BAULKHAM HILLS HIGH SCHOOL
TRIAL 2013
YEAR 12 TASK 4

Mathematics Extension 1

General Instructions

- Reading time - 5 minutes
- Working time - 120 minutes
- Write using black or blue pen
- Board-approved calculators may be used
- Show all necessary working in Questions 11-14
- Marks may be deducted for careless or badly arranged work

Total marks - 70
Exam consists of $\mathbf{1 0}$ pages.
This paper consists of TWO sections.

Section 1 - Page 2-4 (10 marks) Questions 1-10

- Attempt Question 1-10

Section II - Pages 5-9 (60 marks)

- Attempt questions 11-14

Table of Standard Integrals is on page 10

Section I-10 marks

Use the multiple choice answer sheet for question 1-10

1. The value of $\lim _{x \rightarrow 0} \frac{\sin 7 x}{3 x}$ is
(A) $2 \frac{1}{3}$
(B) $\frac{3}{7}$
(C) 0
(D) 1
2. What is the acute angle, to the nearest degree, between the lines $y=7-4 x$ and $2 x-3 y-6=0$.
(A) 26°
(B) 48°
(C) 70°
(D) 75°
3. Let α, β and γ be the roots of $2 x^{3}+x^{2}-4 x+9=0$.

What is the value of $\frac{1}{\alpha \beta}+\frac{1}{\alpha \gamma}+\frac{1}{\beta \gamma}$
(A) $-\frac{1}{9}$
(B) $-\frac{1}{2}$
(C) $\frac{1}{9}$
(D) $\frac{1}{2}$
4. Which of the following could be the polynomial $y=P(x)$

(A) $P(x)=x^{3}(2-x)$
(B) $P(x)=x^{2}(2-x)^{2}$
(C) $P(x)=x^{3}(x-2)$
(D) $P(x)=-x^{3}(x+2)$
5. The coordinates of the points A and B are $(-1,1)$ and $(3,-1)$ respectively.

Find the coordinates of P that divides the interval $A B$ externally in the ratio 1:3.
(A) $\left(2,-\frac{1}{2}\right)$
(B) $\left(-1 \frac{1}{2}, \frac{1}{2}\right)$
(C) $(-3,2)$
(D) $(4,-2)$
6. The number of different arrangements of the letters of the word REGISTER which begin and end with the letter R is:
(A) $\frac{6!}{(2!)^{2}}$
(B) $\frac{8!}{(2!)}$
(C) $\frac{6!}{2!}$
(D) $\frac{8!}{2!2!}$
7. The inverse function of $g(x)$ where $g(x)=\sqrt{3 x-8}$ is
(A) $g^{-1}(x)=\frac{x^{2}+8}{3}$
(B) $g^{-1}(x)=(3 x-8)^{2}$
(C) $g^{-1}(x)=\sqrt{\frac{x}{3}+8}$
(D) $g^{-1}(x)=\frac{x^{2}-8}{3}$
8. A possible equation for the curve drawn is:-

(A) $y=-1+\cos 2 x$
(B) $y=1+\cos 2 x$
(C) $y=\cos (2 x+1)$
(D) $y=1-\cos 2 x$
9. The middle term in the expansion $(2 x-4)^{4}$ is
(A) 81
(B) $216 x^{2}$
(C) $384 x^{2}$
(D) $-96 x^{3}$
10. If $y=\sin ^{-1}(2 x)$, then $\frac{d^{2} y}{d x^{2}}$ equals
(A) $\frac{-8}{\sqrt{\left(1-4 x^{2}\right)^{3}}}$
(B) $\frac{4 x}{\sqrt{1-4 x^{2}}}$
(C) $\frac{-8 x}{\sqrt{\left(1-4 x^{2}\right)^{3}}}$
(D) $\frac{8 x}{\sqrt{\left(1-4 x^{2}\right)^{3}}}$

Section II - Extended Response

Attempt questions 11-16.
Answer each question on a SEPARATE PAGE. Clearly indicate question number.
Each piece of paper must show your number.
All necessary working should be shown in every question.
Question 11 (15 marks)
a) Solve for x

$$
\begin{equation*}
\frac{2 x+1}{1-x} \geq 1 \tag{3}
\end{equation*}
$$

b) It is given that $y=2 \cos 3\left(x-\frac{\pi}{3}\right), 0 \leq x \leq 2 \pi$

Find (i) the amplitude.
(ii) the period.
c) Not to scale

Two chords $C D$ and $A B$ of a circle are extended to meet at P.

