BAULKHAM HILLS HIGH SCHOOL
2016
YEAR 12 TRIAL
HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 1

General Instructions

- Reading time - 5 minutes
- Working time - 2 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A reference sheet is provided at the back of this paper
- In Questions 11 - 14, show relevant mathematical reasoning and/or calculations
- Marks may be deducted for careless or badly arranged work

Total marks - 70

Section I Pages 2-5

10 marks

- Attempt Questions 1 - 10
- Allow about 15 minutes for this section

Section II
 Pages 6-12

60 marks

- Attempt Questions 11 - 14
- Allow about 1 hour 45 minutes for this section

Section I

10 marks
Attempt Questions 1 - 10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1 - 10
1 Suppose θ is the acute angle between the lines $y-2 x=3$ and $3 y=-x+2$. Which of the following is the value of $\tan \theta$?
(A) 7
(B) -7
(C) 1
(D) -1

2 Which of the following is an expression for $\int \sin ^{2} 6 x d x$?
(A) $\frac{x}{2}-\frac{1}{12} \sin 6 x+c$
(B) $\frac{x}{2}+\frac{1}{12} \sin 6 x+c$
(C) $\frac{x}{2}-\frac{1}{24} \sin 12 x+c$
(D) $\frac{x}{2}+\frac{1}{24} \sin 12 x+c$

3 The point P divides the interval $A B$ in the ratio 3:8

In what external ratio does A divide the interval $P B$?
(A) $11: 3$
(B) $8: 3$
(C) $3: 5$
(D) $3: 11$

4 The expression $\sin x-\sqrt{3} \cos x$ can be written in the form $2 \sin (x+\alpha)$. Find the value of α.
(A) $\frac{\pi}{3}$
(B) $\frac{\pi}{6}$
(C) $-\frac{\pi}{3}$
(D) $-\frac{\pi}{6}$

5 In the diagram below, $B C$ and $D E$ are chords of a circle. $C B$ and $E D$ are produced to meet at A.

What is the value of x ?
(A) 12
(B) 5
(C) $\frac{28}{11}$
(D) $\frac{11}{28}$

6 Four female and four male students are to be seated around a circular table. I how many ways can this be done if the males and females must alternate?
(A) $4!\times 4$!
(B) $3!\times 4$!
(C) $3!\times 3$!
(D) $2 \times 3!\times 4$!

7 It is known that $(x+2)$ is a factor of the polynomial $P(x)$ and that

$$
P(x)=\left(x^{2}+x+1\right) \times Q(x)+(2 x+3)
$$

for some polynomial $Q(x)$. From this information alone, it can be deduced that;
(A) $\quad Q(-2)=\frac{1}{3}$
(B) $Q(-2)=-\frac{1}{3}$
(C) $Q(-2)=1$
(D) $Q(-2)=-1$

8 The velocity of a particle moving in simple harmonic motion in a straight line is given by $v^{2}=2-x-x^{2} \mathrm{~ms}^{-1}$, where x is displacement in metres.

Find the centre of the motion.
(A) $x=2$
(B) $x=1$
(C) $x=-\frac{1}{2}$
(D) $x=-2$

9 How many solutions does the equation $2 x+3 \pi \sin x=0$ have in the domain $0 \leq x \leq 2 \pi$?
(A) 1
(B) 2
(C) 3
(D) 4

10 Which one of the following is the general solution of $2 \sin ^{2}\left(6 t+\frac{\pi}{4}\right)=1$?
(A) $t=\frac{n \pi}{12}$, where n is an integer.
(B) $t=\frac{n \pi}{12}-\frac{\pi}{24}$, where n is an integer.
(C) $t=\frac{n \pi}{3}$ and $t=\frac{n \pi}{3}+\frac{\pi}{12}$, where n is an integer.
(D) $t=\frac{n \pi}{3}-\frac{\pi}{6}$ and $t=\frac{n \pi}{3}+\frac{\pi}{12}$, where n is an integer.

END OF SECTION I

Section II

60 marks
Attempt Questions 11 - 14
Allow about 1 hour 45 minutes for this section
Answer each question on the appropriate answer sheet. Each answer sheet must show your BOS\#. Extra paper is available.

