Mathematics Extension 1

General Instructions

- Reading time - 5 minutes
- Working time -2 hours
- Write using black or blue pen, black is preferred
- Calculators approved by NESA may be used
- A reference sheet is provided at the back of this paper
- In Questions 11 - 14, show relevant mathematical reasoning and/or calculations

[^0]Section II - 60 marks (pages 6 - 11)

- Attempt Questions 11 - 14
- Allow about 1 hour and 45 minutes for this section

Section I

10 marks
Attempt Questions 1-10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1 to 10 .

1. Which of the following is equivalent to $\tan \left(\frac{\pi}{4}+x\right)$?
(A) $\frac{\sec ^{2} x}{1-\tan ^{2} x}$
(B) $\frac{\cos x-\sin x}{\cos x+\sin x}$
(C) $\frac{\sin x+\cos x}{\sin x-\cos x}$
(D) $\frac{\cos x+\sin x}{\cos x-\sin x}$
2. What is the Cartesian equation of the tangent to the parabola $x=t-3, y=t^{2}+2$ at $t=-3$?
(A) $6 x-y-25=0$
(B) $6 x+y+25=0$
(C) $6 x+y+36=0$
(D) $6 x+2 y-25=0$
3. After t years the number N of individuals in a population is given by $N=400+100 e^{-0 \cdot 1 t}$. What is the difference between the initial population size and the limiting population size?
(A) 100
(B) 300
(C) 400
(D) 500
4. The expression $\sin x-\sqrt{3} \cos x$ can be written in the form $2 \sin (x+\alpha)$.

What is the value of α ?
(A) $-\frac{\pi}{3}$
(B) $-\frac{\pi}{6}$
(C) $\frac{\pi}{6}$
(D) $\frac{\pi}{3}$
5. What is the coefficient of x^{5} in $\left(x^{2}+\frac{2}{x}\right)^{7}$?
(A) $\quad{ }^{7} \mathbf{C}_{3} \times 2^{3}$
(B) $\quad{ }^{7} \mathbf{C}_{4} \times 2^{4}$
(C) $\quad{ }^{7} \mathbf{C}_{5} \times 2^{5}$
(D) $\quad{ }^{7} \mathbf{C}_{4} \times 2^{7}$
6. What is the domain and range of $y=3 \sin ^{-1}(2 x)$?
(A) Domain: $-\frac{1}{2} \leq x \leq \frac{1}{2}$, Range: $-\frac{1}{3} \leq y \leq \frac{1}{3}$
(B) Domain: $-\frac{1}{2} \leq x \leq \frac{1}{2}$, Range: $-\frac{3 \pi}{2} \leq y \leq \frac{3 \pi}{2}$
(C) Domain: $-2 \leq x \leq 2$, Range: $-\frac{1}{3} \leq y \leq \frac{1}{3}$
(D) Domain: $-2 \leq x \leq 2$, Range: $-\frac{3 \pi}{2} \leq y \leq \frac{3 \pi}{2}$
7. O is the centre of a circle. The line k is tangent to the circle.

What is the value of x ?

(A) 30°
(B) 45°
(C) 60°
(D) 90°
8. A particle is moving in simple harmonic motion about the origin according to the equation $x=2 \cos (n t)$, where x is its displacement from the origin after t seconds. It passes through the origin with speed $\sqrt{2} \mathrm{~m} / \mathrm{s}$.

What is the value of n ?
(A) $\quad-\sqrt{2}$
(B) $\frac{1}{\sqrt{2}}$
(C) $\frac{\pi}{4}$
(D) $\sqrt{2}$
9. How many solutions does the equation $\sin ^{2} x+3 \sin x \cos x+2 \cos ^{2} x=0$ have in the domain $0 \leq x \leq 2 \pi$?
(A) 1
(B) 2
(C) 3
(D) 4
10. By using symmetry arguments, what is the value of $\int_{-a}^{a} \cos ^{-1} x d x$ where $-1 \leq a \leq 1$?
(A) 0
(B) $\frac{a \pi}{2}$
(C) $a \pi$
(D) $2 a \pi$