If $A B=7 \mathrm{~cm}, B P=3 \mathrm{~cm}, D P=5 \mathrm{~cm}$ find $C P$.
d) The graph of $y=1+2 \sin ^{-1}(2 x-1)$ is shown.

Determine the values of a, b, and c
e) Form the cartesian equation by eliminating the parameter, θ, from these parametric equations.

$$
x=3 \tan \theta \quad y=2 \sec \theta
$$

f) Solve $\sin 2 \theta+\cos \theta=0$ for $0 \leq \theta \leq 2 \pi$.
g) The radius of a spherical balloon is increasing at the rate of $2 \mathrm{~cm} / \mathrm{sec}$. Find the rate at which the volume of the balloon is increasing when the radius is 10 cm (in terms of π).

End of Question 11

a) Evaluate $\int_{0}^{\frac{\pi}{6}} 2 \sin ^{2} x d x$

2
b) By using the substitution $u=\sqrt{x}$, evaluate

$$
\int_{1}^{4} \frac{d x}{x+\sqrt{x}}
$$

c) Two parallel tangents to a circle, centre O, are cut by a third tangent at P and Q.

(i) Copy or trace the diagram into your solution booklet.
(ii) Prove $\triangle M O Q \equiv \triangle S O Q$
(iii) Prove that $\angle P O Q=90^{\circ}$.
d) (i) Express $x=2 \cos 3 t-5 \sin 3 t$ in the form $x=R \cos (3 t+\alpha)$, where t is in radians.
(ii) A particle moves in a straight line and its position at time t is given by $x=2 \cos 3 t-5 \sin 3 t$.
Show that the particle is moving in simple harmonic motion.
e) The coefficients of x^{2} and x^{-1} in the expansion of $\left(a x-\frac{b}{x^{2}}\right)^{5}$ are the same.

Show that $a+2 b=0$, where a and b are positive integers.

End of Question 12

Question 13 (15 marks)

a) In how many ways can a committee of 5 people be formed from a group of 9 people, if 2 people, Harry and Archie, refuse to serve together on the same committee.
b) (i) Show by a sketch, without using calculus, that the equation $e^{2 x}+4 x-5=0$ has only one root.
(ii) Show that this root lies between 0 and 1 .
(iii) By taking $x=0.5$ as a first approximation, use one application of Newton's method to find a better approximation of this root to two decimal places.
c) A particle moves in a straight line with velocity $v \mathrm{~m} / \mathrm{sec}$ and acceleration given by $\ddot{x}=2 e^{x}$, where x is the displacement from O.
The initial velocity is $-2 \mathrm{~m} / \mathrm{sec}$ at the origin.
(i) Prove that $v^{2}=4 e^{x}$.
(ii) Hence find the displacement in terms of t.
d) When a body falls, the rate of change of its velocity, v, is given by $\frac{d v}{d t}=-k(v-500)$ where k is a constant.
(i) Show that $v=500-500 e^{-k t}$ is a possible solution to this equation.
(ii) The velocity after 5 seconds is $21 \mathrm{~m} / \mathrm{sec}$, find the value of k to 3 significant figures.
(iii) Find the velocity after 20 seconds.
(iv) Explain the effect on the velocity as t becomes large.
a) A particle is projected with an initial velocity of $60 \mathrm{~m} / \mathrm{sec}$ at an angle of 45° to the horizontal. The equations of motion are:

$$
x=30 \sqrt{2} t \quad \text { and } \quad y=30 \sqrt{2} t-5 t^{2} \quad \text { (Do not prove these) }
$$

(i) How high is the particle after it has travelled 120 m horizontally?
(ii) What is the horizontal range of the particle?
b) Two points P and Q move on the parabola $x^{2}=4 a y$ so that their x values differ by a.

