BAULKHAM HILLS HIGH SCHOOL

2012
 YEAR 12 TRIAL HIGHER SCHOOL CERTIFICATE

Mathematics Extension 1

General Instructions

- Reading time, 5 minutes
- Exam time, 2 hours
- Write using black or blue pen
- Board approved calculators may be used
- A table of standard integrals is provided at the back of this question paper
- Write your student number at the top of each page of your answer booklet
- Show all necessary working in

Questions 11-14

Total Marks: 70
Attempt ALL questions
Section I Pages 2-4
(10 marks)
Questions 1-10

Section II Pages 5-7
(60 marks)
Questions 11-14
Worth 15 marks each

Section I - Multiple Choice

10 marks
Attempt Questions 1-10
Use the multiple choice answer sheet for Questions 1-10.

1. This exam contains 10 Multiple Choice questions with four responses in each. If a candidate guesses all questions, what is the probability of correctly guessing exactly 7 answers?
a) ${ }^{10} \mathrm{C}_{4}\left(\frac{1}{4}\right)^{7}\left(\frac{3}{4}\right)^{3}$
b) $\quad{ }^{10} \mathrm{C}_{7}\left(\frac{1}{4}\right)^{7}\left(\frac{3}{4}\right)^{3}$
c) $\left(\frac{1}{4}\right)^{7}\left(\frac{3}{4}\right)^{3}$
d) $\quad{ }^{10} \mathrm{C}_{7}\left(\frac{1}{4}\right)^{3}\left(\frac{3}{4}\right)^{7}$
2. Two roots of $4 x^{3}+8 x^{2}+k x-18=0$ are equal in magnitude but opposite in sign. Find the value of k.
a) -2
b) +2
c) $\quad-9$
d) +9
3. For what value of x is $\sin x \cos x$ a maximum?
a) $\frac{\pi}{4}$
b) $\frac{\pi}{2}$
c) $\frac{2 \pi}{3}$
d) $\frac{3 \pi}{4}$
4. If $5 x=4 t$ and $6 y=5 t$ and $t>0$, then
a) $x>y$
b) $y>x$
c) $x=y$
d) Cannot be determined from the information

$$
p \quad \frac{p+1}{p} \leq 1
$$

a) $p>0$
b) $p<0$
c) $\quad p \leq 0$
d) $-1 \leq p<0$
6. $\quad A B$ and $A C$ are tangents to a circle at points B and C respectively. Minor arc $B C$ is $7 \pi \mathrm{~cm}$ and the radius of the circle is 18 cm .

What is the number of degrees in $\angle B A C$?

a) 70
b) 95
c) 100
d) 110
7. What is the period of the curve whose equation is $y=\frac{1}{3}\left(\cos ^{2} x-\sin ^{2} x\right)$?
a) $\frac{\pi}{3}$
b) $\frac{2 \pi}{3}$
c) π
d) 2π
8.

P divides $A B$ externally in the ratio
a) $2: 3$
b) $2: 5$
c) $3: 2$
d) $5: 2$
9. A coin is biased so that there is a constant probability p (where $p \neq 0.5$) that the coin shows heads.

In 6 throws of the coin, the probability of 3 heads is twice the probability of 2 heads.
What is the value of p ?
a) $\frac{3}{7}$
b) $\frac{3}{5}$
c) $\quad 1$

2
d) $\frac{1}{3}$
10. Find the value of $\tan (p+q)$ if $\tan p+\tan q+1=\cot p+\cot q=6$.
a) $\frac{5}{6}$
b) $\frac{6}{5}$
c) 5
d) 30

Section II - 60 marks
 Attempt Questions 11-14

Answer each question on the appropriate answer sheet. Each answer sheet must show your Board of Studies number. Extra paper is available.
All necessary working should be shown in every question.

Question 11 ($\mathbf{1 5}$ marks) Use a separate answer sheet
a) State the domain and range of $f(x)=3 \cos ^{-1} 2 x$.

