

### **BAULKHAM HILLS HIGH SCHOOL**

**2015** HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

# **Mathematics Extension 1**

### **General Instructions**

- Reading time 5 minutes
- Working time 120 minutes
- Write using black or blue pen
- Board-approved calculators may be used
- Show all necessary working in Questions 11-14
- Marks may be deducted for careless or badly arranged work

### Total marks – 70 Exam consists of 11 pages.

This paper consists of TWO sections.

### <u>Section 1</u> – Page 2-4 (10 marks) Questions 1-10

- Attempt Questions 1-10 Allow about 15 minutes for this section.
   <u>Section II</u> – Pages 5-10 (60 marks)
- Attempt questions 11-14 Allow about 1 hour and 45 minutes for this section.

Table of Standard Integrals is on page 11

| Section I - 10 marks<br>Use the multiple choice answer sheet for question 1-10 |                                                                                                                                                                               |  |  |  |
|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1.                                                                             | If O is the centre of the circle, the value of $x$ in the following diagram is:                                                                                               |  |  |  |
|                                                                                | (A) 25°                                                                                                                                                                       |  |  |  |
|                                                                                | (B) $40^{\circ}$                                                                                                                                                              |  |  |  |
|                                                                                | (C) 30                                                                                                                                                                        |  |  |  |
|                                                                                | $(D)) 80^{\circ}$                                                                                                                                                             |  |  |  |
| 2.                                                                             | The point P divides the interval AB externally in the ratio 3 : 2. If A(-2,2) and B(8,-3) what is the<br>y coordinate of the point P?<br>(A) -13<br>(B) -1<br>(C) 4<br>(D) 28 |  |  |  |
| 3.                                                                             | How many distinct arrangements of the letters of the word $ALGEBRA$ are possible in a straight line if the $A$ 's are separated.                                              |  |  |  |
|                                                                                | (A) 720                                                                                                                                                                       |  |  |  |
|                                                                                | (B) 1800                                                                                                                                                                      |  |  |  |
|                                                                                | (C) 2160                                                                                                                                                                      |  |  |  |
|                                                                                | (D) 2520                                                                                                                                                                      |  |  |  |

| 4. | The polynomial $P(x) = x^3 - 6x^2 - 2x + k$ has a factor of $x + 2$ . What is the value of $k$ ?<br>(A) -28                                                      |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | (B) -20                                                                                                                                                          |
|    | (C) 20                                                                                                                                                           |
|    | (D) 28                                                                                                                                                           |
| 5. | The acute angle between the lines $4x + y = 2$ and $y = 2x - 1$ to the nearest degree is :                                                                       |
|    | (A) 12°                                                                                                                                                          |
|    | (B) 13°                                                                                                                                                          |
|    | (C) 40°                                                                                                                                                          |
|    | (D) 41°                                                                                                                                                          |
| 6. | The equation of an inverse trig function drawn below is :                                                                                                        |
|    | (A) $y = \frac{1}{3} \sin^{-1} \frac{x}{2}$                                                                                                                      |
|    | (B) $y = \frac{1}{3}\sin^{-1}2x$                                                                                                                                 |
|    | (C) $y = 3\sin^{-1}\frac{x}{2}$                                                                                                                                  |
|    | (D) $y = 3\sin^{-1}2x$                                                                                                                                           |
| 7. | A particle moving in simple harmonic motion with displacement x and velocity v, is given by $v^2 = 9(16 - x^2)$ . What is its amplitude (A) and its period (T) ? |
|    | (A) A=3 T= $\frac{\pi}{2}$                                                                                                                                       |
|    | (B) A=3 T= $\frac{2\pi}{3}$                                                                                                                                      |