(i) If P has coordinates $\left(x_{1}, y_{1}\right)$, show that the midpoint, C, of $P Q$ is

$$
\left(\frac{2 x_{1}+a}{2}, \frac{2 x_{1}^{2}+2 a x_{1}+a^{2}}{8 a}\right)
$$

(ii) Show that the locus of C is another parabola.

Question 14 (continued)

c) (i) Prove by mathematical induction

$$
\sum_{r=1}^{n} r^{3}=\frac{1}{4} n^{2}(n+1)^{2}
$$

(ii) The curve $y=x^{3}+x$ is drawn and divided into n intervals between 0 and 1 .

The inner rectangles are completed as shown.

If A_{n} is the area of these rectangles show that

$$
A_{n}=\frac{1}{n^{4}} \sum_{r=1}^{n-1} r^{3}+\frac{1}{n^{2}} \sum_{r=1}^{n-1} r
$$

(iii) Given that the area bounded by the curve, between $x=0$ and $x=1$, and the x axis is $\lim _{n \rightarrow \infty} A_{n}$, find a value for A_{n} using the result in part (i).

STANDARD INTEGRALS

$$
\begin{array}{ll}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, \quad x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, a \neq 0 \\
\int \sin a x d x & =-\frac{1}{a} \cos a x, a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \tan a x, a \neq 0 \\
\int \sec ^{2} a x \tan a x d x & =\frac{1}{a} \sec a x, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\sin -1 \frac{x}{a}, a>0,-a<x<a \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{array}
$$

NOTE: $\ln x=\log _{e} x, x>0$

Question II.
a. $\frac{2 x+1}{1-x} \geq 1$
various methods
example

$$
\begin{aligned}
& \frac{2 x+1-1+x}{1-x} \geq 0 \\
& (1-x)^{2} \frac{\times 3 x}{1-x} \geq 0 \times(1-x)^{2} \\
& (1-x)(3 x) \geq 0 \\
& 0 \leq x \leq 1
\end{aligned}
$$

but $x \neq 1$

$$
\therefore 0 \leq x<1
$$

ie.
$\frac{x}{3}=\tan \theta \quad \frac{y}{2}=\sec \theta \underset{\text { working }}{2}$ connector: $\tan ^{2} \theta+1=\sec ^{2} \theta$

$$
\begin{array}{ll}
\therefore \quad \frac{x^{2}}{9}+1=\frac{y^{2}}{4} \\
\therefore \quad 4 \\
& =\left[x-\frac{1}{2} \sin 2 x\right]_{0}^{\frac{\pi}{6}} \\
& \\
& =\left(\frac{\pi}{6}-\frac{1}{2} \sin \frac{\pi}{3}-0\right) \\
& =\frac{\pi}{6}-\frac{\sqrt{3}}{4} \text { or } \frac{2 \pi-3 \sqrt{3}}{12}
\end{array}
$$

/working

$$
\begin{aligned}
& \text { f. } \sin 2 \theta+\cos \theta=0 \quad 0 \leqslant \theta \leqslant 2 \pi \\
& 2 \sin \theta \cos \theta+\cos \theta=0 \\
& \cos \theta(2 \sin \theta+1)=0 \\
& \therefore \cos \theta=0 \quad \sin \theta=\frac{-1}{2} \\
& \theta=\frac{\pi}{2}, \frac{3 \pi}{2} \quad \theta=\frac{7 \pi}{6}, \frac{11 \pi}{6} \\
& \therefore \theta=\frac{\pi}{2}, \frac{7 \pi}{6}, \frac{3 \pi}{2}, \frac{11 \pi}{6}
\end{aligned}
$$