2
b) Evaluate $\int_{0}^{1.5} \frac{d x}{\sqrt{9-x^{2}}}$ leaving your answer in exact form.

2
c) Fully factorise $6 x^{3}+17 x^{2}-4 x-3$.
d) Evaluate $\int_{0}^{1} \frac{x d x}{\sqrt{1+x}}$ using the substitution $u^{2}=1+x$.
e) $\quad P$ divides the interval from $(-5,6)$ to $(4,3)$ externally in the ratio $3: 1$.

Find the coordinates of P.
f) A bag contains 6 red marbles, 5 white marbles and 3 blue marbles.

2
Three marbles are drawn together at random from the bag.
What is the probability that exactly 2 are red?

Question 12 (15 marks) Use a separate answer sheet

$$
\begin{align*}
& \frac{d}{d x}\left(\tan ^{-1} x+x\right) \tag{1}\\
& \int_{0}^{1} \frac{x^{2}+2}{x^{2}+1} d x
\end{align*}
$$

b) Express $\sqrt{3} \sin \theta-\cos \theta$ in the form $R \sin (\theta-\alpha)$ where α is acute.
ii) Hence solve $\sqrt{3} \sin \theta-\cos \theta=0$, for $0 \leq \theta \leq 2 \pi$, leaving your answer in exact form.

$$
\left(2 x+\frac{3}{x^{2}}\right)^{9}
$$

i) Show that there is no term involving x^{4}.
ii) Find the term independent of x.
iii) Find the greatest coefficient.

Question 13 (15 marks) Use a separate answer sheet
a) The acute angle between the tangents to the curve $y=\sin x$ and $y=\cos x$ at their point

4 of intersection (where $0<x<\frac{\pi}{2}$) is θ.

Find the value of θ correct to the nearest degree.
b) The diagram shows two tangents, $A B$ and $A C$ drawn from a common point A to a circle centred at O.

The diameter $C E$ produced cuts the tangent $A B$ at the point D.
Copy the diagram into your workbook.

Show that $\angle E D A+2 \times \angle D E B=270^{\circ}$
c) A certain particle moves along the x axis according to $t=2 x^{2}-5 x+3$ where x is measured in metres and t in seconds.

Initially the particle is 1.5 m to the right of O and moving away from O.
i) Prove that the velocity, $v \mathrm{~ms}^{-1}$, is given by $v=\frac{1}{4 x-5}$.
ii) Find an expression for the acceleration in terms of x.
iii) Find the velocity of the particle when $t=6$ seconds.

Question 14 (15 marks) Use a separate answer sheet

$$
\begin{gather*}
f(x)=(1+x)^{n} \quad \int_{0}^{1} f(x) d x \tag{3}\\
\sum_{r=0}^{n} \frac{1}{r+1}\binom{n}{r}=\frac{2^{n+1}-1}{n+1}
\end{gather*}
$$

b) i) Prove by mathematical induction that for all positive integers n,
$\sin (n \pi+x)=(-1)^{n} \sin x$
ii) Let $S=\sin (\pi+x)+\sin (2 \pi+x)+\sin (3 \pi+x)+\ldots+\sin (n \pi+x)$
for $0<x<\frac{\pi}{2}$ and for all positive integers n.
Show that $\quad-1<S \leq 0$.
c) The straight line $y=m x+b$ meets the parabola $x^{2}=4 a y$ at the points $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$

$$
p q=-
$$

ii) Prove that $p^{2}+q^{2}=4 m^{2}+\underline{2}$
iii) The equation of the normal to the parabola at P is given as

$$
x+p y=2 a p+\mathrm{a} p^{3} . \quad \text { DO NOT PROVE THIS }
$$

N is the point of intersection of the normals at P and Q with coordinates $\left(-\quad(+),\left(2+{ }^{2}+\quad+q^{2}\right)\right)$

Express these coordinates in terms of a, m and b.
iv) Suppose that PQ is free to move while maintaining a fixed gradient.

Find the locus of N and show that this locus is a straight line which is a normal to the parabola.

