Blacktown Boys’ High School

2018

HSC Trial Examination

Mathematics Extension 1

General Instructions

- Reading time - 5 minutes
- Working time - 2 hours
- Write using black pen
- NESA approved calculators may be used
- A reference sheet is provided for this paper
- All diagrams are not drawn to scale
- In Questions $11-14$, show relevant mathematical reasoning and/or calculations

Total marks: Section I-10 marks (pages 3-6)
70

- Attempt Questions 1 - 10
- Allow about 15 minutes for this section

Section II - $\mathbf{6 0}$ marks (pages 7 - 11)

- Attempt Questions 11-14
- Allow about 1 hour and 45 minutes for this section

Assessor: X. Chirgwin

Student Name: \qquad
Teacher Name: \qquad

Students are advised that this is a trial examination only and cannot in any way guarantee the content or format of the 2018 Higher School Certificate Examination.

Section I

10 marks

Attempt Questions 1-10

Use the multiple choice answer sheet provided on page 13 for Questions 1-10.

1 Which of the following is an expression for $\int \sin ^{2} 8 x d x$?
A. $\frac{1}{2} x+\frac{1}{32} \sin 16 x+C$
B. $\frac{1}{2} x-\frac{1}{32} \sin 16 x+C$
C. $\frac{1}{2} x+\frac{1}{16} \sin 8 x+C$
D. $\frac{1}{2} x-\frac{1}{16} \sin 8 x+C$

2 Given that $f(x)=\frac{5}{x+2}+3$.
The equations of the asymptotes of the graph of the inverse function $f^{-1}(x)$ are:
A. $x=-2$ and $y=3$
B. $x=-2$ and $y=-3$
C. $x=3$ and $y=-2$
D. $x=-3$ and $y=-2$

3 Which of the following is the range of the function $y=\frac{1}{2} \cos ^{-1} x-\frac{\pi}{2}$?
A. $\quad 0 \leq y \leq \frac{\pi}{2}$
B. $0 \leq y \leq \pi$
C. $\quad-\frac{\pi}{2} \leq y \leq 0$
D. $\quad-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$

4 How many arrangements in a row of the letters of the word AMPLITUDE are possible if all the vowels are together in any order?
A. $6!\times 4!$
B. $5!\times 4$!
C. 9 !
D. 4 !

5 In what ratio does the point $R(8,-1)$ divides the interval $A B$, where A and B are $(-4,3)$ and $(5,0)$ respectively?
A. $-1: 4$
B. $-4: 1$
C. $4: 1$
D. $1: 4$
$6 \quad$ The displacement x of a particle at time t is given by $x=6 \sin 5 t+8 \cos 5 t$. What is the greatest speed of the particle?
A. 70
B. 50
C. 30
D. 10
$7 \quad$ In the diagram, $A C$ is a tangent to the circle at the point $P, A B$ is a tangent to the circle at the point Q, and $B C$ is a tangent to the circle at the point R. Find the exact length of $B C$ if $C P=3 \mathrm{~cm}$ and $A P=6 \mathrm{~cm}$.

A. 6 cm
B. 9 cm
C. 12 cm
D. 15 cm

8 Which expression is equal to $\frac{{ }^{n} P_{r}}{{ }^{n} C_{r}}$?
A. $\frac{n!}{(n-r)!}$
B. $\frac{n!}{r!}$
C. $\frac{1}{r!}$
D. r !

9 Let $|p| \leq 1$, what is the general solution of $\cos 2 x=p$?
A. $\quad x=n \pi \pm \frac{\cos ^{-1} p}{2}, n$ is an integer
B. $\quad x=n \pi \pm \cos ^{-1} \frac{p}{2}, n$ is an integer
C. $\quad x=2 n \pi \pm \cos ^{-1} \frac{p}{2}, n$ is an integer
D. $\quad x=\frac{n \pi+(-1)^{n} \cos ^{-1} p}{2}, n$ is an integer

10 The velocity $v \mathrm{~ms}^{-1}$ of a particle moving in a straight line is governed by the equation $v=x-3$, where x is its displacement. Initially, the particle was at $x=7 \mathrm{~cm}$. What is the displacement function of this particle?
A. $x=7+e^{t}$
B. $x=7 e^{t}$
C. $x=3+e^{t}$
D. $x=3+4 e^{t}$

Section II

60 Marks

Attempt Questions 11-14

Answer each question on a SEPARATE writing booklet. Extra writing booklets are available.
In Questions 11-14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.
a) Solve $\frac{4 x}{x+5}<2$.
b) Find the acute angle between the lines $x-5 y=0$ and $2 x+y-3=0$.

Leave your answer to the nearest minute.
c) Find $\frac{d}{d x}\left(x \sin ^{-1} x+\sin ^{-1} x\right)$
d) The variable point $(5 \cos \theta, 5 \sin \theta)$ lies on a curve. Find the Cartesian equation of this curve.
e) i) Prove that $\cot \left(\frac{\theta}{2}\right)=\frac{\sin \theta}{1-\cos \theta}$.
ii) Hence find the exact value of $\cot \left(\frac{\theta}{2}\right)$ given that $\sin \theta=\frac{5}{6}$ and 2 $\frac{\pi}{2}<\theta<\pi$.
f) Use the substitution $u=2 e^{x}$ to show that $\int_{\ln \frac{1}{2}}^{\ln \frac{\sqrt{3}}{2}} \frac{e^{x}}{1+4 e^{2 x}} d x=\frac{\pi}{24}$.