(3)
b. i) amplitude $=2$
ii) period $=\frac{2 \pi}{3}$
(2)

$$
\text { c. } \begin{aligned}
C P \times D P & =A P \times B P \\
C P \times 5 & =10 \times 3 \\
C P & =6 \mathrm{~cm}
\end{aligned}
$$

g. $V=\frac{4}{3} \pi r^{3} \quad \frac{d r}{d t}=2 \mathrm{~cm} / \mathrm{sec}$

$$
\begin{aligned}
\frac{d v}{d t} & =\frac{d v}{d r} \times \frac{d r}{d t} \\
& =4 \pi r^{2} \times 2
\end{aligned}
$$

at $r=10$

$$
\frac{d v}{d t}=800 \pi \mathrm{~cm}^{3} / \mathrm{sec}
$$

(1)
d. Domain: $-1 \leq 2 x-1 \leq 1$

$$
0 \leq x \leq 1
$$

$$
\begin{align*}
& \text { Range: }-\frac{\pi}{2} \leq \frac{y-1}{2} \leq \frac{\pi^{3}}{2} \\
& 1-\pi \leq y \leq 1+\pi \\
& \therefore a=1 \\
& b=1-\pi \quad c=1+\pi
\end{align*}
$$

for both
method:

Question 12

$$
\begin{aligned}
a \cdot \int_{0}^{\frac{\pi}{6}} 2 \sin ^{2} x d x & =\int_{0}^{\frac{\pi}{6}}(1-\cos x) d x \\
& =\left[x-\frac{1}{2} \sin 2 x\right]_{0}^{\frac{\pi}{6}} \\
& =\left(\frac{\pi}{6}-\frac{1}{2} \sin \frac{\pi}{3}-0\right) \\
& =\frac{\pi}{6}-\frac{\sqrt{3}}{4} \text { or } \frac{2 \pi-3 \sqrt{3}}{12}
\end{aligned}
$$

b. $\int_{1}^{4} \frac{d x}{x+\sqrt{x}}$

$$
\begin{aligned}
& u=x^{\frac{1}{2}} \quad \text { at } x=4 \quad u=2 \\
& \frac{d u}{d x}=\frac{1}{2} x^{-\frac{1}{2}} \quad \begin{array}{ll}
x=1 & u=1 \\
2 u d u=d x .
\end{array}
\end{aligned}
$$

$$
=\int_{1}^{2} \frac{2 u d u}{u^{2}+u}
$$

$$
=\int_{1}^{2} \frac{2 d u}{u+1}
$$

$$
=[2 \ln (u+1)]_{1}^{2}
$$ Ext 2013.

Suggested solutions and marking scale for Trial gris

$$
=2 \ln 3-2 \ln 2
$$

$$
=2 \ln \frac{3}{2}
$$

- Variations do occur
xi) Aim: prove $\triangle M O Q \equiv \triangle S O Q$.

In $\triangle M O Q$ and $\triangle S O Q$.

$$
m o=o s \text { (radii) }
$$

$O Q$ is common

$$
\begin{aligned}
& Q \hat{m D}=Q \hat{S O} \quad(\text { radii to tangent is t.) } \\
&=90^{\circ} \\
& \therefore \triangle M O Q \equiv \triangle S O Q(R . H . S)
\end{aligned}
$$

(2) marks - complete proof
(1) mark - 2 ra sons.