In Questions 11 to 14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a separate answer sheet
(a) Solve the inequality $\frac{1-x}{1+x} \leq 1$
(b) Dong and Kevin are two of ten candidates for a committee.

How many ways can a committee of five be chosen, if Kevin refuses to be on the same committee as Dong?
(c) (i) Show that $\frac{\sin 2 x}{1+\cos 2 x}=\tan x$
(ii) Hence show that $\tan 15^{\circ}+\cot 15^{\circ}=4$
(d) Evaluate $\int_{0}^{3} \frac{x}{\sqrt{x+1}} d x$ using the substitution $x=u^{2}-1$
(e) A particle moves in a straight line along the x axis so that its acceleration is given by;

$$
\ddot{x}=\frac{1}{4+x^{2}}
$$

where x is the displacement from the origin.
Initially the particle is at rest at the origin.
(i) Find v^{2} as a function of x.
(ii) Explain why v is always positive for $t>0$

Question 12 (15 marks) Use a separate answer sheet
(a)

2

Write down a possible function $y=P(x)$ for the polynomial function sketched above. (Do NOT use calculus)
(b) Find $\int \frac{d x}{\sqrt{16-9 x^{2}}}$
(c) Water is being heated in a kettle. At time t seconds, the temperature of the water is $T^{\circ} \mathrm{C}$.

The rate of increase of the temperature of the water at any time after the kettle is switched on, is modelled by the equation $\frac{d T}{d t}=k(120-T)$, where k is a positive constant.

The temperature of the water is at $20^{\circ} \mathrm{C}$ when the kettle is switched on.
(i) Show that $T=120-100 e^{-k t}$ is both a solution to the differential equation and satisfies the initial conditions.
(ii) When the temperature of the water reaches $100^{\circ} \mathrm{C}$, the kettle switches off. If it takes 10 seconds for the temperature to increase $10^{\circ} \mathrm{C}$, once the kettle is switched on, find how long it takes for the kettle to switch off, to the nearest second.

Question 12 continues on page 8

Question 12 (continued)

(d) (i) Sketch the graph of the function $f(x)=e^{x}-4$ showing clearly the 1 coordinates of any points of intersection with the axes and the equations of any asymptotes.
(ii) On the same diagram sketch the graph of the function $y=f^{-1}(x)$ showing clearly the coordinates of any points of intersection with the axes and the equations of any asymptotes.
(iii) Find an expression for $y=f^{-1}(x)$ in terms of x
(iv) Explain why the x coordinate of any point of intersections of the graphs
$y=f(x)$ and $y=f^{-1}(x)$ satisfies the equation $e^{x}-x-4=0$
(v) Taking $x_{1}=-4$ as a first approximation, use one application of Newton's Method to find a second approximation for the point of intersection located in the third quadrant. Give your answer correct to two decimal places.

End of Question 12

Question 13 (15 marks) Use a separate answer sheet
(a) Use mathematical induction to prove that $3^{2 n+4}-2^{2 n}$ is divisible by 5 , for $n \geq 1$
(b) In the diagram below, two circles intersect at A and B. The common tangent $T U$ touches the circles at P and Q respectively. A line through A cuts the left hand circle at R and the right hand circle at S, and it is found that $P Q R S$ is a cyclic quadrilateral.

Copy the diagram into your answer booklet.
(i) Give a reason why $\angle U Q R=\angle P S A \quad 1$
(ii) Prove that $P S \| A Q$. 2
(iii) Thus show that $\triangle P A S \| \Delta Q R A \quad 2$

Question 13 (continued)

(c) The diagram shows the parabola $x^{2}=4 a y$. The points $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ lie on the parabola such that $P Q$ is a focal chord.

The tangents at P and Q intersect at T and the normal at P and Q intersect at N.

(i) Show that the equation of any chord $P Q$ is given by $(p+q) x-2 y=2 a p q \quad 2$
(ii) Show that $p q=-1 \quad 1$
(iii) Explain why $P T Q N$ is a cyclic quadrilateral 1
(iv) Let C be the centre of the circle that passes through the points P, T, Q and $N . \quad 1$ Explain why C is the midpoint of $P Q$.
(v) Find the Cartesian equation of the locus of C.