End of Examination

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, \quad x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$
band year 12 mathematis Extension: taial
MULTIRLE CNOICE
(1) Let $p=$ pand of correclly greming $=\frac{1}{4}$
$q=$-pob \& neorredy greming: $=1 / 4$
$\frac{y}{x}=\frac{25}{2 \varphi}$
$\therefore h>n$
for 7 coned coposes

$$
{ }^{10} C_{7} p^{7} q^{3}={ }^{10} C_{7}\left(\frac{1}{4}\right)^{7}\left(\frac{3}{4}\right)^{3}
$$

(5)

$$
\therefore B
$$

$$
\begin{aligned}
& p^{2}\left(\frac{p+1}{\rho}\right) \leq 1 \rho^{2} \quad \rho \neq 0 \\
& p(\rho+1) \leq p^{2} \\
& p^{2}+p \leq p^{2}
\end{aligned}
$$

$$
\begin{gathered}
\text { let wots be } \alpha,-\alpha, \beta \\
\alpha+(-\alpha)+\beta=-\frac{\beta}{4}=-2 \\
\beta=-2 \\
\alpha(-\alpha) \beta=\frac{18}{4} \\
-\alpha^{2}(-2)=2 \\
\alpha^{2}=\frac{9}{4} \\
\alpha(-\alpha)+\alpha \beta+(-\alpha \beta)=\frac{k}{4} \\
-\alpha^{2}=\frac{k}{4} \\
-\frac{7}{4}=\frac{16}{4} \\
\therefore k=-9 \\
\therefore C
\end{gathered}
$$

(6)

$$
l=r \theta
$$

$$
\neg \pi=18 \theta
$$

$$
\theta=\frac{7 \pi}{18}=70^{\circ}
$$

(3)
$\sin x \cos x=\frac{1}{2} \sin 2 x$
$O C A A$ is aydie quadrideral as
max chen $\sin 2 x=1$

$$
\begin{aligned}
& \therefore 2 \lambda=\frac{\pi}{2}, \frac{5 \pi}{2}, 7 \\
& \lambda=\pi / 4, \frac{7 \pi}{4}, \frac{7 \pi}{4}, \\
& \therefore A
\end{aligned}
$$

(3)

$$
\begin{array}{r}
5 x=4 t \\
t=\frac{8 x}{4} \\
6 y=54 \\
6 y=5 \times \frac{5 x}{4}= \\
6 y=\frac{25 n}{4} \\
24 y=25 x
\end{array}
$$ opponte angles al suppleveidary

$$
\begin{aligned}
& \therefore \angle A R=180^{\circ}-70^{\circ} \\
& \therefore 110^{\circ} \\
& \therefore D
\end{aligned}
$$

$$
y=\frac{1}{3} \cos 2 x
$$

(4)

$$
\text { Perad }=\frac{2 \pi}{2 \pi}
$$

$$
\begin{aligned}
& =\frac{2 \pi}{2} \\
& =\pi
\end{aligned}
$$

$\therefore c$
(8)

$$
\begin{aligned}
\frac{P A}{P B} & =\frac{60}{24} \\
& =\frac{5}{2}
\end{aligned}
$$

$$
16 \quad 5: 2
$$

$$
\therefore 0
$$

(9)

$$
\begin{aligned}
& P(3 \text { heads })=2 \rho(2 \text { head }) \\
& { }^{6} C_{3} p^{3} q=2{ }^{6} C_{1} p^{p^{4} q^{4}} \text { wher } \rho(\text { tail })=q=1-p \\
& 20 p=30 q \\
& 20 p=30(1-p) \\
& 20 p=30-30 p \\
& S c_{p}=30 \\
& p=3 / 5 \\
& \therefore B
\end{aligned}
$$

