

Blacktown Boys' High School

2018

HSC Trial Examination

Mathematics Extension 1

General Instructions	 Reading time – 5 minutes Working time – 2 hours Write using black pen NESA approved calculators may be used A reference sheet is provided for this paper All diagrams are not drawn to scale In Questions 11 – 14, show relevant mathematical reasoning and/or calculations
Total marks: 70	 Section I – 10 marks (pages 3 – 6) Attempt Questions 1 – 10 Allow about 15 minutes for this section Section II – 60 marks (pages 7 – 11) Attempt Questions 11 – 14 Allow about 1 hour and 45 minutes for this section
Assessor: X. Chirg	win
Student Name	:
Teacher Name	e:

Students are advised that this is a trial examination only and cannot in any way guarantee the content or format of the 2018 Higher School Certificate Examination.

Section I

10 marks Attempt Questions 1–10

Use the multiple choice answer sheet provided on page 13 for Questions 1–10.

1 Which of the following is an expression for $\int \sin^2 8x \, dx$? A. $\frac{1}{2}x + \frac{1}{32}\sin 16x + C$ B. $\frac{1}{2}x - \frac{1}{32}\sin 16x + C$ C. $\frac{1}{2}x + \frac{1}{16}\sin 8x + C$ D. $\frac{1}{2}x - \frac{1}{16}\sin 8x + C$

2 Given that
$$f(x) = \frac{5}{x+2} + 3$$
.

The equations of the asymptotes of the graph of the inverse function $f^{-1}(x)$ are:

- A. x = -2 and y = 3
- B. x = -2 and y = -3
- C. x = 3 and y = -2
- D. x = -3 and y = -2

3 Which of the following is the range of the function $y = \frac{1}{2}\cos^{-1}x - \frac{\pi}{2}$?

- A. $0 \le y \le \frac{\pi}{2}$
- B. $0 \le y \le \pi$
- C. $-\frac{\pi}{2} \le y \le 0$
- D. $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$
- 4 How many arrangements in a row of the letters of the word AMPLITUDE are possible if all the vowels are together in any order?
 - A. $6! \times 4!$
 - B. 5! × 4!
 - C. 9!
 - D. 4!

5 In what ratio does the point R(8, -1) divides the interval AB, where A and B are (-4, 3) and (5, 0) respectively?

- A. -1:4
- B. -4:1
- C. 4:1
- D. 1:4

- 6 The displacement x of a particle at time t is given by $x = 6 \sin 5t + 8 \cos 5t$. What is the greatest speed of the particle?
 - A. 70
 - B. 50
 - C. 30
 - D. 10

7 In the diagram, AC is a tangent to the circle at the point P, AB is a tangent to the circle at the point Q, and BC is a tangent to the circle at the point R. Find the exact length of BC if $CP = 3 \ cm$ and $AP = 6 \ cm$.

- A. 6 *cm*
- B. 9 *cm*
- C. 12 cm
- D. 15 *cm*

Which	expression is equal to	$\frac{{}^{n}P_{r}}{{}^{n}C_{r}}?$
A.	$\frac{n!}{(n-r)!}$	
B.	$\frac{n!}{r!}$	
C.	$\frac{1}{r!}$	
D.	<i>r</i> !	

8

Let $|p| \le 1$, what is the general solution of $\cos 2x = p$?

A.
$$x = n\pi \pm \frac{\cos^{-1}p}{2}$$
, *n* is an integer

B.
$$x = n\pi \pm \cos^{-1}\frac{p}{2}$$
, *n* is an integer

C.
$$x = 2n\pi \pm \cos^{-1}\frac{p}{2}$$
, *n* is an integer

D.
$$x = \frac{n\pi + (-1)^n \cos^{-1} p}{2}$$
, *n* is an integer

10 The velocity $v ms^{-1}$ of a particle moving in a straight line is governed by the equation v = x - 3, where x is its displacement. Initially, the particle was at x = 7 cm. What is the displacement function of this particle?