Section II

60 marks

Attempt questions 11-14

Allow about 1 hour 45 minutes for this section

Answer each question on the appropriate page of your answer booklet
In Questions 11-14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Answer on the appropriate page
(a) Evaluate $\int_{0}^{3} \frac{d x}{\sqrt{9-x^{2}}}$, giving your answer in exact form.
(b) The point A is $(-2,1)$ and the point B is $(1,5)$. Find the coordinates of the point Q which divides $A B$ externally in the ratio 5:2.
(c) Solve $\tan \theta=\sin 2 \theta$ for $0 \leq \theta \leq \pi$.
(d) Differentiate $y=\ln \left(\tan ^{-1} 2 x\right)$.
(e) For what values of x, where $x \neq 0$, does the geometric series

$$
1+\frac{2 x}{x+1}+\left(\frac{2 x}{x+1}\right)^{2}+\ldots \text { have a limiting sum? }
$$

(f) Find the general solution of $\sqrt{3} \tan 3 \theta=1$.

End of Question 11

Question 12 (15 marks) Answer on the appropriate page
(a) Find the acute angle (to the nearest degree) between the lines $3 x-8 y-7=0$ and

$$
y=-2 x+5 .
$$

(b) Use the substitution $u=2+x^{2}$ to find $\int_{1}^{2} x \sqrt{2+x^{2}} d x$.
(c) If α, β and γ are the roots of the equation $x^{3}-2 x^{2}+4 x+7=0$, find the value of $(2 \alpha+1)(2 \beta+1)(2 \gamma+1)$.
(d) The points A, B, C and D are points on the circumference of a circle with centre at O. The line $T A$ is a tangent to the circle at A and $B C$ is produced to R. The interval $O A$ bisects $\angle B A D$ and $B C=C D$. The size of $\angle D B C$ is α.

(i) Copy the diagram into your answer booklet and explain why $\angle D C R=2 \alpha$.
(ii) Show that $\angle O A D=\alpha$.
(iii) Prove that $\angle A B C$ is a right angle.
(e) (i) Sketch the graph of $y=2 \sin x$ for $0 \leq x \leq \pi$.
(ii) On the same set of axes sketch $x-3 y=0$.
(iii) Assuming the approximate point of intersection of the two graphs is at $x=2.7$, use one application of Newton's method to find a second approximation. (Answer correct to 3 decimal places).

End of Question 12

Question 13 (15 marks) Answer on the appropriate page
(a) Let $f(x)=5-\sqrt{x}$.
(i) Sketch the inverse function $y=f^{-1}(x)$.
(ii) Find the equation of the inverse function $y=f^{-1}(x)$.
(b) The point $P\left(2 a p, a p^{2}\right)$, where $p \neq 0$, is a point on the parabola $x^{2}=4 a y$. The line k is parallel to the tangent at P and passes through the focus, S, of the parabola.

(i) Find the equation of the line k.
(ii) The line k intersects the x axis at the point Q. Find the coordinates of the midpoint, M, of the interval QS.
(iii) Find the equation of the locus of M.

Question 13 (continued)
(c) Captain America is standing 60 metres from the base of a building. He is watching

Spiderman climb up the side of the building at a constant rate of $15 \mathrm{~m} / \mathrm{s}$.

The angle of elevation from Captain America to Spiderman is θ. How fast is this angle increasing 6 seconds after $\theta=0$? (Give your answer in radians/second).
(d) A bag contains 5 balls numbered from 1 to 5 . The chance of choosing each ball is the same. One ball is chosen at random and its number is noted. The ball is then returned to the bag. This is done a total of five times and the numbers noted are recorded in order.
(i) In how many ways can the five balls be drawn if there are no restrictions?
(ii) What is the probability that each ball is selected exactly once?
(iii) What is the probability that exactly one of the balls is not selected?

End of Question 13

Question 14 (15 marks) Answer on the appropriate page
(a) The velocity of a particle moving along the x-axis is given by $v=2(x+1)^{2} \mathrm{~m} / \mathrm{s}$. Find the acceleration of the particle at $x=2$.
(b) Use mathematical induction to prove that for all integers $n \geq 1$, $4^{n}+15 n-1$ is divisible by 9 .
(c) A survey was conducted at Baulkham Hills High School to decide whether a new menu for the canteen should be implemented. Staff responses were 23% of the total responses and the remaining 77% were from the students.
It is known that 31% of the staff who responded were in favour of changing the menu and 58% of students were in favour of changing the menu.