(10)
mathematicS Extension 1 Trial 2012
SECTION II
a) Domain $=\{n=-1 \leq 2 n \leq 1$
ie $0=-\frac{1}{2} \leq h \leq 1 / 2$
Range $=\left\{y: 0 \leq \frac{y}{3} \leq \pi\right\}$
ie $\frac{R}{1 \cdot 5}=0 \leq y \leq 5 \pi$
b) $\int_{0}^{1 \cdot 5} \frac{d x}{\sqrt{9-n^{2}}}=\left[\sin ^{-1} \frac{\pi}{3}\right]_{0}^{1.5}$

$$
=\sin ^{-1} \frac{1}{2}-\sin ^{-4} 0
$$

$=2\left(\frac{2}{3}-\frac{\sqrt{2}}{3}\right)$

$$
=\frac{\pi}{6}-0
$$

$$
=\frac{\pi}{6}
$$

c)

$$
\begin{aligned}
& P(-3)=6 x-27+17 \times 9+12-3 \\
&=0
\end{aligned}
$$

$\therefore x+3$ is a factor
Le) $(-5,6)(4,+3)$

$$
\begin{aligned}
& 3=\left(\frac{-1}{3-1}, \frac{-1 \times 6+3 \times 3}{3-1}\right) \\
& \rho=\left(\frac{17}{2}, \frac{3}{2}\right)
\end{aligned}
$$

(1) f) $\frac{P}{6}\left(2\right.$ red,$\left.\frac{\text { other })}{8}\right)$

$$
\begin{aligned}
6 x^{3}+17 x^{2}-4 x-3 & =(x+3)\left(6 x^{2}-x-1\right) \\
& =(x+3)(2 x-1)(3 x+1)
\end{aligned}
$$

d) $\int_{0}^{1} \frac{x d x}{\sqrt{1+x}}$

	MULTPLE CHOICE
1	B
2	C
3	A
9	B
5	B
6	0
7	C
8	D
9	B
10	D

a) $i) \frac{d}{d x}\left(\tan ^{-1} x+x\right)=\frac{1}{1+x^{2}}+1$
ii) $\int_{0}^{1} \frac{x^{2}+2}{x^{2}+1} d x=\int_{0}^{1} \frac{x^{2}+1+1}{x^{2}+1} d x$

$$
\begin{aligned}
& =\int_{0}^{0} 1+\frac{1}{x^{x}+1} d x \\
& =\left[\tan ^{-1} x+x\right]_{0}^{-1} \\
& =\left(\tan ^{-1} \mid+1\right)-\left(\tan ^{-1} 0+0\right) \\
& =\frac{\pi}{4}+1
\end{aligned}
$$

bi)

$$
\begin{aligned}
& \text { i) } R=\sqrt{(\sqrt{3})^{2}+1^{2}} \\
&=2 \\
& \sqrt{3} \sin \theta-\cos \theta \equiv 2 \sin (\theta-\alpha) \\
& \sqrt{3} \sin \theta-\cos \theta \quad \equiv 2(\sin \theta \cos \alpha-\cos \theta \sin \alpha) \\
& \therefore \sqrt{3}=2 \cos \alpha \quad 1=2 \sin \alpha \\
& \cos \alpha=\frac{\sqrt{3}}{2} \quad \sin \alpha=k \\
& \therefore \alpha \operatorname{in} 1^{14} \\
& \alpha=\frac{\pi}{6}
\end{aligned}
$$

ii)

$$
\begin{array}{lr}
\sqrt{3} \sin \theta-\cos \theta=0 & 0 \leqslant \theta \leqslant 2 \pi \\
2 \sin (\theta-\pi / 6)=0 \\
\sin (\theta-\pi) \times 0 \\
\theta-\pi / 6=0, \pi \\
\therefore \theta=\pi / \pi &
\end{array}
$$

$$
\begin{aligned}
\tan \theta & =\left|\frac{2}{\sqrt{2}}\right| \\
& =\left|\frac{4}{2}\right| \\
\theta & =\tan ^{-1}\left|\frac{4}{\sqrt{2}}\right| \\
\Theta & =7 l^{\circ}(\text { nearest degree })
\end{aligned}
$$