Question 14 (15 marks) Use a separate answer sheet
(a) (i) Neatly sketch the graph of $y=\sin ^{-1}\left(\frac{x}{2}\right)$ clearly indicating the domain and range.
(ii) By considering the graph in part (i), find the exact value of;

$$
\int_{0}^{1} \sin ^{-1}\left(\frac{x}{2}\right) d x
$$

(b) A particle is moving in a straight line according to the equation;

$$
x=4 \sin ^{2} t
$$

where x is the displacement in metres and t is the time in seconds.
(i) Show that the particle moves in Simple Harmonic Motion.
(ii) Find the value of x for which the speed is a maximum and determine
that speed.

Question 14 continues on page 12

Question 14 (continued)

(c) A projectile is fired from a point O, which is 6 metres above horizontal ground, with initial velocity $V \mathrm{~m} / \mathrm{s}$, at an angle of θ to the horizontal.

There is a thin vertical post which is 4 metres high and 8 metres horizontally away from a point A, directly below O, as shown in the diagram below.

The equations of motion are given by;

$$
x=V t \cos \theta \quad \text { and } \quad y=V t \sin \theta-4.9 t^{2}
$$

(Do NOT prove this)
(i) If 2 seconds after projection, the projectile passes just above the top of the post, show that $\tan \theta=2.2$
(ii) Show that the projectile hits the ground approximately 0.3 seconds after passing over the post.
(iii) Find the angle that the projectile makes with the ground when it hits the ground, correct to the nearest degree.

End of paper

Solution	Marks	Comments
SECTION I		
1. $\mathbf{A}-$ $\begin{aligned} y-2 x & =3 \Rightarrow m_{1}=2 \\ \tan \theta & =\left\|\frac{2+\frac{1}{3}}{1+(2)\left(-\frac{1}{3}\right)}\right\| \\ & =\left\|\begin{array}{l} \frac{7}{3} \\ \frac{1}{3} \end{array}\right\| \\ & =7 \end{aligned}$ $3 y=-x+2 \Rightarrow m_{2}=-\frac{1}{3}$	1	
$\text { 2. } \begin{aligned} \mathbf{C}- & \int \sin ^{2} 6 x d x=\frac{1}{2} \int(1-\cos 12 x) d x \\ & =\frac{1}{2}\left(x-\frac{1}{12} \sin 12 x\right)+c \\ & =\frac{x}{2}-\frac{1}{24} \sin 12 x+c \end{aligned}$	1	
$\text { 3. } \begin{gathered} \text { D }-A P=3 x, B P=8 x \\ \therefore \frac{A P}{A B}=\frac{3 x}{11 x} \\ =\frac{3}{11} \end{gathered}$	1	
4. $\mathrm{C}-$ $\begin{array}{rlr} \sin x-\sqrt{3} \cos x=2 \sin \left(x-\frac{\pi}{3}\right) & \tan a=\sqrt{3} \\ =2 \sin (x+\alpha) & \alpha=\frac{\pi}{3} \\ \therefore \alpha=-\frac{\pi}{3} & \end{array}$	1	
$\text { 5. B - } \begin{array}{rlrl} A B \times A C & =A D \times A E & \quad \text { (product of intercepts of intersecting secants) } \\ x(x+7) & =4 \times 15 & & \\ x^{2}+7 x-60 & =0 & & \\ (x+12)(x-5) & =0 & \\ x=-12 \text { or } \quad x & =5 \quad \text { but } x>0 \quad \therefore x=5 \end{array}$	1	
6. $\mathbf{B}-$ Ways $=3!\times 4$!	1	
7. A - $\begin{aligned} P(-2) & =0 \\ {\left[(-2)^{2}-2+1\right] Q(-2)+[2(-2)+3] } & =0 \\ 3 Q(-2)-1 & =0 \\ Q(-2) & =\frac{1}{3} \end{aligned}$	1	
8. $\mathrm{C}-$ $\begin{aligned} v^{2} & \geq 0 \\ 2-x-x^{2} & \geq 0 \\ x^{2}+x-2 & \leq 0 \\ (x+2)(x-1) & \leq 0 \\ -2 \leq x & \leq 1 \end{aligned}$	1	
9. C $-2 x+3 \pi \sin x=0$ From the graph, there are three points of intersection $\sin x=-\frac{2}{3 \pi} x$	1	