Quest in Cont.
iii) An example

Similar to (ii) $\triangle M O P \equiv \triangle R O P$ (R.H.S)
let $m \hat{O P}=y$

$$
=\hat{R O P} \text { (matching is in congruent } \Delta s \text {) }
$$

and let $R \hat{P}_{O}=x$
$=m \hat{P}_{O}$ (matching $L s$ in congruent ΔS)
Since tangent $P Q$ meets $R P$ and $S Q$ (parallel tangents).

$$
R \hat{P Q}+S \hat{Q}=180 \text { (cointerior Ls, } P R \| Q s \text {) }
$$

$$
\therefore \quad 2 x+2 y=180
$$

$$
x+y=90-\cdots \text { (1) }
$$

now \cdot pom $=90-x$ (L sum of Δ pom)

$$
\hat{Q O M}=90-y(L \operatorname{sim} \text { of } A \text { Qom) }
$$

then $P \hat{O Q}=90-x+90-y$ (addition of adjacent $\angle S$)

$$
\begin{aligned}
& =180-(x+y) \\
& =180-90 \\
& =90^{\circ} \text { as required. }
\end{aligned}
$$

* needed to establish
$u \operatorname{sing}(1)$
* various methods. (1)mark connecting (ii)
(2)arks-clear proof
d)

$$
\begin{aligned}
& x=2 \cos 3 t-5 \sin 3 t \\
& x=R \cos 3 t \cos \alpha-R \cdot \sin 3 t \sin \alpha . \\
& R \cos \alpha=2 \quad R \sin \alpha=5 \\
& \cos \alpha=\frac{2}{R} \quad \sin \alpha=\frac{5}{R} \quad 5 \quad \begin{array}{l}
R=\sqrt{29} \\
2
\end{array} \quad \begin{array}{l}
\tan \alpha=\frac{5}{2} \\
\alpha=1.19(2 d p) \\
\therefore \quad x=\sqrt{29} \cos (3 t+1.19)
\end{array} \quad \text { or } \sqrt{29} \cos \left(3 t+\tan ^{-1} \frac{5}{2}\right)
\end{aligned}
$$

Question 12 Cont.
d (ii)

$$
\begin{aligned}
\dot{x} & =\sqrt{29} \cos (3 t+1.19) \\
\dot{x} & =-3 \sqrt{29} \sin (3 t+1.19) \\
\dot{x} & =-9 \sqrt{29} \cos (3 t+1.19) \\
& =-9 \times x \text { now def of } 5 \mathrm{Hm} \text { is } \ddot{x}=-n^{2} x
\end{aligned}
$$

\therefore the particle is moving in 54 m with $n=3$.
e)

$$
\begin{aligned}
&\left(a x-\frac{b}{x^{2}}\right)^{5}=\left(a x-b x^{-2}\right)^{5} \\
& T_{k+1}={ }^{n} C_{k} a^{n-k} \cdot b^{k} \text { for }(a+b)^{n} \\
&={ }^{5} C_{k}(a x)^{5-k} \cdot(-1)^{k} \cdot\left(b x^{-2}\right)^{k} \\
&={ }^{5} C_{k} a^{5-k} \cdot(-1)^{k} \cdot b^{k} \cdot x^{5-k} \cdot x^{-2 k}
\end{aligned}
$$

to find k.

$$
\text { for } \begin{aligned}
x^{2} ; 2 & =5-3 k \\
3 k & =3 \\
k & =1
\end{aligned}
$$

$$
\text { for } x^{-1}: \quad-1=5-3 k
$$

$$
3 k=6
$$

$$
k=2
$$

$$
\left.\begin{array}{rl}
\text { Coif of } T_{2} & ={ }^{5} C_{1} a^{4}(-b)^{1} \\
& =-5 a^{4} b \\
\text { coef of } T_{3} & ={ }^{5} C_{2} a^{3} b^{2} \\
& =10 a^{3} b^{2}
\end{array}\right\}
$$

Since coefs of x^{2} and x^{-1} are equal

$$
\begin{aligned}
& \therefore-5 a^{4} b=10 a^{3} b^{2} \\
& 10 a^{3} b^{2}+5 a^{4} b=0 \\
& 5 a^{3} b(2 b+a)=0
\end{aligned}
$$

$\therefore 2 b+a=0$ as required.
\qquad

Question 13.