13-b)

marks
4 cored suture. 3 significant process 2 Some progress 1 limited progress with no circle theorems
Join BE, BO
Let $\angle E B D=\alpha$

$$
\begin{aligned}
& \begin{array}{l}
\angle E B O=90^{\circ}-\alpha \text { (tangent radius) } \\
O B=O E
\end{array} \\
& O B=O E \quad \text { (equal radii) } \\
& \triangle O B E \text { is isosceles (} 2 \text { sides equal) } \\
& \angle O E B=90^{\circ}-\alpha \quad(=\angle ' s \text { in isosceles } \triangle O O E) \\
& \angle B O E=180^{\circ}-\left(2\left(90^{\circ}-\alpha\right)\right) \quad(\angle \text { sum of } \triangle O B E) \\
& =2 \alpha \\
& \angle B D O=90^{\circ}-2 \alpha \quad(\angle \sin \text { of } \triangle B O O) \\
& \angle D E B=90^{\circ}-\alpha+2 \alpha \quad \text { (exterior angle of } \triangle \angle B O \text {) } \\
& =90^{\circ}+\alpha \\
& \therefore \angle E D A+2 \angle D E B=90^{\circ}-2 \alpha+2\left(90^{\circ}+\alpha\right) \\
& =270^{\circ}-2 \alpha+2 \alpha \\
& \angle E D A+2 \angle D E B \\
& =270^{\circ} \text { as required. }
\end{aligned}
$$

13
c)
i)

$$
\begin{aligned}
& t=2 x^{2}-5 x+3 \\
& \frac{d t}{d x}=4 x-5 \\
& \frac{d x}{d t}=\frac{1}{4 x-5} \\
& v=\frac{1}{4 x-5}
\end{aligned}
$$

i)

$$
\begin{aligned}
a & =\frac{d}{d n}\left(\frac{1}{2} v^{2}\right) \\
a & =\frac{d}{d n}\left(\frac{1}{2}\left(\frac{1}{4 x-5}\right)^{2}\right) \\
& =\frac{d}{d n}\left(\frac{1}{2}(4 x-5)^{-2}\right) \\
& =-1(4 x-5)^{-3} \cdot 4 \\
a & =\frac{-4}{(4 x-5)^{3}}
\end{aligned}
$$

iii) When $t=6$

$$
\begin{aligned}
& 6=2 x^{2}-5 x+3 \\
& 2 x^{2}-5 x-3=0 \\
& (2 x+1)(x-3)=0 \\
& 2=-1, x=3
\end{aligned}
$$

But when $1=0, x=1.5$ and roving right. when $4 x-5>0$ is $x>1.25$, velouty is always pontine
$\therefore x$ never pass though $x=-k \quad, ~ \sqrt{2}$ with juditicoleni-
\therefore When $t=6, l=3$

$$
\begin{aligned}
\therefore \quad v & =\frac{1}{4 \times 3-5} \\
& =\frac{1}{7}
\end{aligned}
$$

veluinty is $\frac{1}{7} \mathrm{~ms}^{-1}$.
$n(i)$

$$
=\left(2 x+\frac{3}{\pi^{2}}\right)^{9}=\sum_{k=0}^{9} C_{k}(2 y)^{9-k}\left(3 x^{-2}\right)^{k}
$$

Genera tern $={ }^{9} C_{k} 2^{a-k} 3^{k} x^{a-k} x^{-2 k}$

$$
=c_{k}^{9} 2^{a-k} 3^{k} x^{q=3 k}
$$

12 c)

$$
\begin{gathered}
27-3 k>2 k+k \\
25>5 k \\
k<5
\end{gathered}
$$

\therefore Cofficios, incensing for $k=0,1,2,3,4 \cdots$ ie $\frac{t_{f}}{t_{4}}>1$
ie $t_{0}<t_{1}<t_{2}<t_{3}<t_{4}<t_{5}$