Assuming a very large number of responses were received:
(i) Find the probability that a randomly chosen person is in favour of changing the menu.
(ii) If 5 survey responses were selected at random, find the probability that the majority of the responses were in favour of changing the menu.
(d) By considering the expansion of $x(1+x)^{n}$, prove $\sum_{r=0}^{n}(r+1)^{n} \mathbf{C}_{r}=2^{n}\left(\frac{n}{2}+1\right)$
(e) A ball is projected from level ground at an angle of θ and a velocity of $V \mathrm{~m} / \mathrm{s}$. You may assume the equations of motion are $x=V t \cos \theta$ and $y=-\frac{g t^{2}}{2}+V t \sin \theta$ (DO NOT PROVE THESE RESULTS).
(i) Show that the maximum height achieved by the ball is $\frac{V^{2} \sin ^{2} \theta}{2 g}$.
(ii) The ball just clears a wall of height h metres that is d metres from the point of projection. 2

Show that the greatest height reached is $\frac{d^{2} \tan ^{2} \theta}{4(d \tan \theta-h)}$.

End of paper

2019 ExTENSION 1 TrIAL SOLUTIONS
(1) $D:$

$$
\begin{aligned}
\tan \left(\frac{\pi}{4}+x\right) & =\frac{\tan \frac{\pi}{4}+\tan x}{1-\tan \pi \tan x} \\
& =\frac{1+\tan x \times \cos x}{1-\tan x \times \cos x} \\
& =\frac{\cos x+\sin x}{\cos x-\sin x}
\end{aligned}
$$

(2) B

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y / d t}{d x / t} \\
& =\frac{2 t}{1}
\end{aligned}
$$

when $t=-3, \frac{d y}{d x}-6, y=11, x=-6$

$$
\begin{aligned}
& y-11=-6(x+6) \\
& y-11=-6 r-36
\end{aligned}
$$

$6 x+y+25$
(3) A

$$
\begin{aligned}
& \text { when } 1=0, N=400+100 \\
& =500 \\
& \text { as } t \rightarrow \infty, N \rightarrow 400+100 \times 0 \\
& \therefore
\end{aligned}
$$

(4) A $2 \sin x \cos \alpha+2 \cos x \sin \alpha=\sin x-\sqrt{3} \cos x$

$$
\text { Equading } L \cos \alpha=1 \quad 2 \sin \alpha=-\sqrt{3}
$$

$$
\therefore 4 \text { th quad ant }
$$

$$
\therefore \alpha=-\frac{\pi}{3}
$$

(5) A

$$
\begin{aligned}
& \text { Genneal terns }={ }^{7} C_{k}\left(x^{2}\right)^{7-k}\left(2 x^{-1}\right)^{k} \\
& =2^{k} C_{k} x^{14-2 k-k} \\
& =2^{k} c_{k} n^{14-3 k} \\
& 14-3 k=5 \\
& \text { 953k } \\
& k=3 \\
& \therefore \text { teruin in is } 2^{3} \times c_{3}
\end{aligned}
$$

(6) $B \quad D:-1 \leq 2 h \leq 1 \quad A:-\frac{\pi}{2} \leq \frac{y}{3} \leq \frac{\pi}{2}$

$$
-\frac{1}{2} \leq x \leq \frac{1}{2} \quad-\frac{3 \pi}{2} \leq y \leq \frac{3 \pi}{2}
$$

(7) $C \quad \angle B A D=90^{\circ}$ (L in a bmiciade)
$\angle B A E=60^{\circ}$ (\angle sum of staight line
$\angle A D B=60^{\circ}$ (\angle in atknak segnent)
$\angle A C B=n=60^{\circ}$ (\angle at arcunfercnce stinding on same ary)

(8) B

$$
\begin{aligned}
& x=2 \cos (n t) \\
& \dot{x}=-2 n \sin (n t)
\end{aligned}
$$

when $\lambda=0 \quad 0=2 \cos (n t)$

$$
\sim 6=\frac{\pi}{2}
$$

sub in $\dot{\mu}, \quad \sqrt{2}=\left|-2 n \sin \left(\frac{d}{2}\right)\right|$

$$
\begin{aligned}
& \sqrt{2}=2 n \\
& n=\frac{1}{\sqrt{2}}
\end{aligned}
$$

(9) 0

$$
\begin{aligned}
& (\sin x+2 \cos x)(\sin x+\cos x)=0 \\
& \sin x+2 \cos x=0 \quad \sin x(\omega) h=0 \\
& \sin n=-2 \cos n \quad \sin x=-\cos n \\
& \operatorname{fm} n=-2 \\
& \tan x=-1
\end{aligned}
$$