Question 12 (15 marks) Use a SEPARATE writing booklet.
a) Consider the function $f(x)=\log _{e}(2 x-1)+x^{3}+1$.
i) Show that a root exists between $x=0.6$ and $x=0.7$.
ii) Use one application of Newton's method, starting at $x=0.6$, to find another approximation of this root correct to 3 significant figures.
b) The equation $3 x^{3}-7 x-2=0$ has roots α, β and γ. Find the value of:
i) $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$
ii) $\quad \alpha^{2}+\beta^{2}+\gamma^{2}$
c) A Mathematics club consists of 20 members, of which there are 11 men and 9 women. A committee of four people is to be chosen randomly.
i) How many committees can there be if there is to be equal numbers of men and women on the committee?
ii) How many committees can there be if, regardless of their gender, the four-member committee must contain the eldest and youngest member of the club?
d) Find an expression for the constant term in the expansion of $\frac{1}{x^{2}}\left(x^{5}-\frac{3}{x}\right)^{16}$.
e) Newton's law of cooling states that the rate of cooling of a body is proportional to the excess of the temperature of a body above the surrounding temperature.
The temperature of a bowl of soup satisfies an equation of the form $T=B+A e^{-k t}$ where T is the temperature of the soup, t is time in minutes, A and k are constants, and B is the temperature of the surroundings. The bowl of soup cools from $96^{\circ} \mathrm{C}$ to $88^{\circ} \mathrm{C}$ in 3 minutes in a room of temperature $25^{\circ} \mathrm{C}$.
i) Find the exact values of A and k.
ii) Find the temperature of the bowl of soup, to the nearest degree, after a further 10 minutes have passed.

End of Questions 12

a) The acceleration of a particle moving in a straight line is given by

$$
\frac{d^{2} x}{d t^{2}}=-\frac{98}{x^{2}}
$$

when x metres is the displacement from the origin after t seconds. When $t=0$, the particle is 4 metres to the right of the origin with a velocity of 7 metres per second.
You may use the result $\frac{d^{2} x}{d t^{2}}=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)$.
i) Show that the velocity, v, of the particle, in terms of x, is $v=\frac{14}{\sqrt{x}}$. $\quad 3$
ii) Find an expression for t in terms of x.
iii) How many seconds does it take for the particle to reach a point 121 metres to the right of the origin?
iv) Find the displacement of the particle after 15 seconds. Round your answer to the nearest metre.
b) $\quad A B C D$ is a cyclic quadrilateral in which $A B=A C$, and $C D$ is produced to E.

Not to
Scale

Copy or trace the diagram into your writing booklet.
i) Explain why $\angle A B C=\angle A D E$.
ii) Hence or otherwise, prove that $A D$ bisects $\angle B D E$.

Question 13 (continued)
c) i) Prove by mathematical induction that for all integers $n \geq 1$,

$$
1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{1}{6} n(n+1)(2 n+1)
$$

ii) Use this result to show that $2^{2}+4^{2}+6^{2}+\cdots+100^{2}=171700$.
iii) Hence evaluate $1^{2}+3^{2}+5^{2}+\cdots+99^{2}$.
a) A man standing 100 metres from the base of a high-rise building observes an external lift moving up the outside wall of the building at a constant rate of 6.5 metres per second.
i) If θ radians is the angle of elevation of the lift from the observer, show that $\frac{d \theta}{d t}=\frac{13 \cos ^{2} \theta}{200}$.
ii) Evaluate $\frac{d \theta}{d t}$ at the instant when the lift is 40 metres above the observer's horizontal line of vision.
b) The point $P\left(2 a p, a p^{2}\right)$ lies on the parabola $x^{2}=4 a y . S(0, a)$ is the focus of the parabola. The normal to the parabola at P meets the y-axis at R.
i) Given that the equation of the normal at P is $x+p y=a p^{3}+2 a p$
(DO NOT PROVE THIS). Find the coordinates of R.
ii) $\quad N$ lies on $P R$ so that $S N \perp P R$. Find the coordinates of N.
iii) Show that, as P moves along the parabola, the locus of N is another parabola. Find the vertex and focus of this parabola.
c) A projectile is fired from the origin O with velocity V and with angle of elevation θ, where $\theta \neq \frac{\pi}{2}$. You may assume that

$$
x=V t \cos \theta \text { and } \quad y=-\frac{1}{2} g t^{2}+V t \sin \theta,
$$

where x and y are the horizontal and vertical displacements of the projectile in metres from O at time t seconds after firing.
i) Show that the equation of flight of the projectile can be written as

$$
y=x \tan \theta-\frac{1}{4 h} x^{2}\left(1+\tan ^{2} \theta\right), \text { where } h=\frac{V^{2}}{2 g}
$$

ii) Show that the point (X, Y), where $X \neq 0$, can be hit by firing at two different angles θ_{1} and θ_{2} provided $X^{2}<4 h(h-Y)$.
iii) Show that no point above the x-axis can be hit by firing at two different angles θ_{1} and θ_{2}, satisfying $\theta_{1}<\frac{\pi}{4}$ and $\theta_{2}<\frac{\pi}{4}$.

