$2015 \begin{aligned} & \text { HGHER SCHOOL CERTIACATE } \\ & \text { TRIAL EXAMNATION }\end{aligned}$

Mathematics Extension 1

General Instructions

- Reading time - 5 minutes
- Working time - 120 minutes
- Write using black or blue pen
- Board-approved calculators may be used
- Show all necessary working in Questions 11-14
- Marks may be deducted for careless or badly arranged work

Total marks - 70
Exam consists of 11 pages.
This paper consists of TWO sections.

Section 1 - Page 2-4 (10 marks) Questions 1-10

- Attempt Questions 1-10

Allow about 15 minutes for this section.
Section II - Pages 5-10 (60 marks)

- Attempt questions 11-14

Allow about 1 hour and 45 minutes for this section.

Table of Standard Integrals is on page 11

Section I-10 marks

Use the multiple choice answer sheet for question 1-10

1. If O is the centre of the circle, the value of x in the following diagram is:

(A) 25°
(B) 40°
(C) 50°
(D)) 80°
2. The point P divides the interval $A B$ externally in the ratio $3: 2$. If $A(-2,2)$ and $B(8,-3)$ what is the y coordinate of the point P ?
(A) -13
(B) -1
(C) 4
(D) 28
3. How many distinct arrangements of the letters of the word $A L G E B R A$ are possible in a straight line if the $A^{\prime} \mathrm{s}$ are separated.
(A) 720
(B) 1800
(C) 2160
(D) 2520
4. The polynomial $P(x)=x^{3}-6 x^{2}-2 x+k$ has a factor of $x+2$. What is the value of k ?
(A) -28
(B) -20
(C) 20
(D) 28
5. The acute angle between the lines $4 x+y=2$ and $y=2 x-1$ to the nearest degree is:
(A) 12°
(B) 13°
(C) 40°
(D) 41°
6. The equation of an inverse trig function drawn below is :

(A) $y=\frac{1}{3} \sin ^{-1} \frac{x}{2}$
(B) $y=\frac{1}{3} \sin ^{-1} 2 x$
(C) $y=3 \sin ^{-1} \frac{x}{2}$
(D) $y=3 \sin ^{-1} 2 x$
7. A particle moving in simple harmonic motion with displacement x and velocity v, is given by $v^{2}=9\left(16-x^{2}\right)$. What is its amplitude (A) and its period (T) ?
(A) $\mathrm{A}=3 \mathrm{~T}=\frac{\pi}{2}$
(B) $\mathrm{A}=3 \mathrm{~T}=\frac{2 \pi}{3}$
(C) $\mathrm{A}=4 \quad \mathrm{~T}=\frac{\pi}{2}$
(D) $\mathrm{A}=4 \quad \mathrm{~T}=\frac{2 \pi}{3}$
8. $\int \frac{1}{\sqrt{25-4 x^{2}}} d x=$
(A) $\frac{1}{2} \sin ^{-1} \frac{2 x}{5}+c$
(B) $\frac{1}{2} \sin ^{-1} \frac{4 x}{25}+c$
(C) $\frac{1}{4} \sin ^{-1} \frac{2 x}{5}+c$
(D) $\frac{1}{4} \sin ^{-1} \frac{4 x}{25}+c$
9. The derivative of $\tan ^{-1} x^{4}$ is:
(A) $\frac{1}{1+x^{8}}$
(B) $\frac{4 x^{3}}{1+x^{8}}$
(C) $4\left(\tan ^{-1} x\right)^{3}$
(D) $\frac{4\left(\tan ^{-1} x\right)^{3}}{1+x^{2}}$
10. The solution to $|2 x-1| \leq|x-2|$ is
(A) $x \leq-1$
(B) $x \geq 1$
(C) $-1 \leq x \leq 1$
(D) $x \leq-1$ or $x \geq 1$

Section II - Extended Response

All necessary working should be shown in every question.