Solution	Marks	Comments
10. A- $\quad 2 \sin ^{2}\left(6 t+\frac{\pi}{4}\right)=1$ $\begin{aligned} 1-2 \sin ^{2}\left(6 t+\frac{\pi}{4}\right) & =0 \\ \cos \left(12 t+\frac{\pi}{2}\right) & =0 \\ -\cos \left(\frac{\pi}{2}-12 t\right) & =0 \end{aligned}$ $\sin 12 t=0$ $12 t=n \pi+(-1)^{n} \sin ^{-1} 0$ where n is an integer $12 t=n \pi$ $t=\frac{n \pi}{12}$	1	

SECTION II		
Solution	Marks	Comments
QUESTION 11		
11(a)	3	3 marks - Correct graphical solution on number line or algebraic solution, with correct working 2 marks - Bald answer - Identifies the two correct critical points via a correct method - Correct conclusion to their critical points obtained using a correct method 1 mark - Uses a correct method - Acknowledges a problem with the denominator. 0 marks - Solves like a normal equation, with no consideration of the denominator.
$\begin{aligned} \text { 11(b) Committees } & ={ }^{10} \mathbf{C}_{5}-{ }^{8} \mathbf{C}_{5} \\ & =252-56 \\ & =196 \end{aligned}$	2	2 marks - Correct solution 1 mark - Identifies logical cases that must be considered - Successfully finds one of the required cases
$\text { 11(c) (i) } \begin{aligned} \frac{\sin 2 x}{1+\cos 2 x} & =\frac{2 \sin x \cos x}{1+2 \cos ^{2} x-1} \\ & =\frac{2 \sin x \cos x}{2 \cos ^{2} x} \\ & =\frac{\sin x}{\cos x} \\ & =\tan x \end{aligned}$	2	2 marks - Correct solution 1 mark - Correctly uses both $\sin 2 \theta$ and $\cos 2 \theta$ results
$11 \text { (c) (ii) } \begin{array}{rlrl} \tan 15^{\circ} & =\frac{\sin 30^{\circ}}{1+\cos 30^{\circ}} & \tan 15^{\circ}+\cot 15^{\circ} & =\frac{1}{2+\sqrt{3}}+\frac{2+\sqrt{3}}{1} \\ & =\frac{\frac{1}{2}}{1+\frac{\sqrt{3}}{2}} & & \frac{1+(2+\sqrt{3})^{2}}{2+\sqrt{3}} \\ & =\frac{1}{2+\sqrt{3}} & & =\frac{1+4+4 \sqrt{3}+3}{2+\sqrt{3}} \\ & & =\frac{8+4 \sqrt{3}}{2+\sqrt{3}} \\ & =4 \end{array}$	2	2 marks - Correct solution 1 mark - Uses given result to find $\tan 15^{\circ}$