End of Paper

Section 1

1	$\begin{aligned} & \int \sin ^{2} 8 x d x \\ & =\int \frac{1}{2}(1-\cos 16 x) d x \\ & =\frac{1}{2}\left(x-\frac{1}{16} \sin 16 x\right)+C \\ & =\frac{1}{2} x-\frac{1}{32} \sin 16 x+C \end{aligned}$	1 Mark
2	C $f(x)=\frac{5}{x+2}+3$ Asymptotes of $f(x)$ are $x=-2$ and $y=3$ Asymptotes of $f^{-1}(x)$ are $x=3$ and $y=-2$	1 Mark
3	C $y=\frac{1}{2} \cos ^{-1} x-\frac{\pi}{2}$ Range for: $\begin{aligned} & y=\cos ^{-1} x \rightarrow 0 \leq y \leq \pi \\ & y=\frac{1}{2} \cos ^{-1} x \rightarrow 0 \leq y \leq \frac{\pi}{2} \\ & y=\frac{1}{2} \cos ^{-1} x-\frac{\pi}{2} \rightarrow-\frac{\pi}{2} \leq y \leq 0 \end{aligned}$	1 Mark
4	A 4 vowels, A, I, U, E 4! ways of arranging all the vowels 1 group of vowels and 5 other letters $6!\times 4$!	1 Mark
5	B Let the ratio be $k: 1$ $\begin{aligned} & 8=\frac{5 k+(-4) \times 1}{k+1} \\ & 8 k+8=5 k-4 \\ & 3 k=-12 \\ & k=-4 \\ & \therefore-4: 1 \end{aligned}$	1 Mark
6	B $\begin{aligned} & x=6 \sin 5 t+8 \cos 5 t \\ & \dot{x}=30 \cos 5 t-40 \sin 5 t \end{aligned}$ Amplitude (greatest speed) $=\sqrt{30^{2}+40^{2}}=50$	1 Mark
7	C Let $B R=x \mathrm{~cm}$ $C P=C R=3 \mathrm{~cm} ; A P=A Q=6 \mathrm{~cm} ; B Q=B R=x \mathrm{~cm}$ (two tangents from an external point have equal lengths) $A C^{2}+B C^{2}=A B^{2}$ (Pythagoras' Theorem ${ }^{\prime}$ $(6+3)^{2}+(3+x)^{2}=(6+x)^{2}$ $81+9+6 x+x^{2}=36+12 x+x^{2}$ $6 x=54$ $x=9$ $B R=9 \mathrm{~cm}$ $B C=3+9=12 \mathrm{~cm}$	1 Mark

8	D $\begin{aligned} \frac{{ }^{n} P_{r}}{{ }^{n} C_{r}} & =\frac{n!}{(n-r)!} \div \frac{n!}{(n-r)!r!} \\ \frac{{ }^{n} P_{r}}{{ }^{n} C_{r}} & =\frac{n!}{(n-r)!} \times \frac{(n-r)!r!}{n!} \\ \frac{{ }^{n} P_{r}}{{ }^{n} C_{r}} & =r! \end{aligned}$	1 Mark
9	A $\begin{aligned} & \cos 2 x=p \\ & 2 x=2 n \pi \pm \cos ^{-1} p \\ & x=n \pi \pm \frac{1}{2} \cos ^{-1} p \end{aligned}$	1 Mark
10	D When $t=0, x=7$ Only B or D are possible. $\begin{aligned} & \operatorname{In} \mathrm{D} \\ & x=3+4 e^{t} \\ & v=\frac{d x}{d t}=4 e^{t} \\ & 4 e^{t}=x-3 \\ & v=x-3 \end{aligned}$	1 Mark