2 soluturis 2 Suluticis
(10) C

Since area between $y=\cos ^{-1} 2$ and $y=\frac{\pi}{2}$ when $-a<x<0$ is equal to sea belween $y=\sum$ and $y=\cos ^{-1} x$ for $0<x<a$ then a reatangle can be formed with area $2 a x \frac{\pi}{2}$

$$
\therefore \text { Arem }=a \pi
$$

Il a) $\int_{0}^{3} \frac{d x}{\sqrt{9-x^{2}}}=\left[\sin ^{-1} \frac{x}{3}\right]_{0}^{3}$

$$
\begin{aligned}
& =\sin ^{-1} 1-\sin ^{-1} 0 \\
& =\frac{\pi}{2}
\end{aligned}
$$

b]

$$
\begin{aligned}
& A(-2,1) B(1: 5) \\
Q: & \left(\frac{-4-5}{-5+2}, \frac{2-25}{-512}\right) \\
= & \frac{-9}{-3}, \frac{-23}{-3} \\
= & \left(3,7 \frac{2}{3}\right)
\end{aligned}
$$

c)

$$
\begin{gathered}
\tan \theta=2 \sin \theta \cos \theta \\
\sin \theta=2 \sin \theta \cos ^{2} \theta \\
2 \sin \theta \cos ^{2} \theta-\sin \theta=0 \\
\sin \theta\left(2 \cos ^{2} \theta-1\right)=0 \\
\sin \theta=0 \text { or } \cos ^{2} \theta=\frac{1}{2} \\
\theta=0, \pi \quad \cos \theta= \pm \frac{1}{\sqrt{2}} \\
0=\frac{\pi}{4}, \frac{3 \pi}{4} \\
\therefore \theta=0, \frac{\pi}{4}, \frac{3 \pi}{4}, \pi
\end{gathered}
$$

d)

$$
\begin{aligned}
& y=\ln \left(\tan ^{-1}(2 x)\right) \\
& \frac{d y}{d x}=\frac{\operatorname{lin}^{(2 x+2}<2}{\tan ^{-1}(2 x)} \\
&=\frac{2}{\left(4 x^{2}+1\right) \tan ^{-1}(2 x)}
\end{aligned}
$$

(2) correct answer
(1) worred integral
(2) correct solution
(1) either x or y whe orrest
(1) cored interal divisoni
(3) correct atution
(2) at least 2 annect iolutions
(1) converts to expessios in t
or ues 2 Liowit $=\sin t \mathrm{o}$
and attenpts to solve quadion
(3) coned solutioni
(2) areethy appis 20 of the 3 pont be bla
(1) oredy upplos 14 the panins below -reognies denvate of bog f er reognies deriudvie of kar a -reagnies seed bo muthys by 2 (asing chain ave)

Il e) commanation $\frac{2 \pi}{\frac{x+1}{1}}$
to have a limining sum $\left|\frac{2 x}{x+1}\right|<1 \quad k \neq-1$

$$
\begin{array}{rlrl}
|2 n|<|\lambda+1| & & \\
2 n & =x+1 & -2 n & =x+1 \\
n & =1 & -i n & =1 \\
n & =-\frac{1}{3}
\end{array}
$$

$$
\therefore\left\{\begin{array}{l}
-\frac{1}{3}<x<1, \text { excluding } x=0 \\
-\frac{1}{3}<x<0 \text { or } 0<x<1
\end{array}\right.
$$

11 f) $\quad \tan 30=\frac{1}{\sqrt{3}}$
$3 \theta=$ antitan․ $\sqrt{3}$. whese n is an inkeger

$$
\begin{aligned}
& 3 \theta=n \pi+\frac{\pi}{6} \\
& \sigma=\frac{n \pi}{3}+\frac{\pi}{18} \text { or } \frac{\pi(6 n+1)}{18} \text { where } n \text { is an integer }
\end{aligned}
$$