Solution	Marks	Comments
11 (d) $\int_{0}^{3} \frac{x}{\sqrt{x+1}} d x=\int_{1}^{2} \frac{u^{2}-1}{u} \times 2 u \mathrm{du}$ $\begin{aligned} x & =u^{2}-1 \\ d x & =2 u d u\end{aligned}$ when $x=0, u=1$ $=2 \int_{1}^{2}\left(u^{2}-1\right) d u$ $=2\left[\frac{1}{3} u^{3}-u\right]_{1}^{2}$ $=2\left(\frac{8}{3}-2-\frac{1}{3}+1\right)$ $=\frac{8}{3}$	3	3 marks - Correct solution using the given substitution - Note: solving as an indefinite integral, then using answer to find definite integral is acceptable 2 marks - Correct primitive in terms of u - Correct integrand in terms of u, including the correct limits 1 mark - Correct integrand in terms of u without the limits - Correctly finds answer using an alternative approach
$11 \text { (e) (i) } \begin{aligned} v \frac{d v}{d x} & =\frac{1}{4+x^{2}} \\ \int_{0}^{v} v d v & =\int_{0}^{x} \frac{d x}{4+x^{2}} \\ \frac{1}{2}\left[v^{2}\right]_{0}^{v} & =\frac{1}{2}\left[\tan ^{-1}\left(\frac{x}{2}\right)\right]_{0}^{x} \\ v^{2} & =\tan ^{-1}\left(\frac{x}{2}\right) \end{aligned}$	2	2 marks - Correct solution 1 mark - Correctly uses the idea that $\ddot{x}=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)$ or equivalent
11 (e) (ii) $\ddot{x}=\frac{1}{4+x^{2}}>0$ for all values of x Since particle begins at rest, positive acceleration means the particle moves in the positive direction, and will not slow down unless acceleration becomes negative. As this never occurs, $v>0$	1	1 mark - Correct explanation
QUESTION 12		
12 (a) By examining the zeros in the sketch, the polynomial must take the form $\begin{aligned} & y \text { intercept is }-\frac{1}{2} \\ & \therefore a(1)(-1)(9)=-\frac{1}{2} \\ &-9 a=-\frac{1}{2} \\ & a=\frac{1}{18} \quad \therefore \text { a possible polynomial is } y=\frac{1}{18}(x+1)^{3}(x-1)(x-3)^{2} \\ & \\ &\therefore-1)(x-3)^{2} \end{aligned}$	2	2 marks - Correct solution 1 mark - Uses y intercept in a valid attempt to find function - Identifies the nature of the zeros
12(b) $\begin{aligned} \int \frac{d x}{\sqrt{16-9 x^{2}}} & =\frac{1}{3} \int \frac{d x}{\sqrt{\frac{16}{9}-x^{2}}} \\ & =\frac{1}{3} \sin ^{-1}\left(\frac{x}{4}\right)+c \\ & =\frac{1}{3} \sin ^{-1} \frac{3 x}{4}+c \end{aligned}$	2	2 marks - Correct solution 1 mark - Uses correct standard integral
$12 \text { (c) (i) } \quad \begin{array}{rlrl} T & =120-100 e^{-k t} & \text { when } t=0, T & =120-100 e^{0} \\ d T & =100 k e^{-k t} & & =120-100 \\ & =k\left(100 e^{-k t}-120+120\right) & \end{array}$	2	2 marks - Correct solution 1 mark - Establishes initial temperature is 20° - Verifies given equation is solution to the differential equation

Solution	Marks	Comments
$12 \text { (c) (ii) when } t=10 T=30 \quad \begin{array}{rlrl} \text { when } T=100,100= & 120-100 e^{-k t} \\ 100 e^{-k t} & =20 \\ 30 & =120-100 e^{-10 k} & e^{-k t} & =\frac{1}{5} \\ e^{-10 k} & =\frac{9}{10} & -k t & =\ln \frac{1}{5} \\ -10 k & =\ln \frac{9}{10} & t & =-\frac{1}{k} \ln \frac{1}{5} \\ k & =-\frac{1}{10} \ln \frac{9}{10} & t & =152.7553185 \ldots \\ & =0.01053605157 \ldots & \end{array}$ The kettle switches off after 153 seconds	2	2 marks - Correct solution 1 mark - Finds correct value of k - Uses their value of k correctly to find a solution Note: no rounding penalty
12 (d) (i) and (ii)	1 1	(i) 1 mark - Correct graph with all features labelled (ii) 1 mark - Correct graph with all features labelled
$12 \text { (d) (iii) } \quad \begin{aligned} f^{-1}: x & =e^{y}-4 \\ e^{y} & =x+4 \\ y & =\ln (x+4) \end{aligned}$	2	2 marks - Correct solution 1 mark - Finds an expression in terms of y
	1	1 mark - Correct explanation
$12 \text { (d) (v) } \quad \begin{aligned} x_{1} & =x_{0}-\frac{f x_{0}}{f^{\prime}\left(x_{0}\right)} \\ & =x_{0}-\frac{e^{x}-x-4}{e^{x}-1} \\ & =-4-\frac{e^{-4}+4-4}{e^{-4}-1} \\ & =-3.98134 \ldots \\ & =-3.98 \text { (correct to } 3 \text { decimal places) } \end{aligned}$	2	2 marks - Correct solution 1 mark - Uses Newton’s Method correctly

| | | Solution |
| :--- | :--- | :--- | :--- |
| 13 (a) \quad When $n=1 ;$ | | |
| | $3^{(2(1)+4)}-2^{2(1)}$ $=3^{6}-2^{2}$
 $=729-4$
 $=725 \quad$ QUEST
 which is divisible by 5 | |