Section 2

Q11 a)	$\begin{aligned} & \frac{4 x}{x+5}<2 \quad x \neq-5 \\ & 4 x(x+5)<2(x+5)^{2} \\ & 4 x(x+5)-2(x+5)^{2}<0 \\ & (x+5)(4 x-2(x+5))<0 \\ & (x+5)(2 x-10)<0 \\ & (x+5)(x-5)<0 \\ & -5<x<5 \end{aligned}$	2 Marks Correct solution 1 Mark Correctly identifies 5 and -5 as important, or equivalent merit
Q11 b)	$\begin{aligned} & x-5 y=0 \\ & y=\frac{1}{5} x \\ & m_{1}=\frac{1}{5} \\ & 2 x+y-3=0 \\ & y=-2 x+3 \\ & m_{2}=-2 \end{aligned} \quad \begin{aligned} & \tan \theta=\left\|\frac{\frac{1}{5}-(-2)}{1+\frac{1}{5} \times(-2)}\right\| \\ & \tan \theta=\frac{11}{3} \\ & \theta=74^{\circ} 44^{\prime} 41.57^{\prime \prime} \\ & \theta=74^{\circ} 45^{\prime} \text { (nearest minute) } \end{aligned}$	2 Marks Correct solution 1 Mark Correctly identifies the gradients of both lines and attempts to substitute into the formula
Q11 c)	$\begin{aligned} & \frac{d}{d x}\left(x \sin ^{-1} x+\sin ^{-1} x\right) \\ & =\frac{d}{d x}\left((x+1) \sin ^{-1} x\right) \\ & =\sin ^{-1} x+\frac{x+1}{\sqrt{1-x^{2}}} \end{aligned}$	2 Marks Correct solution 1 Mark Differentiate $\sin ^{-1} x$ correctly
Q11 d)	$\begin{aligned} & x=5 \cos \theta \\ & \cos \theta=\frac{x}{5} \\ & y=5 \sin \theta \\ & \sin \theta=\frac{y}{5} \\ & \sin ^{2} \theta+\cos ^{2} \theta=1 \\ & \left(\frac{y}{5}\right)^{2}+\left(\frac{x}{5}\right)^{2}=1 \\ & \frac{y^{2}}{25}+\frac{x^{2}}{25}=1 \\ & x^{2}+y^{2}=25 \end{aligned}$	2 Marks Correct solution 1 Mark Makes significant progress to eliminate θ
Q11 e) i)	$\begin{aligned} & \text { Let } t=\tan \frac{\theta}{2} \\ & \frac{\sin \theta}{1-\cos \theta}=\frac{\frac{2 t}{1+t^{2}}}{1-\frac{1-t^{2}}{1+t^{2}}} \\ & \frac{\sin \theta}{1-\cos \theta}=\frac{2 t}{1+t^{2}-\left(1-t^{2}\right)} \\ & \frac{\sin \theta}{1-\cos \theta}=\frac{2 t}{2 t^{2}} \\ & \frac{\sin \theta}{1-\cos \theta}==\frac{1}{t} \end{aligned}$	2 Marks Correct solution 1 Mark Correct substitution of t formula

	$\begin{aligned} & \frac{\sin \theta}{1-\cos \theta}=\frac{1}{\tan \left(\frac{\theta}{2}\right)} \\ & \frac{\sin \theta}{1-\cos \theta}=\cot \left(\frac{\theta}{2}\right) \end{aligned}$	
Q11 e) ii)	$\begin{aligned} & \frac{\pi}{2}<\theta<\pi \\ & \sin \theta=\frac{5}{6} \\ & \cos \theta=-\frac{\sqrt{11}}{6} \\ & \frac{\pi}{4}<\frac{\theta}{2}<\frac{\pi}{2} \\ & \cot \left(\frac{\theta}{2}\right)=\frac{\sin \theta}{1-\cos \theta} \\ & \cot \left(\frac{\theta}{2}\right)=\frac{\frac{5}{6}}{1-\left(-\frac{\sqrt{11}}{6}\right)} \\ & \cot \left(\frac{\theta}{2}\right)=\frac{\frac{5}{6}}{\frac{6+\sqrt{11}}{6}} \\ & \cot \left(\frac{\theta}{2}\right)=\frac{5}{6+\sqrt{11}} \end{aligned}$	2 Marks Correct solution 1 Mark Find the correct exact value of $\cos \theta$
Q11 f)	$\begin{aligned} & I=\int_{\ln \frac{1}{2} \frac{\sqrt{3}}{2}}^{1+4 e^{2 x}} d x \\ & \operatorname{Let} u=2 e^{x} \\ & d u=2 e^{x} d x \\ & x=\ln \frac{\sqrt{3}}{2}, u=\sqrt{3} \\ & x=\ln \frac{1}{2}, u=1 \\ & I=\frac{1}{2} \int_{\ln \frac{1}{2}}^{\ln \frac{\sqrt{3}}{2}} \frac{2 e^{x}}{1+\left(2 e^{x}\right)^{2}} d x \\ & I=\frac{1}{2} \int_{1}^{\sqrt{3}} \frac{d u}{1+u^{2}} \\ & I=\frac{1}{2}\left[\tan ^{-1}(u)\right]_{1}^{\sqrt{3}} \\ & I=\frac{1}{2}\left[\tan ^{-1} \sqrt{3}-\tan ^{-1} 1\right] \\ & I=\frac{1}{2}\left(\frac{\pi}{3}-\frac{\pi}{4}\right) \\ & I=\frac{\pi}{24} \end{aligned}$	3 Marks Correct solution 2 Marks Correct primitive function 1 Mark Obtains $d u=2 e^{x} d x$ and correct boundary values in terms of u rather than x
Q12 a) i)	$\begin{aligned} & f(x)=\log _{e}(2 x-1)+x^{3}+1 \\ & f(0.6)=\log _{e}(2 \times 0.6-1)+0.6^{3}+1=-0.3934 \ldots \\ & f(0.6)<0 \\ & f(0.7)=\log _{e}(2 \times 0.7-1)+0.7^{3}+1=0.4267 \ldots \\ & f(0.7)>0 \end{aligned}$ Since there is a sign change, and the function is continuous for $0.6 \leq x \leq 0.7$, therefore there exist a root between 0.6 and 0.7 .	1 Mark Correction solution