12 a) $8 y=3 x-7$

$$
\begin{aligned}
& y=\frac{3 x}{8}-\frac{7}{8} \quad y=-2 x+5 \\
& \tan \theta=\left|\frac{3 / 8-(-2)}{1-\left(2 \times \frac{3}{8}\right)}\right|
\end{aligned}
$$

$$
\begin{aligned}
t_{10} \theta & =9.5 \\
\theta & =\tan ^{-1} 9.5 \\
\theta & =83.99 \ldots \\
\theta & =84^{\circ} \quad \text { (rearest degree) }
\end{aligned}
$$

(2) wred solutan
(2) identifies $n=$ yound
(2) oblains $-1<r<1$
(ie cmits abrubte malue)
(1) idedifitis $x=1$

(1) finds $\frac{\pi}{6}$

12 a)
(2) correct solution
(1) subirituties gradients into formula

12b) $\int_{1}^{2} x \sqrt{2+x^{2}} d x$
$\int_{3}^{6} \sqrt{\frac{1}{2}} \int^{6} u^{\frac{d u}{2}} d u$
$\frac{1}{2} \int_{3}^{3} u^{3 / 2} d u$
$=\frac{1}{2}\left[\frac{2 u^{3 / 2}}{3}\right]_{3}^{6}$
$=\frac{1}{3}\left(6^{3 / 2}-3^{3 / 2}\right)$
$=\frac{1}{3}(6 \sqrt{6}-3 \sqrt{3})$
ore $2 \sqrt{6}-\sqrt{3}$
OR $\sqrt{3}(2 \sqrt{2}-1)$
OR
OR 3.1669 ($4 d p$)
12 c)

$$
\begin{aligned}
& \alpha i \beta+\gamma=2 \\
& \alpha \beta+\alpha \gamma+\beta \gamma=4 \\
& \alpha \beta \gamma=-7 \\
& (2 \alpha+1)(2 \beta+1)(2 \gamma+1) \\
& =8 \alpha \beta \gamma+4(\alpha \beta+\alpha \gamma 1 \beta \gamma)+2 \alpha 12 \beta+2 \gamma+1 \\
& =8 x-7+4 \times 4+2(\alpha+\beta+\gamma)+1 \\
& =-56+2 x+2+16+1 \\
& =-35
\end{aligned}
$$

12 d) next page
(1) corred solution'
(2) Cored integrol interas of
(1) correct integrarel in teras of n
(2) corred solutian.
(1) finds $\sum \alpha, \sum \alpha \beta$ and $\sum \alpha \beta \gamma$
(i) axperses $(2+11)(2 \alpha+1)(2 r i 1)$ in tems of $\sum_{\alpha}, \sum_{\alpha \beta}, \sum_{\alpha \beta} \gamma$

12d)

(1) wred soludian (including diagan)
i) Prve: $\angle O C R=2 \alpha$
$\angle B C D=\alpha$ (equal sides apposice equat L 's in ssoseder $\triangle B C D$)
$\angle O C R=2 \alpha$ (extenor \angle uppostle of $\triangle B C D$)
ii) $\angle B A D=2 \alpha=\angle D C A$ (exterior of geche gindribterd BADC) equals intenor eppoite angle (1)arred solutano

$$
\begin{aligned}
& \angle B A O=\angle D A D=\frac{1}{2} \angle B A D \\
& \therefore \angle O A D=\alpha
\end{aligned}
$$

iii) $\angle T A O=\frac{\pi}{2}-\alpha \quad($ radins \perp tengent at $A)$
(2) corred solution
$\angle A B D=\frac{\pi}{2}-\alpha$ (alterate segment theorem)
(1) Grods LTAO with
$\angle A B C=\angle A B O+\angle D B C$

- $\frac{\pi}{2}-\alpha+\alpha$
-否
\therefore LABC is a right angle
ne)

(1) correct solution
(1) correct solution:

Ne(iii) $y=2 \sin n$
$y=\frac{n}{3}$

$$
\begin{aligned}
\text { Let } f(x) & =2 \sin x-\frac{x}{3} \\
f^{\prime}(x) & =2 \cos x-\frac{1}{3} \\
x_{1} & =2.7-\frac{2 \sin 2 \cdot 7-\frac{2.7}{3}}{2 \cos 2 \cdot 7-\frac{1}{3}} \\
& =2.67887 \cdots \\
& =2.679 \quad(3 d p)
\end{aligned}
$$