$$
9,-5
$$

when $k=4, \quad b_{k!1}={ }^{-9} C_{5} 2^{4} 3^{5}($ or 489888$)$

$$
\left[\begin{array}{l}
O R \quad t_{k+1}=\frac{n-k+1}{k} \quad \text { where } t_{k+1}={ }^{9} C_{k} 2^{9-k} 3^{k} \\
\frac{3}{2} \cdot \frac{a-h+1}{k} \geqslant 1
\end{array}\right.
$$

ii) Term independent $q x$

$$
\begin{aligned}
& 9-3 k=0 \\
& 3 k=9 \\
& k=3 \\
& \therefore \quad 9 C_{3} 2^{6} 3^{3}=145152 \\
& 0 \text { ether form }
\end{aligned}
$$

$$
\frac{3}{2}-\frac{6-h}{k} \Rightarrow 1
$$

$$
30-3 k \geqslant 2 k
$$

$$
3 v \geqslant 5 k
$$

$$
k \leq 6
$$

\therefore The $f k=0,1,2,3,4,5,6$
iii) let $b_{k}={ }^{9} C_{k} 2^{a-k} 3^{k}$ be wefficient who $k=0,1, \cdots, 9$

Coefficieds increasing when $\frac{h_{k+1}}{h_{k}}>1$

$$
i \quad \frac{(9-k)}{2(k+1)}>1
$$

Q13

$$
\begin{aligned}
& \text { Now } \frac{t_{k-1}}{t_{k}}=\frac{{ }^{9} C_{k+1} 2^{8-k} 3^{(k+1)}}{c_{k} 2^{9-k} 3^{k}} \\
& \frac{=\frac{9!}{(8-k)(k+1)!} \frac{3}{2}}{\frac{9!}{(9-k)!k!}} \\
& =\frac{9-k}{k+1}-\frac{3}{2}
\end{aligned}
$$

bi) for $n=1, \angle H S=\sin (\pi+n)$

$$
\begin{aligned}
R N S & =(-1)^{\top} \sin n \\
& =-\sin x
\end{aligned}
$$

$$
\begin{aligned}
=-\sin x & =-\sin \\
& =\angle \operatorname{LNS}
\end{aligned}
$$

\therefore The for $n=1$.
Assume true for $n=k \quad \sin (k \pi+n)=(-1)^{k} \sin \alpha-k+1$
for $n=k+1$ we wish to pave $\sin ((x+1) \pi+x)=(-1) \operatorname{lin}^{k+1} \sin x$

$$
\begin{aligned}
\angle H S & =\sin ((k+1) \pi+\lambda) \\
& =\sin (-(k \pi+\lambda)+\pi) \\
& =-\sin (k \pi+\lambda) \\
& =-(-1)^{2} \sin \lambda
\end{aligned}
$$

$=(-1)^{k+1} \sin x$ as read.
\therefore If line for $n=L$ its tine for $n>k+1$
But it is time for $n=1, \therefore$ the for $n=111=2$ and os on for all pusitue in tigers.
\therefore By mathematical induction, $\sin (n \pi+x)=\left(-D^{n} \sin x\right.$

$$
\begin{aligned}
& 14 \text { a) } \int_{0}(1+x)^{n} d x=\left[\frac{(1+r)^{n+1}}{n+1}\right]_{0}^{1} \\
& =\frac{2^{n+1}}{n^{n+1}}-\frac{1}{n+1} \\
& =\frac{2^{n+1}-1}{n+1} \\
& \text { Also } \int_{0}^{1} f(x) d r=\int_{0}^{n+1}\binom{n}{0}+\binom{n}{n}+\binom{n}{z} r^{2}+\ldots+\binom{n}{n} x^{n} d x \\
& =\left[(0) x+\left(\frac{n}{1}\right) \frac{n^{2}}{2} \pm\left(\frac{n}{2}\right) n^{3}+\cdots+\left(\frac{n}{3}\right) \frac{x^{n+1}}{n+1}\right]_{0}^{1} \\
& =\left(\left((-0)+\binom{n}{1} \frac{1}{2}+\binom{n}{2} \frac{1}{3}+\ldots+(n) \frac{1}{n+1}\right)-(0+0+0+\ldots+0)^{1}\right. \\
& =\sum_{r=0}^{n} \frac{1}{r+1}(\hat{r})
\end{aligned}
$$

bini)