Q12 a) ii)	$\begin{aligned} & f(x)=\log _{e}(2 x-1)+x^{3}+1 \\ & f(0.6)=\log _{e}(2 \times 0.6-1)+0.6^{3}+1 \\ & f^{\prime}(x)=\frac{2}{2 x-1}+3 x^{2} \\ & f^{\prime}(0.6)=\frac{2}{2 \times 0.6-1}+3 \times 0.6^{2} \\ & x=0.6-\frac{f(0.6)}{f^{\prime}(0.6)} \\ & x=0.6-\frac{\log _{e}(2 \times 0.6-1)+0.6^{3}+1}{2} \\ & x=0.6355 \ldots \\ & x=0.636(3 \text { significant figures }) \end{aligned}$	2 Marks Correct solution 1 Mark Correct differentiation of $f(x)$ and substitution of 0.6
Q12 b) i)	$\begin{aligned} & 3 x^{3}-7 x-2=0 \\ & \alpha+\beta+\gamma=0 \\ & \alpha \beta+\alpha \gamma+\beta \gamma=-\frac{7}{3} \\ & \alpha \beta \gamma=\frac{2}{3} \\ & \frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}=\frac{\beta \gamma+\alpha \gamma+\alpha \beta}{\alpha \beta \gamma} \\ & \frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}=\frac{-\frac{7}{3}}{\frac{2}{3}} \\ & \frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}=-\frac{7}{2} \end{aligned}$	2 Marks Correct solution 1 Mark Obtains correct sum and product of roots
Q12 b) ii)	$\begin{aligned} & \alpha^{2}+\beta^{2}+\gamma^{2}=(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\alpha \gamma+\beta \gamma) \\ & \alpha^{2}+\beta^{2}+\gamma^{2}=0-2 \times-\frac{7}{3} \\ & \alpha^{2}+\beta^{2}+\gamma^{2}=\frac{14}{3} \end{aligned}$	2 Marks Correct solution 1 Mark Correct manipulation of the algebraic expression
Q12 c) i)	Choosing 2 men from 11 men and 2 women from 9 women ${ }^{11} C_{2} \times{ }^{9} C_{2}=1980$	1 Mark Correct solution
Q12 c) ii)	2 member has already been set, so only choosing 2 people from the left over 18 people. ${ }^{18} C_{2}=153$	1 Mark Correct solution
Q12 d)	$\begin{aligned} & \left(x^{5}-\frac{3}{x}\right)^{16}=\sum_{k=0}^{16}{ }^{16} C_{k}\left(x^{5}\right)^{16-k}\left(-3 x^{-1}\right)^{k} \\ & \left(x^{5}-\frac{3}{x}\right)^{16}=\sum_{k=0}^{16}{ }^{16} C_{k} x^{80-5 k}(-3)^{k} x^{-k} \\ & \left(x^{5}-\frac{3}{x}\right)^{16}=\sum_{k=0}^{16}{ }^{16} C_{k}(-3)^{k} x^{80-6 k} \end{aligned}$ Constant term in the expansion of: $\frac{1}{x^{2}}\left(x^{5}-\frac{3}{x}\right)^{16} \rightarrow x^{-2} \times x^{80-6 k}=x^{0}$	3 Marks Correct solution 2 Marks Attempts to solve k by matching up the correct terms in the expansion 1 Mark Obtains the correct expression for the binomial expansion

	$\begin{array}{\|l} \hline-6 k=-78 \\ k=13 \\ \text { Constant term is }{ }^{16} C_{13}(-3)^{13} \end{array}$	
Q12 e) i)	$\begin{aligned} & T=B+A e^{-k t} \\ & t=0, B=25, T=96 \\ & 96=25+A e^{0} \\ & A=71 \\ & t=3, B=25, T=88 \\ & 88=25+71 e^{-k \times 3} \\ & \frac{63}{71}=e^{-3 k} \\ & \ln \frac{63}{71}=\ln e^{-3 k} \\ & -3 k=\ln \frac{63}{71} \\ & k=-\frac{1}{3} \ln \frac{63}{71} \end{aligned}$	2 Marks Correct solution 1 Mark Obtains the correct value for A or k
Q12 e) ii)	$\begin{aligned} & \text { Further } 10 \text { minutes } t=3+10=13 \\ & T=25+71 e^{-\left(-\frac{1}{3} \ln \frac{63}{71}\right) \times 13} \\ & T=67.29 \ldots \\ & T=67^{\circ} \mathrm{C} \text { (nearest degree) } \end{aligned}$	1 Mark Correct solution
Q13 a) i)	$\begin{aligned} & \frac{d^{2} x}{d t^{2}}=-\frac{98}{x^{2}}=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) \\ & \frac{1}{2} v^{2}=\int-98 x^{-2} d x \\ & \frac{1}{2} v^{2}=\frac{-98 x^{-1}}{-1}+C \\ & v^{2}=\frac{196}{x}+C \\ & x=4, v=7 \\ & 7^{2}=\frac{196}{4}+C \\ & C=0 \\ & v^{2}=\frac{196}{x} \\ & \therefore v=\frac{14}{\sqrt{x}} \quad(v>0) \end{aligned}$	3 Marks Correct solution 2 Marks Correct integral for $\frac{1}{2} v^{2}$ and attempt to find C 1 Mark Express $\frac{1}{2} v^{2}=\int-98 x^{-2} d x$
Q13 a) ii)	$\begin{aligned} & v=\frac{d x}{d t}=\frac{14}{\sqrt{x}} \\ & \frac{d x}{d t}=\frac{14}{x^{\frac{1}{2}}} \\ & \frac{d t}{d x}=\frac{x^{\frac{1}{2}}}{14} \\ & t=\frac{1}{14} \int x^{\frac{1}{2}} d x \\ & t=\frac{1}{14} \times \frac{x^{\frac{3}{2}}}{\frac{3}{2}} d x \\ & t=\frac{1}{21} x^{\frac{3}{2}}+C \end{aligned}$	2 Marks Correct solution 1 Mark Correct expression for t and attempt to find C