Bea) (ii) $\begin{array}{rrr}y & =5-\sqrt{x} & x \geqslant 0, y \leq 5 \\ \text { inverse } x=5-\sqrt{y} & x \leq 5, y \geq 0 \\ \sqrt{y}=5-x & \\ y=(5-x)^{2} & \text { where } x \leq 5 \\ \text { on } y=(x-5)^{2}+1 y & \end{array}$
(i)

(4) Correct solwhin'
(1) orat expressin for
(1) used $f(x)=\sin x$
to obtain 3.173
(2) coreet soluduri
(1) eyprosin with iand y interiburged (ignore $x \leqslant 5$)
(1) correct scoution
(y) corred solutian.
(1) idenities gndeat of k or y inereptolk
(2) wred solutw.
(1) Finds coorduates of Q
$B C)$ Let h metes be the height of spiderman above the hoizontal
(3) correct solution
(2) estabhister chain rule withe either $\frac{d \theta}{d t}, \frac{d h}{d t}, \frac{d \theta}{d t} 2 t_{c}$ (1) finds $\frac{d t}{d h}$ or $\frac{d h}{d t}$

$$
\begin{aligned}
& \frac{d h}{d \sigma}=60 \sec ^{2} \theta, \frac{d h}{d t}=15 \\
& \frac{d h}{d t}=\frac{d h}{d \theta} \times \frac{d \theta}{d t} \\
& 15=60\left(\tan ^{2} \theta+1\right) \frac{d \theta}{d t} \\
& \frac{d \theta}{d t}=\frac{1}{4\left[\left(\frac{90}{60}\right)^{2}+1\right]} \\
& -\frac{d \theta}{d t}=\frac{1}{13} \text { radians/second }
\end{aligned}
$$

13d) (i) $5^{5}=3125$

- (1) corect answer
ii) $P($ all diffreet $)=1 \times \frac{4}{5} \times \frac{3}{5} \times \frac{2}{5} \times \frac{1}{5}$
(1) coned anvwer

$$
=\frac{24}{625}
$$

iii)

$$
P(\text { exadly I not selected })=5 \times \overline{4} \times \frac{\frac{5!}{2!}}{55}=
$$ (2) cor rect sulutien

which letter whichleter gets reperdad get ammithed ways danning (ey allempliste Se Sojest withzallie find ove pensibily 11224
a)

$$
\begin{aligned}
& v=2(x+1)^{2} \\
& a=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) \\
&=\frac{d}{d x}\left(\frac{1}{2} \times 4(n+1)^{4}\right) \\
&=\overline{2 \times 4} \overline{(\lambda+1)^{3}} \\
& a=8(n+1)^{3}
\end{aligned}
$$

when $k=2, a=8 \times 3^{3}$

$$
\therefore a=216 \mathrm{~ms}^{-2}
$$

b) Test $n=1$

$$
\begin{aligned}
& 4^{1}+15 \times 1-1 \\
&= 18 \\
& \therefore 2 \times 9 \\
& \therefore \text { True for } n=1
\end{aligned}
$$

Assume time for $n=k$
$4^{k}+15 k-1=9 P$ where P is an integer
for $n=\mid \underline{14}$ we wish to prove
$4^{k+1}+15(k+1)-1=94$ where α is an integeger

$$
\begin{aligned}
& 4^{k \mid 1 /}+15(k+1)-1 \\
& =4.4^{k}+15 k+14 \\
& =4(9 p-15 k+1)+15 k+14 \text { using assumpluo } \\
& =9 \times 4 p-45 k+18 \\
& =9(4 p-5 k+12)
\end{aligned}
$$

$=9 Q$ where α is an integer since Pad k are integers
\therefore If the for $n=k$ it is time for $n=k+11$, sot, t is the for $n=1, \therefore$ the for $n=11122,3,4$ and so on for all positive integers $n \geqslant 1$
14. c)ilp (iffaveur of changing)

$$
\begin{aligned}
& =P(\text { staffx in foveur) or } P(\text { student in favour) } \\
& =0.23 \times 0.31+0.77 \times 0.58 \\
& =0.5179 \text { or } 51.79 \%
\end{aligned}
$$

ii)

