\qquad

BAULKHAM HILLS HIGH SCHOOL

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

2007

MATHEMATICS EXTENSION 1

Time allowed - Two hours
(Plus five minutes reading time)

GENERAL INSTRUCTIONS:

- Attempt ALL questions.
- \quad Start each of the 7 questions on a new page.
- All necessary working should be shown.
- Write your student number at the top of each page of answer sheets.
- At the end of the exam, staple your answers in order behind the cover sheet.

QUESTION 1 (START ON A NEW PAGE)

(a) Find $\int \frac{d x}{\sqrt{9-25 x^{2}}}$.
(b) Find the acute angle between the lines $y=3 x+4$ and $2 x+3 y=6$.
(c) When the polynomial $P(x)=2 x^{3}-a x+1$ is divided by $x+1$, the remainder is 2 . Find a.
(d) Show that $\cot \theta-\cot 2 \theta=\operatorname{cosec} 2 \theta$

Hence find the exact value of $\cot 15^{\circ}$
(e) Use the substitution $u=2 x+1$ to find $\int x(2 x+1)^{10} d x$

QUESTION 2 (START ON A NEW PAGE)

(a) In the expansion of $\left(3 x-\frac{1}{x^{3}}\right)^{12}$, find the term independent of x.
(b) (i) Sketch $y=2 \sin ^{-1}(x-3)$, stating clearly the domain and range.
(ii) Find the exact gradient of the function at the point where $x=3.5$
(c) A curve has parametric equations:
$x=3 \tan 2 \theta$.
$y=\tan \theta$

Find its Cartesian equation.
(d) Find $\int \cos ^{2} 2 x d x$.
(a) Simplify $\frac{6^{x}+4^{x}}{3^{x}+2^{x}}$
(b) Solve the equation
$2 x^{3}-17 x^{2}+40 x-16=0$ given that it has a double root which is an integer.
(c) Prove by mathematical induction that for all integers $\mathrm{n} \geq 1$

$$
2 \times 2^{0}+3 \times 2^{1}+4 \times 2^{2}+\ldots \ldots \ldots \ldots \ldots \ldots .+(n+1) \times 2^{n-1}=n \times 2^{n}
$$

(d) Find the range of values of x if the series

$$
\frac{2}{1+3 x}+\frac{6}{(1+3 x)^{2}}+\frac{18}{(1+3 x)^{3}}+\ldots \ldots . . \text { has a limiting sum. }
$$

QUESTION 4 (START ON A NEW PAGE)

(a) (i) Write $2 \sqrt{3} \cos 2 t-2 \sin 2 t$ in the form of $R \cos (2 t+\alpha)$
(ii) A particle moves so that its displacement x metres is given by:

$$
x=2 \sqrt{3} \cos 2 t-2 \sin 2 t
$$

Show that the motion is simple harmonic and state its period and amplitude
(b) The equation $x+2 \tan x=0$ has a root near $\frac{3 \pi}{4}$.

With $x=\frac{3 \pi}{4}$ as a first approximation, find using Newton's method once, a second approximation to the root in terms of π
(c) Show that $\frac{d}{d \theta}\left(\frac{1}{3} \tan ^{3} \theta\right)=\sec ^{4} \theta-\sec ^{2} \theta$

Hence or otherwise find the value of $\int_{0}^{\frac{\pi}{4}} \sec ^{4} \theta d \theta$
(a) Find $\frac{d}{d x} \log _{10}\left(x^{2}+1\right)$
(b) The acceleration $\ddot{x} \mathrm{~m} / \mathrm{s}^{2}$ of a particle moving in a straight line is given by $\ddot{x}=6\left(1-x^{2}\right)$. Initially the particle is at $x=-3$ and is moving with velocity $4 \mathrm{~m} / \mathrm{s}$. (i) By using the result $\ddot{x}=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)$ show that

$$
\begin{equation*}
v^{2}=12 x-4 x^{3}-56 \tag{3}
\end{equation*}
$$

(ii) Does the particle pass through the origin? Justify your answer.
(c)

$P\left(2 p, p^{2}\right)$ is a variable point on the parabola $x^{2}=4 y . N$ is the foot of the perpendicular from P to the x axis. $N R$ is perpendicular to $O P$
(i) Find the equation of $O P$
(ii) Find the equation of $N R$
(iii) Show that the R has coordinates $\left(\frac{8 p}{p^{2}+4}, \frac{4 p^{2}}{p^{2}+4}\right)$
(iv) Show that the locus of R is a circle and state its centre and radius

QUESTION 6 (START ON A NEW PAGE)

(a) Solve the equation $e^{x}-e^{-x}=1$ for x in the exact form.
(b) Given that $(1+a x)^{7}+(1+b x)^{7}=2+21 x+609 x^{2}+\ldots \ldots \ldots \ldots$
(c) Find the exact value of $\sin \left(2 \tan ^{-1}-\frac{3}{5}\right)$
(d) Two circles intersect at A and B. STU is a tangent and is parallel to PQ.

Prove that the points $\mathrm{Q}, \mathrm{B}, \mathrm{T}$ are collinear.

QUESTION 7 (START ON A NEW PAGE)

(a) If $f(x)=\ln (2 x+3)$, find an expression for the inverse function $f^{-1}(x)$
(b) $\quad P$ rotates about O along the $\operatorname{arc} B C$ at a constant rate of $\frac{\pi}{60}$ radians/minute.
(i) Show that the area of $O B P C$ is given by $A=450(\sin \theta+\cos \theta)$
(ii) Find the rate at which the area is changing when $\theta=\frac{\pi}{6}$

(c) A projectile is fired from a point O on the ground with speed Vm / s at an angle α. Given that the equations of motion are

$$
x=V \cos \alpha t \quad \text { and } \quad y=V \sin \alpha t-\frac{g t^{2}}{2}
$$

(i) Find the time of flight of the projectile.
(ii) The projectile is climbing at an angle of 45° after a time T. Show that

$$
\begin{equation*}
T=\frac{V \sin \alpha-V \cos \alpha}{g} \tag{2}
\end{equation*}
$$

(iii) If T is $\frac{1}{3}$ of the time of flight, find α to the nearest degree.

End of Paper