Question 11 (15 marks) - Start on the appropriate page in your answer booklet
a) Solve $\frac{2}{3 x-1} \leq 1$
b) Find $\int \frac{2 x d x}{(2 x+1)^{2}}$ using the substitution $u=2 x+1$
c) Evaluate $\lim _{x \rightarrow 0} \frac{\sin \frac{1}{2} x}{3 x}$
d) Find the constant term in the expansion $\left(2 x+\frac{3}{x^{3}}\right)^{8}$.
e) (i) Show that a root of the continuous function $f(x)=x+\frac{1}{2} \sin 2 x-\frac{\pi}{4}$ lies between 0.4 and 0.5 .
(ii) Hence use one application of Newton's method with an initial estimate of $x=0.4$ to find a closer approximation for the root to 2 significant figures.
f) Solve $\sin 2 \theta=\cos \theta$ for $0 \leq \theta \leq 2 \pi$

Question 12 (15 marks) - Start on the appropriate page in your answer booklet
a) Evaluate $\int_{0}^{\frac{\pi}{8}} \sin ^{2} 2 x d x$
b) (i) From a group of 6 boys and 6 girls, 8 are chosen at random to form a group. How many different groups of 8 people can be formed?
(ii) How many of these groups consist of 4 boys and 4 girls?
(iii) 4 boys and 4 girls are chosen and placed around a circle.

What is the probability that the boys and girls alternate?
c) The rate of change of the temperature (T) of an object is proportional to the difference between the temperature of the object and the temperature of the surrounding medium(C), ie

$$
\frac{d T}{d t}=k(T-C)
$$

An object is heated and placed in a room of temperature $20^{\circ} \mathrm{C}$ to cool. After 10 minutes its temperature is $36^{\circ} \mathrm{C}$. After 20 minutes the temperature is $30^{\circ} \mathrm{C}$.
(i) Show $T=C+A e^{k t}$ is a solution to the differential equation above.
(ii) Find the value of A and the value of k to 3 decimal places.
(iii) What was the temperature of the object when it was first placed in the room?
d) Prove
(1)(3)(5) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots(2 n+1)=\frac{(2 n+1)!}{2^{n} n!}$ for $n \geq 0$ by mathematical
induction.

Question 13 (15 marks) - Start on the appropriate page in your answer booklet
a) The polynomial $P(x)=x^{3}-6 x^{2}+k x-8$ has roots α, β and γ.

Find :
(i) $\alpha+\beta+\gamma$
(ii) $\alpha^{2} \beta \gamma+\alpha \beta^{2} \gamma+\alpha \beta \gamma^{2}$
(iii) k if $P(x)$ has a triple root.
b) $\quad P N$ is the normal to the parabola $x^{2}=4 a y$ at the point $\mathrm{P}\left(2 a p, a p^{2}\right)$. The normal intersects the line $S N$ which is parallel to the tangent at P. S is the focus of the parabola.

(i) Show the equation of the normal $P N$ is $x+p y=2 a p+a p^{3}$.
(ii) Find the equation of the line $S N$.
(iii) Show that N has coordinates $\left(a p, a p^{2}+a\right)$.
(iv) Find the equation of the locus of N as P moves on the parabola.
c) Sand is falling on the ground forming a conical pile whose semi apex angle is 30°.

The volume of the pile is increasing at a rate of $\frac{\pi}{100} m^{3} / s .\left(V=\frac{1}{3} \pi r^{2} h\right)$

(i) Show that the volume of the pile is given by: $V=\frac{\pi h^{3}}{9}$
(ii) Find the rate at which the height of the pile is increasing when the height of the pile is 2 metres.

Question 14 (15 marks) - Start on the appropriate page in your answer booklet
a)

A projectile is fired from the ground with an angle of projection given by $\alpha=\tan ^{-1} \frac{3}{4}$ and initial velocity V .
It just clears a wall 10 m high 100 m away. Let acceleration due to gravity be $g=10 \mathrm{~ms}^{-2}$.
(i) Show that the equations of motion are $x=\frac{4 V t}{5}$ and $y=-5 t^{2}+\frac{3 V t}{5}$.
(ii) Find the initial velocity, V of the projectile.
(iii) At what speed is the projectile travelling the instant it clears the wall?
b) Copy or trace the diagram below in your exam booklet.

E is the midpoint of the arc $C D$. The radius $O E$ meets $C D$ at $Q . E P$ is perpendicular to the diameter $A B$ and meets $C D$ at R.
(i) If $\angle C D E=x^{\circ}$, show $\angle E O D=2 x^{\circ}$.
(ii) Prove $O P R Q$ is a cyclic quadrilateral.
c) Below is the graph of $y=\ln \left(\frac{x-\sqrt{x^{2}-4}}{2}\right)$

(i) Show that the equation of the inverse function is given by $y=e^{x}+e^{-x}$.
(ii) Hence find the area of the shaded region above.