$$
\text { a) no. of ways } \begin{aligned}
&{ }^{9} C_{5}-C_{3} \\
&=126-35 \\
&=91
\end{aligned}
$$

b).
i)

ii)

$$
\begin{array}{rlrl}
f(x) & =e^{2 x}+4 x-5 \\
f(0) & =e^{0}-5 \\
& =-4<0 & & \\
& & \\
& =e^{2}+4-5 \\
& =6 \cdot 39>0
\end{array}
$$

.', a root lies between 0 and 1 as $f(x)$ negtopat
iii) let $x_{1}=0.5$

$$
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}
$$

$$
\begin{aligned}
& f(0.5)=-0.2817 . \cdots \\
& f^{\prime}(x)=2 e^{2 x}+4 \\
& f^{\prime}(0.5)=9.436 \ldots
\end{aligned}
$$

$$
=0.5-\frac{-0.28 i 7.1}{9.436}
$$

$$
=0.529 \ldots
$$

$$
=0.53(2 d p)
$$

ci) $\dot{x}=2 e^{x}$
$t=0, v=-2 \mathrm{~m} / \mathrm{sec} \quad x=0$.
$\sin c x \quad \ddot{x}=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)$
then $\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=2 e^{x}$
I mark working, towards

$$
\begin{aligned}
& \frac{1}{2} v^{2}=2 \int e^{x} d x \\
& \frac{1}{2} v^{2}=2 e^{x}+c
\end{aligned}
$$

at $v=-2 \quad x=0$

$$
\begin{aligned}
& x=0 \\
& 2=2 \times 1+c
\end{aligned}
$$

Quest 13 Cont.
ii)

$$
\begin{aligned}
V^{2} & =4 e^{x} \\
V & = \pm \sqrt{4 e^{x}} \\
& = \pm 2 e^{\frac{2}{2}}
\end{aligned}
$$

now $v<0$ initially

$$
\therefore v=-2 e^{\frac{x}{2}}
$$

in terms of t

$$
\begin{aligned}
& \frac{d x}{d t}=-2 e^{\frac{x}{2}} \\
& \frac{d t}{d x}=-\frac{1}{2} e^{-\frac{x}{2}} \\
& t=e^{-\frac{x}{2}}+C
\end{aligned}
$$

at $t=0 \quad x=0$

$$
\begin{aligned}
\therefore 0 & =e^{0}+c \\
c & =-1 \\
\therefore t & =e^{-\frac{x}{2}}-1 \\
t+1 & =e^{-\frac{x}{2}} \\
\ln (t+1) & =-\frac{x}{2} \quad(\text { as } \ln e=1) \\
\therefore x & =-2 \ln (t+1)
\end{aligned}
$$

iii)

$$
\begin{aligned}
V & =? \text { when } t=20 \mathrm{sec} \\
V & =500-500 \mathrm{e}^{-20 \mathrm{k}} \\
& =78.8546 \\
& \div 78.9 \mathrm{~m} / \mathrm{sec}(1 \mathrm{~d} p)
\end{aligned}
$$

iv) as $t \rightarrow \infty \quad e^{-k t}=\frac{1}{e^{k t}} \rightarrow 0$
$\therefore V \rightarrow 500 \mathrm{~m} / \mathrm{sec}$.

Question 14.
a) $x=30 \sqrt{2} t \quad y=30 \sqrt{2} t-5 t^{2}$
i) $x=120 \mathrm{~m} t=$?

$$
\begin{aligned}
120 & =30 \sqrt{2} t \\
t & =\frac{4}{\sqrt{2}} \sec
\end{aligned}
$$

height: $y=30 \sqrt{2} t-5 t^{2}$

$$
\begin{aligned}
& =30 \sqrt{2} t-5 \pi \\
& =30 \sqrt{2}\left(\frac{4}{\sqrt{2}}\right)-5\left(\frac{4}{\sqrt{2}}\right)^{2}
\end{aligned}
$$

$$
=120-40
$$

$$
=80 \mathrm{~m}
$$

ii) horizontal range: $y=0 \quad t=$?

$$
\begin{aligned}
& 30 \sqrt{2} t-5 t^{2}=0 \\
& 5 t \quad(6 \sqrt{2}-t)=0 \\
& t=0 \quad t=6 \sqrt{2}
\end{aligned}
$$

range:

$$
\begin{aligned}
x & =30 \sqrt{2} \times 6 \sqrt{2} \\
& =360 \mathrm{~m}
\end{aligned}
$$

Therefore this particle will travel 360 m horizontal.

