STUDENT NUMBER: ______ TEACHER'S NAME:

BAULKHAM HILLS HIGH SCHOOL

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

2007

MATHEMATICS EXTENSION 1

Time allowed – Two hours (*Plus five minutes reading time*)

GENERAL INSTRUCTIONS:

- Attempt **ALL** questions.
- Start each of the 7 questions on a new page.
- All necessary working should be shown.
- Write your student number at the top of each page of answer sheets.
- At the end of the exam, staple your answers in order behind the cover sheet.

QUESTION 1 (START ON A NEW PAGE)

(a) Find
$$\int \frac{dx}{\sqrt{9-25x^2}}$$
. 2

Marks

(b) Find the acute angle between the lines
$$y=3x+4$$
 and $2x+3y=6$. 2

- (c) When the polynomial $P(x)=2x^3-ax+1$ is divided by x+1, the remainder is 2. 2 Find *a*.
- (d) Show that $\cot \theta \cot 2\theta = \csc 2\theta$ 3

Hence find the exact value of $\cot 15^{\circ}$

(e) Use the substitution
$$u = 2x + 1$$
 to find $\int x (2x+1)^{10} dx$ 3

QUESTION 2 (START ON A NEW PAGE)

(a) In the expansion of
$$\left(3x - \frac{1}{x^3}\right)^{12}$$
, find the term independent of x. 3

(b) (i) Sketch
$$y = 2\sin^{-1}(x-3)$$
, stating clearly the domain and range. 3

(ii) Find the exact gradient of the function at the point where x = 3.5 2

(c) A curve has parametric equations:

$$x = 3 \tan 2\theta.$$

$$y = \tan \theta$$

2

Find its Cartesian equation.

(d) Find
$$\int \cos^2 2x \, dx$$
. 2

QUESTION 3 (START ON A NEW PAGE)

(a) Simplify
$$\frac{6^x + 4^x}{3^x + 2^x}$$
 2

(b) Solve the equation $2x^3 - 17x^2 + 40x - 16 = 0$ given that it has a double root which is an integer. 4

(c) Prove by mathematical induction that for all integers $n \ge 1$

$$2 \times 2^{0} + 3 \times 2^{1} + 4 \times 2^{2} + \dots + (n+1) \times 2^{n-1} = n \times 2^{n}$$

(d) Find the range of values of x if the series

$$\frac{2}{1+3x} + \frac{6}{(1+3x)^2} + \frac{18}{(1+3x)^3} + \dots \text{ has a limiting sum.}$$
 3

QUESTION 4 (START ON A NEW PAGE)

(a) (i) Write
$$2\sqrt{3}\cos 2t - 2\sin 2t$$
 in the form of $R\cos(2t + \alpha)$ 2

(ii) A particle moves so that its displacement *x* metres is given by:

$$x = 2\sqrt{3}\cos 2t - 2\sin 2t$$

Show that the motion is simple harmonic and state its period and amplitude **3**

(b) The equation
$$x + 2\tan x = 0$$
 has a root near $\frac{3\pi}{4}$.
With $x = \frac{3\pi}{4}$ as a first approximation, find using Newton's method once, a second approximation to the root in terms of π

(c) Show that
$$\frac{d}{d\theta} (\frac{1}{3} \tan^3 \theta) = \sec^4 \theta - \sec^2 \theta$$
 2

Hence or otherwise find the value of
$$\int_{0}^{\frac{\pi}{4}} \sec^{4}\theta \ d\theta$$
 2

3

Marks

QUESTION 5 (START ON A NEW PAGE)

(a) Find
$$\frac{d}{dx} \log_{10} (x^2 + 1)$$
 2

(b) The acceleration $\ddot{x} m/s^2$ of a particle moving in a straight line is given by

$$\ddot{x} = 6(1-x^2)$$
. Initially the particle is at $x = -3$ and is moving with velocity

4 *m/s*. (i) By using the result
$$\ddot{x} = \frac{d}{dx} \left(\frac{1}{2}v^2\right)$$
 show that

$$v^2 = 12x - 4x^3 - 56$$
 3

Marks

3

(ii) Does the particle pass through the origin? Justify your answer.

 $P(2p, p^2)$ is a variable point on the parabola $x^2 = 4y$. *N* is the foot of the perpendicular from *P* to the *x* axis. *NR* is perpendicular to *OP*

- (i)Find the equation of OP1(ii)Find the equation of NR1(iii)Show that the R has coordinates $\left(\frac{8p}{p^2+4}, \frac{4p^2}{p^2+4}\right)$ 2
- (iv) Show that the locus of R is a circle and state its centre and radius

QUESTION 6 (START ON A NEW PAGE)

(a) Solve the equation
$$e^x - e^{-x} = 1$$
 for x in the exact form. 3

(b) Given that
$$(1+ax)^7 + (1+bx)^7 = 2+21x+609x^2+....$$
 4
find the values of *a* and *b*

4

- (c) Find the exact value of $\sin(2\tan^{-1}-\frac{3}{5})$ 2
- (d) Two circles intersect at A and B. STU is a tangent and is parallel to PQ.

 $\mathbf{5}$

Prove that the points Q, B, T are collinear.

QUESTION 7 (START ON A NEW PAGE)

(a) If
$$f(x)=\ln(2x+3)$$
, find an expression for the inverse function $f^{-1}(x)$ 2

- (b) *P* rotates about *O* along the arc *BC* at a constant rate of $\frac{\pi}{60}$ radians/minute.
 - (i) Show that the area of *OBPC* is given by $A=450(\sin\theta+\cos\theta)$ 2
 - (ii) Find the rate at which the area is changing when $\theta = \frac{\pi}{6}$ 2

(c) A projectile is fired from a point O on the ground with speed V m/s at an angle α . Given that the equations of motion are

$$x = V \cos \alpha t$$
 and $y = V \sin \alpha t - \frac{gt^2}{2}$

(i) Find the time of flight of the projectile. 1 (ii) The projectile is climbing at an angle of 45° after a time T. Show that $T = \frac{V \sin \alpha - V \cos \alpha}{g}$ (iii) If T is $\frac{1}{3}$ of the time of flight, find α to the nearest degree. 3

End of Paper

3