End of Paper.

M. Choice.

1) B
2) A
3) B
4) D 5) D
5) D
6) D
7) A
a) B
8) C

Question 11.
a) $\frac{2}{3 x-1} \leq 1 \quad x \neq \frac{1}{2}$

$$
(3 x-1)(2-(3 x-1)) \leq 0
$$

$$
(3 x-1)(3-3 x) \leq 0
$$

b)

$$
\therefore \text { Solar }^{1} \frac{x<-\frac{1}{3} \text { or } x \geqslant 1}{\sqrt{x}}
$$

$$
\int \frac{2 x}{(2 x+1)^{2}} d x \quad \frac{u}{} \quad \frac{d u}{d x}=2 x+1
$$

$$
\begin{aligned}
\int \frac{2 x}{(2 x+1)^{2}} d x \quad d x & =\frac{d \mu}{2} v \\
2 x & =\mu-1
\end{aligned}
$$

$$
2 x=\mu-1
$$

$$
=\int \frac{\mu-1}{u^{2}} \cdot \frac{d u}{2}
$$

$$
=\frac{1}{2} \int\left(\frac{\mu}{\mu^{2}}-\frac{1}{\mu^{2}}\right) d u
$$

2015 Ext.1. Trial SOlutions: -

$$
\begin{aligned}
& =\frac{1}{2} \int\left(\frac{1}{u}-u^{-2}\right) d u \\
& =\frac{1}{2}\left(\ln u+\frac{1}{u}\right)+c \\
& =\frac{1}{2}\left(\ln (2 x+1)+\frac{1}{2 x+1}\right)+c
\end{aligned}
$$

c) $\lim _{x \rightarrow 0} \frac{\sin \frac{1}{2} x}{3 x}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{\sin \frac{1}{2} x}{\frac{1}{2} x} \cdot \frac{\frac{1}{2} x}{3 x} \\
& =1 \times \frac{\frac{1}{2}}{3} \\
& =\frac{1}{6}
\end{aligned}
$$

$$
\begin{aligned}
& \text { i) } f(0.4)=-0.0267 \ldots \\
& f(0.5)=0.135 \ldots
\end{aligned}
$$

since $f(0.4)<0 \quad \rho f(0.5)>0 \vee$ a root exists between $0.4 \rho 0.5$

$$
\text { (ii) } \left.\begin{array}{rl}
f^{\prime}(x) & =1+\cos 2 x \\
\therefore a_{1} & =0.4-\left(\frac{-0.026 \ldots}{1.696 \ldots}\right) \\
& =0.415 \\
a_{1} & =0.42
\end{array}\right\}
$$

f)
d) $\left(2 x+\frac{3}{x^{3}}\right)^{8}$

Cereal term $={ }^{8} C_{k}(2 x)^{8-k}\left(3 x^{-3}\right)^{k}$
e) (i)

$$
\text { a root exists between } 0.400 .5
$$

$$
\left.\begin{array}{rl}
\therefore 8-4 k & =0 \\
h & =2 \\
\therefore \text { Constant } & =82^{6} 3^{2} \\
& =16128
\end{array}\right\}
$$

$$
\text { f) } \begin{gathered}
\sin 2 \theta=\cos \theta \\
2 \sin \theta \cos \theta-\cos \theta=0 \\
\cos \theta(2 \sin \theta-1)=0 \\
\sin \theta=\frac{1}{2} \cos \theta=0 \\
\therefore \theta=\underbrace{\frac{\pi}{6}, \frac{\pi}{6}}, \underbrace{\frac{\pi}{2}}, \frac{3 \pi}{2}
\end{gathered}
$$

$$
\text { 2) } \begin{align*}
& \int_{0}^{\frac{\pi}{8}} \sin ^{2} 2 x d x \\
&=\frac{1}{2} \int_{0}^{\frac{\pi}{8}}(1-\cos 4 x) d x \\
&= \frac{1}{2}\left[x-\frac{\sin 4 x}{4}\right]_{0}^{\frac{\pi}{8}} \\
&= \frac{1}{2}\left[\left(\frac{\pi}{8}-\frac{\sin \frac{\pi}{2}}{4}\right)-(0-0)\right] \tag{1}\\
&= \frac{1}{2}\left[\frac{\pi}{8}-\frac{1}{4}\right] \tag{2}\\
&= \frac{\pi}{16}-\frac{1}{8} \text { or } \frac{\pi-2}{16} \tag{2}\\
&=(0.0713 \ldots) \tag{1}
\end{align*}
$$