	$\begin{aligned} & t=0, x=4 \\ & 0=\frac{1}{21} \times 4^{\frac{3}{2}}+C \\ & C=-\frac{8}{21} \\ & \therefore t=\frac{1}{21} x^{\frac{3}{2}}-\frac{8}{21} \end{aligned}$	
Q13 a) iii)	$\begin{aligned} & x=121 \\ & t=\frac{1}{21} \times 121^{\frac{3}{2}}-\frac{8}{21} \\ & t=63 \text { seconds } \end{aligned}$ \therefore It took 63 seconds for the particle to reach a point 121 metres to the right of the origin.	1 Mark Correct solution
Q13 a) iv)	$\begin{aligned} & t=15 \\ & 15=\frac{1}{21} x^{\frac{3}{2}}-\frac{8}{21} \\ & 15+\frac{8}{21}=\frac{1}{21} x^{\frac{3}{2}} \\ & x^{\frac{3}{2}}=\frac{323}{21} \div \frac{1}{21} \\ & x^{\frac{3}{2}}=323 \\ & x=323^{\frac{2}{3}} \\ & x=47.07 \ldots \\ & x=47 \mathrm{~m} \text { (nearest metre) } \end{aligned}$ \therefore The particle is at 47 metres to the right of the origin after 15 seconds.	1 Mark Correct solution
Q13 b) i)	$\angle A B C=\angle A D E$ (exterior angle of a cyclic quadrilateral is equal to its opposite interior angle)	1 Mark Correct solution
Q13 b) ii)	Let $\angle A B C=\theta$ $\triangle A B C$ is an isosceles triangle ($A B=A C$) $\angle A B C=\angle A C B=\theta$ (Equal base angles of isosceles $\triangle A B C$) $\angle A C B=\angle A D B=\theta$ (Angles in the same segment) $\angle A B C=\angle A D E$ (shown in the previous part) $\angle A D B=\angle A D E=\theta$ $\therefore A D$ bisects $\angle B D E$.	2 Marks Correct solution 1 Mark Identify $\angle A C B=\angle A D B$ and provided correct reasoning

Q13 c) i)	$1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{1}{6} n(n+1)(2 n+1)$ 1. Prove statement is true for $n=1$. $\begin{aligned} & L H S=1^{2} \\ & L H S=1 \\ & R H S=\frac{1}{6} \times 1 \times(1+1) \times(2 \times 1+1) \\ & R H S=\frac{1}{6} \times 2 \times 3 \\ & R H S=1 \\ & L H S=R H S \end{aligned}$ \therefore Statement is true for $n=1$ 2. Assume statement is true for $n=k$ (k some positive integer) $\text { i.e. } 1^{2}+2^{2}+3^{2}+\cdots+k^{2}=\frac{1}{6} k(k+1)(2 k+1)$ 3. Prove statement is true for $n=k+1$ $\begin{aligned} & \text { i.e. } 1^{2}+2^{2}+3^{2}+\cdots+k^{2}+(k+1)^{2}=\frac{1}{6}(k+1)(k+2)(2 k+3) \\ & \text { LHS }=1^{2}+2^{2}+3^{2}+\cdots+k^{2}+(k+1)^{2} \\ & \text { LHS }=\frac{1}{6} k(k+1)(2 k+1)+(k+1)^{2} \\ & \text { LHS }=\frac{1}{6}(k+1)[k(2 k+1)+6(k+1)] \\ & \text { LHS }=\frac{1}{6}(k+1)\left[2 k^{2}+k+6 k+6\right] \\ & \text { LHS }=\frac{1}{6}(k+1)\left[2 k^{2}+7 k+6\right] \\ & \text { LHS }=\frac{1}{6}(k+1)(k+2)(2 k+3) \\ & \text { LHS }=R H S \end{aligned}$ \therefore Statement is true by mathematical induction for all integers $n \geq 1$.	3 Marks Correct solution 2 Marks Makes significant progress in proving the statement involving $n=k+1$ 1 Mark Establishes result for $n=1$
Q13 c) ii)	$\begin{aligned} & 2^{2}+4^{2}+6^{2}+\cdots+100^{2} \\ & =2^{2}\left(1^{2}+2^{2}+3^{2}+\cdots+50^{2}\right) \\ & =4 \times \frac{1}{6} \times 50 \times(50+1)(2 \times 50+1) \\ & =171700 \end{aligned}$	1 Mark Correct solution
Q13 c) iii)	$\begin{aligned} & 1^{2}+3^{2}+5^{2}+\cdots+99^{2} \\ & =\left(1^{2}+2^{2}+3^{2}+\cdots \cdot+99^{2}+100^{2}\right)-\left(2^{2}+4^{2}+6^{2}+\cdots+100^{2}\right) \\ & =\frac{1}{6} \times 100 \times(100+1) \times(2 \times 100+1)-171700 \\ & =166650 \end{aligned}$	1 Mark Correct solution
Q14 a) i)	$\begin{aligned} & \tan \theta=\frac{h}{100} \\ & \sec ^{2} \theta d \theta=\frac{1}{100} d h \\ & \frac{d \theta}{d h}=\frac{1}{100 \sec ^{2} \theta} \\ & \frac{d \theta}{d h}=\frac{\cos ^{2} \theta}{100} \end{aligned}$	2 Marks Correct solution 1 Mark Obtains the correct expression of $\frac{d \theta}{d h}$ in terms of θ