For n even, $s=\frac{\sin x(1-1)}{2}$

$$
=0
$$

For n odd, $s=\frac{\sin n(-1-1)}{2}$

$$
=-\sin x
$$

Now for $0<x<t_{2} \quad 0<\sin x<1$

$$
0>-\sin x>-1
$$

$$
i x-1<-\sin <0
$$

\therefore For furtive wheres- $-\quad-1<S \leqslant 0$
14
c) i)
y whereto chon $y=m \times 16$ is 6
y indecent $d y=\left(\frac{p i q}{2}\right) r=a p q$ is $-a p q$

$$
\begin{aligned}
& \therefore b=-a p q \\
& \therefore p q=-\frac{b}{a}
\end{aligned}
$$

$$
\begin{aligned}
& m_{c a}=\frac{a p^{2}-a q}{2 a p-2 a q} \\
& =\frac{a\left(p^{1} q\right)(p-q)}{2(e q)} \\
& m=\frac{p_{1}}{2} \\
& \therefore \text { Chord } y-a p^{2}=\frac{p^{i} g}{2}(\lambda-2 a p) \\
& y=\frac{\left(p^{1}+\right)^{2}}{2}-a p^{2}-a p q \operatorname{dq} / p^{2} \\
& y=\left(\frac{-p+q}{2}\right)^{x-a p q}
\end{aligned}
$$

$$
\begin{aligned}
& S=\sin (\pi+x)+\sin (2 \pi+x)+\sin (3 \pi+x)+\cdots+\sin (\pi \pi+x) \\
& =-1 \sin x+(-1)^{2} \sin x+(-1)^{2} \sin x+\ldots+(-1)^{2} \sin x \\
& \text { This is a ap with } a=-\sin x, r=-1 \text {, a keys } \\
& \therefore S=\frac{-\sin x\left(-(-1)^{2}-1\right)}{-1-1} \\
& =\frac{\sin ^{-1}-1\left((-1)^{2}-1\right)}{2}
\end{aligned}
$$

$14(\beta i) \quad(p+q)^{2}=p^{2}+q^{2}+2 p q$
using $m=\frac{p \text { iq }}{2}$ ad $p q=-b$

$$
(2 m)^{2}=p^{2}+q^{2}-\frac{26}{9}
$$

$$
p^{2}+q^{2}=4 m^{2}+\frac{2 b}{a}
$$

$$
\text { cai) } \begin{array}{rl}
x=-a p q \text { (pdq) } & y=a\left(2+p^{2}+q^{2} 1 p q\right) \\
x=-a\left(-\frac{b}{a}\right)^{2 m} & y
\end{array}
$$

$$
x=2 b x \quad y=a\left(4 n^{2}+2+\frac{b}{a}\right)
$$

$\therefore v_{s} \quad u=2 b m, \quad y=4 a m^{2}+2 a t b$
iv)

$$
\begin{aligned}
& x=2 b m \\
& b=\frac{x}{2 m}
\end{aligned}
$$

sub in $y \quad y=4 a^{2}+2 a+\frac{x}{2 m}$

$$
\begin{aligned}
2 m y & =8 a m^{3}+4 a m+\lambda \\
& =-4 a m-8 a m^{3} \\
x+(-2 m) y+(-L m) y & =2 a(-2 m)+a(-2 m)^{3}
\end{aligned}
$$

Compared fo norad hb ty $=$ Lap tap ${ }^{3}$ mean * is a normal as p has been replied with $-2 m$ as the pander.
\therefore Low is a straight line which is a normal to the parabola at $\left(2 a x-2 m, a(2 m)^{2}\right)$ ie at $\left(-4 a_{m}, 4 \mathrm{am}^{2}\right)$

