when the height of the water in the cone is $h \mathrm{~cm}$, then the volume of water is $\pi h^{3} \mathrm{~cm}^{3}$
ii. If the height of the water is increasing at the constant rate of $\frac{1}{2} \mathrm{~cm} / \mathrm{s}$, find the rate of the increase of the volume when the height is 6 cm .
(c)
i. Prove that
$\frac{2}{\left(x^{2}+1\right)\left(x^{2}+3\right)}=\frac{1}{x^{2}+1}-\frac{1}{x^{2}+3}$
ii. Hence determine the value of

$$
\int_{-1}^{\sqrt{3}} \frac{d x}{\left(x^{2}+1\right)\left(x^{2}+3\right)}
$$