	Or $\begin{aligned} & \theta=\tan ^{-1} \frac{h}{100} \\ & \frac{d \theta}{d h}=\frac{100}{100^{2}+h^{2}} \\ & \frac{d \theta}{d h}=\frac{100}{100^{2}+100^{2} \tan ^{2} \theta} \\ & \frac{d \theta}{d h}=\frac{100}{100^{2}\left(1+\tan ^{2} \theta\right)} \\ & \frac{d \theta}{d h}=\frac{1}{100 \sec ^{2} \theta} \\ & \frac{d \theta}{d h}=\frac{\cos ^{2} \theta}{100} \\ & \frac{d \theta}{d t}=\frac{d \theta}{d h} \times \frac{d h}{d t} \\ & \frac{d \theta}{d t}=\frac{\cos ^{2} \theta}{100} \times 6.5 \\ & \frac{d \theta}{d t}=\frac{13 \cos ^{2} \theta}{200} \end{aligned}$	
Q14 a) ii)	$\begin{aligned} & \text { When } h=40 \\ & \tan \theta=\frac{40}{100} \\ & \sqrt{40^{2}+100^{2}} \\ & =\sqrt{11600} \\ & =20 \sqrt{29} \\ & \cos \theta=\frac{100}{20 \sqrt{29}} \\ & \cos ^{2} \theta=\frac{10000}{11600} \\ & \cos ^{2} \theta=\frac{25}{29} \\ & \frac{d \theta}{d t}=\frac{13 \cos ^{2} \theta}{200} \\ & \frac{d \theta}{d t}=\frac{13}{200} \times \frac{25}{29} \\ & \frac{d \theta}{d t}=\frac{13}{232} \mathrm{rad} / \mathrm{s} \end{aligned}$	2 Marks Correct solution 1 Mark Obtains the correct value for $\cos ^{2} \theta$
Q14 b) i)	$\begin{aligned} & \text { At } R, x=0 \\ & x+p y=a p^{3}+2 a p \\ & p y=a p^{3}+2 a p \\ & y=a p^{2}+2 a \\ & \therefore R\left(0, a p^{2}+2 a\right) \end{aligned}$	1 Mark Correct solution
Q14 b) ii)	$\begin{aligned} & m_{S N}=m_{T}(\text { gradient of the tangent at } P) \\ & x^{2}=4 a y \\ & y=\frac{x^{2}}{4 a} \\ & \frac{d y}{d x}=\frac{2 x}{4 a} \\ & \frac{d y}{d x}=\frac{x}{2 a} \\ & m_{T}=\frac{2 a p}{2 a} \\ & m_{T}=p \\ & \hline \end{aligned}$	2 Marks Correct solution 1 Mark Obtains the correct equation of $S N$