(C) A=4 T =  $\frac{\pi}{2}$ (D) A=4 T =  $\frac{2\pi}{3}$ 

8. 
$$\int \frac{1}{\sqrt{25 - 4x^2}} dx =$$
(A)  $\frac{1}{2} \sin^{-1} \frac{2x}{5} + c$ 
(B)  $\frac{1}{2} \sin^{-1} \frac{4x}{25} + c$ 
(C)  $\frac{1}{4} \sin^{-1} \frac{4x}{25} + c$ 
(D)  $\frac{1}{4} \sin^{-1} \frac{4x}{25} + c$ 
9. The derivative of  $\tan^{-1}x^4$  is:
(A)  $\frac{1}{1 + x^8}$ 
(B)  $\frac{4x^3}{1 + x^8}$ 
(C)  $4(\tan^{-1}x)^3$ 
(D)  $\frac{4(\tan^{-1}x)^3}{1 + x^2}$ 
10. The solution to  $|2x - 1| \le |x - 2|$  is
(A)  $x \le -1$ 
(B)  $x \ge 1$ 
(C)  $-1 \le x \le 1$ 
(D)  $x \le -1$  or  $x \ge 1$ 
End of Section 1

Section II – Extended Response All necessary working should be shown in every question.

| Que | Question 11 (15 marks) - Start on the appropriate page in your answer booklet                                                                                 |   |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|
| a)  | Solve $\frac{2}{3x-1} \le 1$                                                                                                                                  | 3 |  |
| b)  | Find $\int \frac{2x  dx}{(2x+1)^2}$ using the substitution $u = 2x + 1$                                                                                       | 3 |  |
| c)  | Evaluate $\lim_{x \to 0} \frac{\sin \frac{1}{2}x}{3x}$                                                                                                        | 2 |  |
| d)  | Find the constant term in the expansion $\left(2x + \frac{3}{x^3}\right)^8$ .                                                                                 | 2 |  |
| e)  | (i) Show that a root of the continuous function $f(x) = x + \frac{1}{2}\sin 2x - \frac{\pi}{4}$ lies between 0.4 and 0.5.                                     | 1 |  |
|     | (ii) Hence use one application of Newton's method with an initial estimate of $x = 0.4$ to find a closer approximation for the root to 2 significant figures. | 2 |  |
| f)  | Solve $\sin 2\theta = \cos \theta$ for $0 \le \theta \le 2\pi$                                                                                                | 2 |  |
|     | End of Question 11                                                                                                                                            |   |  |
|     |                                                                                                                                                               |   |  |
|     |                                                                                                                                                               |   |  |
|     |                                                                                                                                                               |   |  |

| Question 12 (15 marks) - Start on the appropriate page in your answer booklet |                           |                                                                                                                                                                          | Marks |  |
|-------------------------------------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|
| a)                                                                            | Evaluate                  | $e \int_0^{\frac{\pi}{8}} \sin^2 2x \ dx$                                                                                                                                | 3     |  |
| b)                                                                            | (i)                       | From a group of 6 boys and 6 girls, 8 are chosen at random to form a group.<br>How many different groups of 8 people can be formed?                                      | 1     |  |
|                                                                               | (ii)                      | How many of these groups consist of 4 boys and 4 girls?                                                                                                                  | 1     |  |
|                                                                               | (iii)                     | 4 boys and 4 girls are chosen and placed around a circle.<br>What is the probability that the boys and girls alternate?                                                  | 2     |  |
| c)                                                                            | The rate<br>between<br>ie | of change of the temperature (T) of an object is proportional to the difference<br>the temperature of the object and the temperature of the surrounding medium(C),       |       |  |
|                                                                               |                           | $\frac{dT}{dt} = k(T - C)$                                                                                                                                               |       |  |
|                                                                               | An obje<br>tempera        | ct is heated and placed in a room of temperature $20^{\circ}C$ to cool. After 10 minutes its ture is $36^{\circ}C$ . After 20 minutes the temperature is $30^{\circ}C$ . |       |  |
|                                                                               | (i)                       | Show $T = C + Ae^{kt}$ is a solution to the differential equation above.                                                                                                 | 1     |  |
|                                                                               | (ii)                      | Find the value of $A$ and the value of $k$ to 3 decimal places.                                                                                                          | 3     |  |
|                                                                               | (iii)                     | What was the temperature of the object when it was first placed in the room?                                                                                             | 1     |  |
| d)                                                                            | Prove<br>(<br>inductio    | 1)(3)(5)                                                                                                                                                                 | 3     |  |
|                                                                               |                           |                                                                                                                                                                          |       |  |
| End of Question 12                                                            |                           |                                                                                                                                                                          |       |  |
|                                                                               |                           |                                                                                                                                                                          |       |  |



### 

c) Sand is falling on the ground forming a conical pile whose semi apex angle is 30°. The volume of the pile is increasing at a rate of  $\frac{\pi}{100}m^3/s$ .  $(V = \frac{1}{3}\pi r^2h)$ 





(ii) Find the rate at which the height of the pile is increasing when the height of the pile is 2 metres.