b (i) ${ }^{12} c_{8}=495$
(ii) ${ }_{C_{4}} \times{ }_{C_{4}}^{6}=225$
(iii) $\frac{\text { Alternating }}{\text { Total }}=\frac{4!\times 3!2}{7!}$

$$
=\frac{1}{35}
$$

(or equivalent)

$$
\frac{10}{16}=\frac{A e^{20 k}}{A e^{10 k}}
$$

$$
\frac{5}{8}=e^{10 k}
$$

$$
\therefore \quad \bar{k}=\frac{\ln \left(\frac{5}{8}\right)}{10}(=-0.047)
$$

Sib into (2) $10=A e^{10}-0.047 .(20)$

$$
A=25 \cdot 6
$$

$\therefore T=20+25.6 e^{-k t}$
wee $t=0$

$$
\begin{aligned}
E & =0 \\
T & =20+25 \cdot 6 e^{0} \\
& =45 \cdot 6 .
\end{aligned}
$$

$$
\begin{aligned}
& \text { C) (i) } T=C+A e^{k t} \rightarrow A e^{k t}=T-C-(1) \\
& \begin{array}{l}
\text { (i) } T=C+A e^{k t} \rightarrow A e^{k t}=T-C-(4) d \\
\frac{d T}{d t}=k A e^{k t} p \text { from (1) }
\end{array} \\
& =k(T-c) \\
& \therefore I=c+A e^{k t} \text { is a sol } \\
& \text { (ii) when } t=10 \quad T=36 \quad c=20 \\
& \therefore 36=20+A e^{10 k} \\
& \therefore A e^{10 k}=16 \\
& \text { when } t=20 \quad T=30 \\
& \therefore 30=20+A e^{20 \mathrm{~K}} \text { (either (eiboth) } \\
& \therefore \quad 10=A e^{20 K}
\end{aligned}
$$

d) $(1)(3)(s) \cdots(2 n+1)=\frac{(2 n+1)!}{2^{n} n!} n \geqslant 0$
Step

Prove true for $n=0$

$$
\begin{aligned}
\therefore 2(0)+1=1 \quad \text { RUS } & =\frac{(2(0)+1)!}{20.0!} \\
& =\frac{1}{1}=1
\end{aligned}
$$

Step: LHS $=$ RHS (true for $n=0$)
Assure true for $n=k$ ie

$$
\text { (1) }(3)(5)--(2 k+1)=\frac{(2 k+1)!}{2^{k} k!}
$$

Prove true for $n=k+1-i e$ (i) (3) $(2 k+1)(2 k+3)=\frac{(2 k+3)!}{\left.2^{k+1}(k+1)!\right)}$
ie

$$
\begin{aligned}
& \frac{(2 k+1)!}{2^{k} k!} \cdot(2 k+3)=\frac{(2 k+3)!}{2^{k+1}(k+1)!} \\
= & \left.\frac{(2 k+1)!(2 k+2)(2 k+3)}{2^{k} k!(2 k+2)}\right) \\
= & \frac{(2 k+3)!}{2^{k} k!2(k+1)} \\
= & \frac{(2 k+3)!}{2^{k+1}(k+1)!}
\end{aligned}
$$

$$
=\text { RHO . }
$$

$\therefore \frac{\text { step }}{\text { True }}$ for $n=k+1$ if true for $n=k$. Therefore true for $n=0, n=1, n=2 \ldots$ p for all n, by M. Induction.
9) $V=\frac{1}{3} m-n-(-1)+a n x=\frac{7}{h}$

$$
\begin{aligned}
& r=h \tan 30^{\circ} \\
& r=\frac{h}{\sqrt{3}} \operatorname{sib} \text { in } C
\end{aligned}
$$

$$
\begin{aligned}
\therefore V & =\frac{1}{3} \pi\left(\frac{h}{\sqrt{3}}\right)^{2} \cdot h \\
& =\frac{1}{3} \pi \frac{h^{3}}{3} \\
V & =\frac{\pi h^{2}}{3}
\end{aligned}
$$