	Equation of $S N$ $\begin{aligned} & y-a=p(x-0) \\ & y=p x+a \end{aligned}$ $\begin{aligned} & \text { Sub into } x+p y=a p^{3}+2 a p \text { to find } N \\ & x+p(p x+a)=a p^{3}+2 a p \\ & x+p^{2} x+a p=a p^{3}+2 a p \\ & x\left(1+p^{2}\right)=a p^{3}+a p \\ & x=\frac{a p\left(p^{2}+1\right)}{p^{2}+1} \\ & x=a p \\ & y=p \times a p+a \\ & y=a p^{2}+a \\ & \therefore N\left(a p, a p^{2}+a\right) \end{aligned}$	
Q14 b) iii)	$\begin{aligned} & N\left(a p, a p^{2}+a\right) \\ & x=a p \\ & p=\frac{x}{a} \\ & y=a p^{2}+a \\ & y=a \times\left(\frac{x}{a}\right)^{2}+a \\ & y=\frac{x^{2}}{a}+a \\ & a y=x^{2}+a^{2} \\ & x^{2}=a y-a^{2} \\ & x^{2}=a(y-a) \end{aligned}$ \therefore Locus of N is another parabola with vertex $(0, a)$, the focal length is $\frac{a}{4}$, focus $\left(0, \frac{5 a}{4}\right)$	2 Marks Correct solution 1 Mark Obtains the locus of N
Q14 c) i)	$\begin{align*} & x=V t \cos \theta \ldots \ldots(1) \tag{1}\\ & y=-\frac{1}{2} g t^{2}+V t \sin \theta \ldots \ldots \end{align*}$ From (1) $t=\frac{x}{V \cos \theta}$ Substitute into (2) $\begin{aligned} & y=-\frac{1}{2} g\left(\frac{x}{V \cos \theta}\right)^{2}+V\left(\frac{x}{V \cos \theta}\right) \sin \theta \\ & y=-\frac{g x^{2}}{2 V^{2} \cos ^{2} \theta}+\frac{x \sin \theta}{\cos \theta} \\ & y=-\frac{g x^{2} \sec ^{2} \theta}{2 V^{2}}+x \tan \theta \\ & y=-\frac{2 g x^{2} \sec ^{2} \theta}{4 V^{2}}+x \tan \theta \\ & y=\frac{2 g}{V^{2}} \times-\frac{x^{2} \sec ^{2} \theta}{4}+x \tan \theta \\ & y=\frac{1}{h} \times-\frac{x^{2} \sec ^{2} \theta}{4}+x \tan \theta \quad\left(\frac{V^{2}}{2 g}=h\right) \\ & y=-\frac{x^{2}\left(1+\tan ^{2} \theta\right)}{4 h}+x \tan \theta \quad\left(\sec ^{2} \theta=1+\tan ^{2} \theta\right) \\ & y=x \tan \theta-\frac{1}{4 h} x^{2}\left(1+\tan ^{2} \theta\right) \end{aligned}$	2 Marks Correct solution 1 Mark Substitute $t=\frac{x}{V \cos \theta}$ into y and attempts to simplify

Q14 c) ii)	$\begin{aligned} & y=x \tan \theta-\frac{1}{4 h} x^{2}\left(1+\tan ^{2} \theta\right) \\ & 4 h y=4 h x \tan \theta-x^{2}\left(1+\tan ^{2} \theta\right) \\ & 4 h y=4 h x \tan \theta-x^{2}-x^{2} \tan ^{2} \theta \\ & x^{2} \tan ^{2} \theta-4 h x \tan \theta+x^{2}+4 h y=0 \end{aligned}$ Substitute (X, Y) into the above: $X^{2} \tan ^{2} \theta-4 h X \tan \theta+X^{2}+4 h Y=0$ This quadratic equation in $\tan \theta$ has two distinct roots if $\Delta>0$. $\begin{aligned} & (-4 h X)^{2}-4 X^{2}\left(X^{2}+4 h Y\right)>0 \\ & 16 h^{2} X^{2}-4 X^{4}-16 h X^{2} Y>0 \\ & 4 h^{2}-X^{2}-4 h Y>0 \quad\left(\text { since } X^{2}>0\right) \\ & 4 h^{2}-4 h Y>X^{2} \\ & X^{2}<4 h^{2}-4 h Y \\ & X^{2}<4 h(h-Y) \end{aligned}$ If $X^{2}<4 h(h-Y)$, there are two solutions, $\tan \theta_{1}$ and $\tan \theta_{2}$, for the equation, two differeng angles, θ_{1} and θ_{2} can be used to hit the point (X, Y).	2 Marks Correct solution 1 Mark Substitute (X, Y) and forms quadratic equation in $\tan \theta$
Q14 c) iii)	Let $\tan \theta_{1}, \tan \theta_{2}$ be roots of $X^{2} \tan ^{2} \theta-4 h X \tan \theta+X^{2}+4 h Y=0$ Product of roots $\begin{aligned} & \tan \theta_{1} \tan \theta_{2}=\frac{X^{2}+4 h Y}{X^{2}} \\ & \tan \theta_{1} \tan \theta_{2}=1+\frac{4 h Y}{X^{2}} \\ & \tan \theta_{1} \tan \theta_{2}>1 \quad\left(X^{2}>0, Y>0\right) \end{aligned}$ If both $0<\theta_{1}<\frac{\pi}{4}$ and $0<\theta_{2}<\frac{\pi}{4}$, then $0<\tan \theta_{1}<1$ and $0<\tan \theta_{2}<1$, so $\tan \theta_{1} \tan \theta_{2}<1$. This contradicts to the product of roots. \therefore No point above the x-axis can be hit from two different angles θ_{1} and θ_{2} satisfying $\theta_{1}<\frac{\pi}{4}$ and $\theta_{2}<\frac{\pi}{4}$.	2 Marks Correct solution 1 Mark Obtains the expression $\tan \theta_{1} \tan \theta_{2}>1$ from the product of roots