Quest. 14. Cont.
bini)

$$
\begin{aligned}
x & =\frac{2 x_{1}+a}{2} \\
2 x & =2 x_{1}+a \\
x_{1} & =\frac{2 x-a}{2}
\end{aligned}
$$

$$
y=2\left(\frac{2 x-a}{2}\right)^{2}+x a\left(\frac{2 x-a}{z}\right)+a^{2}
$$

$$
8 a
$$

$$
=\frac{7\left(4 x^{2}-4 a x+a^{2}\right)}{8 y^{2}}+2 a x-a^{2}+a^{2}
$$

$$
=\frac{4 x^{2}-4 d x+a^{2}+4 a x}{16 a}
$$

$$
=\frac{4 x^{2}+a^{2}}{16 a}
$$

$$
\therefore 16 a y=4 x^{2}+a^{2}
$$

$$
4 x^{2}=16 a y-a^{2}
$$

$\frac{\therefore \text { a par }}{\frac{n^{2}(n+1)^{2}}{3}}$
c.) $i) \sum_{r=1}^{n} r^{3}=\frac{1}{4} n^{2}(n+1)^{2}$
test true $: H 5=1^{3} \quad$ RUS $=\frac{1}{4} \times 1(r+1)^{2}$

$$
\text { For } n=1 \quad \begin{array}{rlrl}
& =1 & =\frac{1}{4} \times 4=1 \\
& \quad \angle 1+5=R 1+5 & & \text { true for } n=1
\end{array}
$$

assume true: $\sum_{r=1}^{n} r^{3}=1+2^{2}+3^{3}+\cdots n^{3}=\frac{1}{4}\left(n^{2}\right)(n+1)^{2}$ for $n=k, \quad S_{k}^{r=1}=1+2^{2}+3^{3}+\cdots k^{3}=\frac{1}{4} k^{2}(k+1)^{2}$. prove true : ie $S_{K}+T_{K+1}=S_{K+1}$

$$
S_{k+1}=\frac{1}{4}(k+1)^{2}(k+2)^{2}
$$

$$
\begin{aligned}
& \text { b) i) } P\left(x_{1}, y_{1}\right) \quad Q\left(x_{1}+a, y_{2}\right) \text { since } x^{2}=4 a y \\
& \quad y=\frac{x^{2}}{4 a} \\
& \text { midp+c }\left(\frac{x_{1}+x_{1}+a}{2}, \frac{x_{1}{ }^{2}}{4 a}+\frac{\left(x_{1}+a\right)^{2}}{4 a}\right) \quad y_{2}=\frac{\left(x_{1}+a\right)^{2}}{4 a} \\
& =\left(\frac{2 x_{1}+a}{2}, \frac{x_{1}^{2}+x_{1}^{2}+2 a x_{1}+a^{2}}{8 a}\right) \\
& =\left(\frac{2 x_{1}+a}{2}, \frac{2 x_{1}^{2}+2 a x_{1}+a^{2}}{8 a}\right) \\
& \begin{array}{l}
x^{2}=4 a y \\
y=\frac{x^{2}}{4 a}
\end{array} \\
& y_{2}=\frac{\left(x_{1}+a\right)^{2}}{4 a}
\end{aligned}
$$

$$
\begin{aligned}
\text { LAS } & =\frac{1}{4} k^{2}(k+1)^{2}+(k+1)^{3} \\
& =\frac{(k+1)^{2}}{4}\left(k^{2}+4(k+1)\right) \\
\text { What } & =\frac{1}{4}(k+1)^{2}(k+2)^{2} \\
& =\text { RUS. }
\end{aligned}
$$