(ii) find $\overline{\frac{d h}{d t}}$ when $h=2$

$$
\begin{aligned}
& \frac{d V}{d t}=\frac{d V}{d h} \cdot \frac{d h}{d t} \\
& \frac{d V}{d h}=\frac{2 \pi h}{3} \\
& \frac{\pi}{100}=\frac{2 \pi(2)}{3} \cdot \frac{d h}{d t} \\
& \frac{d h}{d t}=\frac{\pi}{100} \times \frac{3}{4 \pi} \\
&=\frac{3}{400} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

a) $f(x)=x^{3}-6 x^{2}+k x-8$
(i) $\alpha+\beta+\gamma=6$
(ii)

$$
\begin{aligned}
& \alpha^{2} \beta \gamma+\alpha \beta^{2} \gamma+\alpha \beta \gamma^{2} \\
= & \alpha \beta \gamma(\alpha+\beta+\gamma) \\
= & 8(6) 1 \\
= & 48 \mathrm{~J}
\end{aligned}
$$

(iii) If $P(x)$ has a triple root then

$$
\alpha^{3}=\delta \rightarrow \alpha=2
$$

sum of roots 2 at a ti

$$
\begin{gathered}
3 x^{2}=k \\
\therefore 3(2)^{2}=-k \\
k=12
\end{gathered}
$$

b) i

$$
\begin{aligned}
& \text { b) (i) } \quad y=\frac{x^{2}}{4 a} \\
& y^{\prime}=\frac{2 x}{4 a} \\
& \text { at } x=2 a p \quad y^{\prime}=\frac{2 a p}{2 a}=p \\
& \therefore \text { Normal } \\
& y-a p^{2}=-\frac{1}{p}(x-2 a p) \\
& p y-a p{ }^{3}=-x+2 a p \\
& x+p y^{3}=2 a p+a p
\end{aligned}
$$

(ii) grad. of $s r=p$

$$
\begin{equation*}
\therefore S N \rightarrow y=p x+a \tag{-2}
\end{equation*}
$$

(iii) $y=p x+a$ sub into (1)

$$
\begin{aligned}
& x+p(p x+a)=2 a p+a p^{3} \\
& x+p^{2} x+a p=2 a p+a p^{3} \\
& x\left(1+p^{2}\right)=a p^{3}+a p \\
& x \quad=\frac{a p\left(p^{2}+T\right)}{\left(1+p^{2}\right)} \\
& x=a p \text { shh into } 2 \\
& y=a p^{2}+a \\
& -N\left(a p, a p^{2}+a\right)
\end{aligned}
$$

(iv) $x=a p \quad y=a p^{2}+a$

$$
\left.\begin{array}{c}
\sqrt{p}=\frac{x}{a} \rightarrow \quad y=a\left(\frac{x^{2}}{a^{2}}\right)+a \\
\left.y=\frac{x^{2}}{a}+a\right) \\
x^{2}=a y-a^{2} \\
x^{2}=a(y-a)
\end{array}\right\}
$$

14a) $\quad \tan \theta=\frac{3}{4} \therefore \sin \theta=\frac{3}{5}$

$$
\begin{aligned}
& \dot{x}=0 \\
& \dot{x}=c_{1}
\end{aligned}
$$

when $t^{x}=0$

$$
\left.\begin{array}{rl}
\therefore \dot{x} & =V \cos \theta \\
& =\frac{4 V}{5} \\
x & =\frac{4 t V}{5} \\
\ddot{y} & =-10 \\
y & =-10 t+c_{2}
\end{array}\right\}
$$

when $t=0 y^{*}=V \frac{3}{5}$

$$
\left.\begin{array}{l}
\therefore y=-10 t+\frac{3 v}{5} \\
y=-5 t^{2}+\frac{3 t v}{5}+c_{3}
\end{array}\right\}
$$

whee $t=0 \quad y=0 \Rightarrow c_{3}=0$

$$
\therefore y=-5 t^{2}+\frac{3 t v}{5}
$$

when $x=100 \quad y=10$

$$
\begin{aligned}
\therefore 100 & =\frac{4 t V}{5} \\
t V & =125
\end{aligned}
$$

sub (2) into (1) $\cos \theta=\frac{4}{5}$ $\bar{x}=V \cos \theta$

$$
\begin{gathered}
10=-5 t^{2}+\frac{3(125)}{5} \\
\vdots=\sqrt{13}
\end{gathered}
$$