### End of Question 13



### Question 14 continues on the following page



## End of Paper.

$$\begin{array}{c} \underline{M} \underline{Ckords} \\ (J^{-1} \underline{S} \underline{A} A, \underline{S} \underline{B} + J, \underline{D} \underline{S} D \\ (J = 1) D = \underline{N} A, \underline{A} D \\ (J = 1) D = \underline{N} A, \underline{A} D \\ (J = 1) D = \underline{N} A, \underline{A} D \\ (J = 1) D = \underline{N} A, \underline{A} D \\ (J = 1) D = \underline{N} A, \underline{A} D \\ (J = 1) D = \underline{N} A, \underline{A} D \\ (J = 1) D = \underline{N} A, \underline{A} D \\ (J = 1) D = \underline{N} A, \underline{A} D \\ (J = 1) D = \underline{N} A, \underline{A} D \\ (J = 1) D = \underline{N} A, \underline{A} D \\ (J = 1) D = \underline{N} A, \underline{A} D \\ (J = 1) D = \underline{N} A, \underline{A} D \\ (J = 1) D = \underline{N} A, \underline{A} D \\ (J = 1) D = \underline{N} A, \underline{A} D \\ (J = 1) D = \underline{N} A, \underline{A} D \\ (J = 1) D = \underline{N} A, \underline{A} D \\ (J = 1) D = \underline{N} A, \underline{A} D \\ (J = 1) D = \underline{N} A, \underline{A} D \\ (J = 1) D = \underline{N} A, \underline{A} D \\ (J = 1) D = \underline{N} A, \underline{A} D \\ (J = 1) D = \underline{N} A, \underline{A} D \\ (J = 1) D = \underline{N} A, \underline{A} D \\ (J = 1) D = \underline{N} A, \underline{A} D \\ (J = 1) D = \underline{N} A, \underline{A} D \\ (J = 1) D = \underline{N} A, \underline{A} D \\ (J = 1) D = \underline{N} A, \underline{A} D \\ (J = 1) D = \underline{N} A, \underline{A} D \\ (J = 1) D \\ ($$

a) 
$$\frac{1}{140} = \frac{1}{125} - \frac$$

(4c)  $y = ln(\frac{5L - \sqrt{x^2 - 4}}{2})$ . y=ex+1 = e+1+1--2 Invese  $\frac{2}{e}$  /  $\int c = \ln(y - \sqrt{y^2 - 4})$ 2 areas are equal because  $e^{2} = y - \sqrt{y^{2} - 4}$ NB AWARD 2 for of symmetry.  $\int e^{x} + e^{-x} = e^{-\frac{1}{2}}$  $2e^{2} = y - \sqrt{y^2 - 4}$ At A y=e+1  $\therefore e+\bot = e^{\chi}+\bot$  $\int y^2 - 4 = y - 2e^{\chi}$ AWARD2 | exter  $y^{2} - 4 = y^{2} - 4ye^{3} + 4e^{2}$ by inspection =e - 1/e  $4ye^{\chi} = 4e^{2\chi} + 4$ . Area  $y = \frac{4e^{2k}}{4e^{2k}} + \frac{4}{4e^{2k}}$  $= e^{\chi} + \frac{1}{e^{\chi}}$ Y  $= \left( e + 1 \right) \times 1 - \left( e^{\chi} + e^{-\chi} \right)$ y = ex + e - x /  $= e + 1 - (e^{x} - e^{-x})^{\circ}$  $= e + \frac{1}{2} - (e^{\circ} - e^{\circ} - (e^{-i} - e^{i}))$  $= e + \frac{1}{2} - (1 - \frac{1}{2} + e)$