Marks
Comments

13 (a) When $n=1$;

Hence the result is true for $n=1$
Assume the result is true for $n=k$
i.e. $3^{2 k+4}-2^{2 k}=5 P \quad$ where P is an integer

Prove the result is true for $n=k+1$

$$
\text { i.e. Prove } 3^{2 k+6}-2^{2 k+2}=5 Q \quad \text { where } Q \text { is an integer }
$$

PROOF:

$3^{2 k+6}-2^{2 k+2}=3^{2}\left(3^{2 k+4}\right)-2^{2 k+2}$
$=9\left(5 P+2^{2 k}\right)-2^{2}\left(2^{2 k}\right)$
$=45 P+9 \times 2^{2 k}-4 \times 2^{2 k}$
$=45 P+5 \times 2^{2 k}$
$=5\left(9 P+2^{2 k}\right)$
$=5 Q$
where $Q=9 P+2^{2 k}$ which is an integer
Hence the result is true for $n=k+1$, if it is true for $n=k$
Since the result is true for $n=1$, then it is true for all positive integers by induction.
13 (b) (i) exterior angle of a cyclic quadrilateral equals the opposite interior angle
(by assumption)

There are 4 key parts of the induction;

1. Proving the result true for $n=1$
2. Clearly stating the assumption and what is to be proven
3. Using the assumption in the proof
4. Correctly proving the required statement

3 marks

- Successfully does all of the 4 key parts

2 marks

- Successfully does 3 of the 4 key parts

1 mark

- Successfully does 2 of the 4 key parts

1 mark

- Correct reason

2 marks

$\angle U Q R=\angle Q A R \quad$ (alternate segment theorem)
$\therefore \angle P S A=\angle Q A R \quad($ explained in $(i))$
Thus $P S \| A Q$ as the corresponding angles are equal

13 (b) (iii) | | $\therefore \angle P S A=\angle Q A R$ |
| ---: | :--- |
| | $P A \\| Q R$ |
| | $\angle P A S=\angle Q R A$ |
| | $\Delta P A S \\| \Delta Q R A$ |

(explained in (i)) (similar method to part(ii)

- commencing with $\angle T P S$) (corresponding $\angle ' s, P A \| Q R$) (AA)
- Correct proof

1 mark

- Uses alternate segment theorem or similar in a valid approach

2 marks

- Correct proof

1 mark

- Uses properties of parallel lines or similar in a valid approach
2 marks
13 (c) (i)

	$\begin{aligned} m_{P Q} & =\frac{a p^{2}}{2 a p}- \\ & =\frac{a(p+}{2 a} \\ & =\frac{p+q}{q} \end{aligned}$
13 (c) (ii)	$\begin{aligned} & \frac{2}{\text { focal chord }} \\ & (0, a):(p+ \end{aligned}$
13 (c) (iii)	Tangents and Thus PTQN supplementa
13(c) (iv)	$\begin{aligned} 4 a y & =x^{2} \\ y & =\frac{x^{2}}{4 a} \\ \frac{d y}{d x} & =\frac{x}{2 a} \end{aligned}$

when $x=2 a p \frac{d y}{d x}=p$

Thus the slope of $P T$ is p, and the slope of $Q T$ is q.
As $p q=-1, P T \perp Q T$
$P Q$ is the diameter of the circle
(\angle in semicircle)
Consequently C must be the midpoint of the diameter $P Q$

- Correct proof

1 mark
2 - Find the slope of the chord $P Q$

1 mark

- Correctly shows result

1 mark

1

- Correctly explanation

1 mark

- Correctly explanation
- Note: it is not necessary to derive the slope of the tangent.