14 d) $x(1+k)^{n}=\pi\left[\left(\begin{array}{l}\left.\hat{0} 0)+\binom{n}{0} x+\binom{n}{2} x^{2}+\ldots .+(\hat{k}) k^{k}+\ldots .(\hat{n}) k\right]\end{array}\right]\right.$

$$
\begin{aligned}
& \lambda(1+k)^{n}=(\hat{\theta}) n+(\hat{i}) n^{2}+(\hat{2}) n^{3}+\cdots(n) k^{k+1}+\cdots+(\hat{n}) n^{n+1} \\
& \text { iflerentiate wrin }
\end{aligned}
$$ bincomul pubability for al leastone case

(3) corred soluntion
(2) significunt pougressleg
Differentiate w.rot. differentiaks)

$$
\text { Let } x=1
$$

$$
2^{n}+n 2^{n-1}=\binom{n}{0}+2\binom{n}{1}+3\binom{n}{2}+\ldots+(k+1) \overline{(n)}+\ldots+(n+1)(\hat{n})
$$

(1) Limited
\qquad

$$
2^{2}\left[1+\frac{n}{2}\right]=(\hat{o})+2(\hat{1})+3(\hat{2})+\ldots(k+1)(\hat{k})+\ldots+(n+1)(\hat{n})
$$

(eg \exp ands) subindiates $h=1$)

$$
\sum_{r=0}^{n}(r+1) \hat{r}=2^{n}(\bar{n}+1)
$$

14 e] i) $x=v+\cos \theta$

$$
y=-\frac{g^{2}}{2}+v t \sin \theta
$$

Atmax heifft $j=0$
(2) corred suculani

$$
j=-g^{t}+v \sin \theta
$$

(1) fineds time to greeded height.

$$
\begin{aligned}
0 & =-g t f v \sin \theta \\
g 1 & =\frac{V \sin t}{t}=\frac{V \sin \theta}{g}
\end{aligned}
$$

$\operatorname{sun} b \operatorname{in} y, \quad y=\frac{-\mathscr{D}}{2} \frac{v^{2} \sin ^{2} \theta}{-g^{2}}+\frac{v \sin \theta v \sin \theta}{g}$

$$
M_{a x} \text { height }=\frac{v^{2} \sin ^{2} \theta}{2 g}
$$

$$
\begin{aligned}
& P \text { (majeing of } 5 \text { in faverr) } \\
& =P(3 \text { or } 4 \text { or } 5 \text { infavour }) \\
& =\binom{5}{3}(0.5179)^{3}(0.4821)^{2} \pm(5)(0.5179)^{4}(0.4821)^{1} \\
& +(5)(0.5179)^{5} \\
& =53.35 \% \text { (2 devinal places) }
\end{aligned}
$$

$14 e$ (ii) when $x=d, y=h$

$$
\begin{aligned}
& d=\frac{V t \cos \theta}{\prime} \\
& t=\frac{d}{V \cos \theta}
\end{aligned}
$$

$$
\begin{aligned}
h & =\frac{-g d^{2}}{2}+V t \sin \theta \\
h & =\frac{-g}{2} \frac{d^{2}}{v^{2} \cos ^{2} \theta}+\frac{x d}{x \cos \theta} \sin \theta \\
h & =\frac{-g d^{2}}{2 v^{2} \cos ^{2} \theta}+d \tan \theta \\
\frac{g d^{2}}{2 v^{2} \cos ^{2} \theta} & =\frac{\tan \theta-h}{g} \\
\frac{g}{v^{2}} & =\frac{2(d \tan \theta-L) \cos ^{2} \theta}{d^{2}} \\
\frac{v^{2}}{g} & =\frac{d^{2}}{2(d \tan \theta-L) \cos ^{2} \theta}
\end{aligned}
$$

$$
\text { (1) subslitutes } d
$$

andh int egnotux
dmotion and sowe
simultereconly with

Sub in (i) Max height $=\frac{d^{2}}{2(d \tan \theta-h) \cos ^{2} \theta} \times \frac{\sin ^{2} \theta}{2}$

$$
=\frac{d^{2} \tan ^{2} \theta}{4(d \tan \theta-L)}
$$

[^0]: Total marks: Section I-10 marks (pages 2 - 5)
 70

 - Attempt Questions 1 - 10
 - Allow about 15 minutes for this section