*. \therefore if true for $n=k$ now proved true for $n=k+1$
Since true for $n=1$ now the for $n=1+1=2, n=3$ and so on by the principles of m. I for all n.
(3) marks - correct
(2) marks - one error (Mark - 2 errors.
ii) $y=x^{3}+x$
intro $\square n=\left(\frac{1}{n}\right)^{3}+\frac{1}{n} \quad$ Area $=\frac{1}{n} \times\left(\frac{1}{n^{3}}+\frac{1}{n}\right) \sqrt{ }$
width $=\frac{1}{n}$
Width $=\frac{1}{h} \quad$ and strip $\quad h=\left(\frac{2}{n}\right)^{3}+\frac{2}{n} \quad$ last step $\quad h=\left(\frac{n-1}{n}\right)^{-3}+\frac{n-1}{n}$. $\left.A=\frac{1}{n}\left(\left(\frac{1}{n}\right)^{3}+\frac{2}{n}\right) \quad A=\frac{1}{n} \times\left(\frac{(n-1)}{n}\right)^{3}+\frac{n-1}{n}\right)$
$\sqrt{\text { working towards An. }}$
\therefore Total Area $A_{n}=\frac{1}{n} \times\left[\left(\frac{1}{n^{3}}+\frac{1}{n}\right)+\left(\left(\frac{2}{n}\right)^{3}+\frac{2}{n}\right)+\left(\left(\frac{3}{n}\right)^{3}+\frac{3}{n}\right)\right.$

$$
\left.+\cdots \cdot+\left(\left(\frac{n-1}{n}\right)^{3}+\frac{n-1}{n}\right)\right]
$$

\therefore two parts $A_{n}=\frac{1}{n} \sum_{r=1}^{n-1}\left(\frac{r}{n}\right)^{3}+\frac{1}{n} \sum_{r=1}^{n-1} \frac{r}{n} \int$ splitting

$$
=\frac{1}{n^{4}} \sum_{r=1}^{n-1}(r)^{3^{2}}+\frac{1}{n^{2}} \sum_{r=1}^{n-1} r
$$

iii) Area $=\lim _{n \rightarrow \infty} A_{n} \quad$ and $\sum_{r=1}^{n} r^{3}=\frac{1}{4}(n)^{2}(n+1)^{2}$ from (i)

$$
A_{n}=\frac{n^{2}(n+r)^{2}-\frac{1}{n^{4}}}{4}+\frac{1}{n^{2}} \sum_{r=1}^{n-1} r
$$

now $\sum_{r=1}^{n-1} r$ is a series (AP)

$$
\begin{aligned}
r=1 & \quad 1+2+3 \\
\therefore S_{n} & =\frac{n}{2}(a+l) \\
& =\frac{n-1}{-2}(1+n-1) \\
& =\frac{(n-1)}{2}(a) \\
\therefore A_{n} & =\frac{n^{2}(n+1)^{2}}{4 n^{4}}+\frac{1}{n^{2}} \times \frac{(n-1)}{2} n \\
& =\frac{1}{4} \cdot \frac{(n+1)^{2}}{n^{2}}+\frac{1}{2} \frac{\left(n^{2}-n\right)}{n^{2}} \\
\lim _{n \rightarrow \infty} A_{n} & =\lim _{n \rightarrow \infty}\left[\frac{1}{4}\left(1-\frac{2}{n}+\frac{1}{n^{2}}\right)+\frac{1}{2}\left(1-\frac{1}{n}\right)\right] \\
& =\frac{1}{4}+\frac{1}{2} \\
& =\frac{3}{4} u^{2}
\end{aligned}
$$

* needed to show working that achieves $\frac{i}{4}$ and $\frac{1}{2}$.