Solution	Marks	Comments
$13 \text { (c) (v) } \begin{array}{rlrl} x_{C} & =\frac{2 a p+2 a q}{2} & y_{C} & =\frac{a p^{2}+a q^{2}}{2^{2}} \\ & =a(p+q) \Rightarrow p+q=\frac{x}{a} & & =\frac{a\left(p^{2}+q^{2}\right)}{2} \\ & =\frac{a\left\lfloor(p+q)^{2}-2 p q\right]}{2} \\ & =\frac{a}{2}\left[\left(\frac{x}{a}\right)^{2}+2\right] \quad \text { as } p q=-1 \\ & =\frac{x^{2}}{2 a}+a \\ \therefore \text { locus is } y=\frac{x^{2}}{2 a}+a & \text { OR } & 2 a(y & -a)=x^{2} \end{array}$	2	2 marks - Correct solution 1 mark - Find the coordinates of C
QUESTION 14		
14 (a) (i) domain: $-1 \leq \frac{x}{2} \leq 1 \quad$ range: $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$ $-2 \leq x \leq 2$	2	2 marks - Correct graph with domain and range indicated 1 mark - Identifies both domain and range - Correct curve
14 (a) (ii) $y=\sin ^{-1}\left(\frac{x}{2}\right) \Rightarrow \sin y=\frac{x}{2}$ $x=2 \sin y$ $\begin{aligned} \int_{0}^{1} \sin ^{-1}\left(\frac{x}{2}\right) d x & =\frac{\pi}{6} \times 1-2 \int_{0}^{\frac{\pi}{6}} \sin y d y \\ & =\frac{\pi}{6}+2[\cos y]_{0}^{\frac{\pi}{6}} \\ & =\frac{\pi}{6}+2\left(\frac{\sqrt{3}}{2}-1\right) \\ & =\frac{\pi}{6}+\sqrt{3}-2 \end{aligned}$	2	2 marks - Correct solution 1 mark - Correct answer obtained without referencing the graph - Uses the graph in a valid attempt to find the solution
$14 \text { (b) (i) } \quad \begin{aligned} x & =4 \sin ^{2} t \\ \dot{x} & =8 \sin t \cos t \\ & =4 \sin 2 t \\ \ddot{x} & =8 \cos 2 t \\ & =8-16 \sin ^{2} t \\ & =-4\left(4 \sin ^{2} t-2\right) \\ & =-4(x-2) \end{aligned}$ Hence the particle moves in SHM as $\ddot{x}=-4 X$ where $X=x-2$	2	2 marks - Correct solution 1 mark - Establishes a motion equation for acceleration - Recognises the condition for a particle to be moving in SHM
14 (b) (ii) maximum speed occurs at the centre of motion i.e. $x=2$ $\dot{x}=4 \sin 2 t$ Thus the maximum speed is $4 \mathrm{~m} / \mathrm{s}$	2	2 marks - Correct solution 1 mark - Finds the centre of motion - Finds speed at the calculated centre of motion Note: do not penalise for answers obtained from non-trivialised solutions to part (i)

Solution	Marks	Comments
	2	2 marks - Correct solution 1 mark - Uses $y=4$ and concludes $\tan \theta=2.95$
14 (c) (ii) Projectile hits the ground when $y=-6$ $\begin{aligned} &-6=V T \sin \theta-4.9 T^{2} \\ & \text { however } V \cos \theta=4 \Rightarrow V=\frac{4}{\cos \theta} \\ &-6=\frac{4 T \sin \theta}{\cos \theta}-4.9 T^{2} \\ & 4.9 T^{2}-8.8 T-6=0 \\ & T=\frac{8.8 \pm \sqrt{8.8^{2}+4(6)(4.9)}}{9.8} \\ & T=\frac{8.8+\sqrt{195.04}}{9.8} \\ &=2.3230 \ldots \end{aligned}, \text { but } T>0$ \therefore the projectile hits the ground approximately 0.3 seconds after passing the pole	3	3 marks - Correct solution 2 marks - Finds the cartesian equation of motion that can be used to solve the problem, or equivalent merit 1 mark - Attempts to eliminate V from the motion equations - Finds a quadratic equation of motion.
$14 \text { (c) (iii) } \begin{aligned} \dot{x}=V \cos \theta \\ =4 \end{aligned} \quad \begin{aligned} \dot{y} & =V \sin \theta-9.8 T \\ & \\ & =8.8-9.8(2.3) \\ & \\ & =-13.74 \end{aligned}$ \therefore the projectile makes an angle of 74° when striking the ground	2	2 marks - Correct solution 1 mark - Finds the horizontal and vertical components of velocity - Finds one component and uses $\frac{\dot{y}}{\dot{x}}$