sch into (2)
(Must find

$$
\left.\begin{array}{l}
V \sqrt{13}=125 \\
=\frac{125}{\sqrt{13}}
\end{array}\right\} \begin{aligned}
& \text { Vine part } \\
& \text { ii not } \\
& \text { part iii) }
\end{aligned}
$$

need y" ex

at $t=\sqrt{13}$

$$
\begin{aligned}
\dot{x} & =\frac{4(34.6 . .)}{5} \\
& =27.73 \ldots \\
y & =-10 \sqrt{13}+\frac{3}{5}(34.67) \\
& =-15.25 \ldots \\
v & \left.=\sqrt{(27.73)^{2}+(-15.25)}\right)^{2} \\
v & =31.64 \ldots
\end{aligned}
$$

(-1)

A.
(i) $\angle E \propto=x^{\circ}$ (Given)
$\angle \angle E C D=x^{\circ}$ (Equal chord sibted $=$ L's at the Circumference)
$\sqrt{\circ} \angle E O D=2 x^{\circ}$ ($\begin{aligned} & L \text { at cemitre }= \\ & 2 \text { times } \angle \text { is at }\end{aligned}$ cirunfornce on
simearc)
(ii) $O E=O D$ (Radii)

$$
\begin{aligned}
& \angle O E D=\angle O D E\binom{{ }^{\circ} P \text { P. }}{a-\Delta)} \text { sidesin } \\
& \therefore \angle O D E=\frac{150-2 x}{2(\text { Angle } \sin A)} \\
& \angle E D C+\angle O D Q=90-x \\
& x+\angle O D Q=90-x \\
& \angle O D Q=90-2 x \\
& \angle O Q D+90-2 x+2 x=180^{\circ} \\
& \text { (} \angle \sin \triangle O Q D \text {) } \\
& \therefore \angle O Q D=90^{\circ} \\
& \angle O P E=40^{\circ}(E P \perp O B) \\
& \therefore \angle O Q R=\angle O P E=90^{\circ}
\end{aligned}
$$

\therefore QRPO is a cyclic quad (opposite angles of a cycle quad are supplementary).
(4c) $y=\ln \left(\frac{x-\sqrt{x^{2}-4}}{2}\right)$

$$
\begin{aligned}
& \text { Inverse } x=\ln \left(\frac{y-\sqrt{y^{2}-4}}{2}\right) \\
& e^{x}=\frac{y-\sqrt{y^{2}-4}}{2} \\
& 2 e^{x}=y-\sqrt{y^{2}-4} \\
& \sqrt{y^{2}-4}=y-2 e^{x} \\
& y^{2}-4=y^{2}-4 y e^{x}+4 e^{2 x} \\
& 4 y e^{x}=4 e^{2 x}+4 \\
& y=\frac{4 e^{2 x}+\frac{4}{4 e^{x}}}{4 e^{x}} \\
& y=e^{x}+\frac{1}{e^{x}} \\
& y=e^{x}+e^{-x}
\end{aligned}
$$

 of symmetry.
At A

$$
\therefore e+\frac{1}{e}=e^{x}+\frac{1}{e^{x}}
$$

$\sqrt{x}= \pm 1$ by inspection.
here $x=-1$
\therefore Area $=$

$$
\begin{aligned}
& =\left(e+\frac{1}{e}\right) \times 1-\int_{-1}^{0} e^{x}+e^{-x} \\
& =e+\frac{1}{e}-\left(e^{x}-e^{-x}\right)_{-1}^{0} \\
& =e+\frac{1}{e}-\left(e^{0}-e^{0}-\left(e^{-1}-e^{1}\right)\right) \\
& =e+\frac{1}{e}-\left(1-1-\frac{1}{e}+e\right)
\end{aligned}
$$

$$
\begin{aligned}
& =e+\frac{1}{e}+\frac{1}{e}-e \\
& =\frac{2}{e}
\end{aligned}
$$

NB AWARD 2 for

$$
\int_{-1}^{0} e^{x}+e^{-x}=e-\frac{1}{e}
$$

AWARD 2

$$
\begin{array}{r}
\int_{0}^{1} e^{x}+e^{-x} \\
\quad=e-\frac{1}{e}
\end{array}
$$