A.
$$x = 7 + e^t$$

B.
$$x = 7e^t$$

C. $x = 3 + e^t$

D.
$$x = 3 + 4e^t$$

End of Section I

Section II

60 Marks Attempt Questions 11–14

Answer each question on a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11–14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.

a) Solve
$$\frac{4x}{x+5} < 2$$
.

b) Find the acute angle between the lines x - 5y = 0 and 2x + y - 3 = 0. 2 Leave your answer to the nearest minute.

c) Find
$$\frac{d}{dx}(x \sin^{-1} x + \sin^{-1} x)$$
 2

d) The variable point $(5\cos\theta, 5\sin\theta)$ lies on a curve. Find the Cartesian 2 equation of this curve.

e) i) Prove that
$$\cot\left(\frac{\theta}{2}\right) = \frac{\sin\theta}{1-\cos\theta}$$
. 2

ii) Hence find the exact value of $\cot\left(\frac{\theta}{2}\right)$ given that $\sin\theta = \frac{5}{6}$ and 2 $\frac{\pi}{2} < \theta < \pi$.

f) Use the substitution
$$u = 2e^x$$
 to show that $\int_{\ln\frac{1}{2}}^{\ln\frac{\sqrt{3}}{2}} \frac{e^x}{1+4e^{2x}} dx = \frac{\pi}{24}$. 3

End of Questions 11

Question 12 (15 marks) Use a SEPARATE writing booklet.

a) Consider the function $f(x) = \log_e(2x - 1) + x^3 + 1$.

- i) Show that a root exists between x = 0.6 and x = 0.7.
- ii) Use one application of Newton's method, starting at x = 0.6, to find 2 another approximation of this root correct to 3 significant figures.
- b) The equation $3x^3 7x 2 = 0$ has roots α , β and γ . Find the value of:

i)
$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$$
 2

ii)
$$\alpha^2 + \beta^2 + \gamma^2$$
 2

- c) A Mathematics club consists of 20 members, of which there are 11 men and 9 women. A committee of four people is to be chosen randomly.
 - i) How many committees can there be if there is to be equal numbers **1** of men and women on the committee?
 - ii) How many committees can there be if, regardless of their gender, 1 the four-member committee must contain the eldest and youngest member of the club?

d) Find an expression for the constant term in the expansion of
$$\frac{1}{x^2} \left(x^5 - \frac{3}{x}\right)^{16}$$
. 3

e) Newton's law of cooling states that the rate of cooling of a body is proportional to the excess of the temperature of a body above the surrounding temperature.

The temperature of a bowl of soup satisfies an equation of the form $T = B + Ae^{-kt}$ where T is the temperature of the soup, t is time in minutes, A and k are constants, and B is the temperature of the surroundings. The bowl of soup cools from 96°C to 88°C in 3 minutes in a room of temperature 25°C.

i) Find the exact values of A and k.

2

ii) Find the temperature of the bowl of soup, to the nearest degree, after **1** a further 10 minutes have passed.

End of Questions 12

Question 13 (15 marks) Use a SEPARATE writing booklet.

a) The acceleration of a particle moving in a straight line is given by

$$\frac{d^2x}{dt^2} = -\frac{98}{x^2}$$

when x metres is the displacement from the origin after t seconds. When t = 0, the particle is 4 metres to the right of the origin with a velocity of 7 metres per second.

You may use the result $\frac{d^2x}{dt^2} = \frac{d}{dx} \left(\frac{1}{2}v^2\right)$.

answer to the nearest metre.

i)	Show that the velocity, v , of the particle, in terms of x , is $v = \frac{14}{\sqrt{x}}$.	3
ii)	Find an expression for t in terms of x .	2
iii)	How many seconds does it take for the particle to reach a point 121	1

- metres to the right of the origin?iv) Find the displacement of the particle after 15 seconds. Round your 1
- b) ABCD is a cyclic quadrilateral in which AB = AC, and CD is produced to E.

Copy or trace the diagram into your writing booklet.

- i) Explain why $\angle ABC = \angle ADE$. 1
- ii) Hence or otherwise, prove that AD bisects $\angle BDE$. 2

Question 13 continues on page 10

Question 13 (continued)

c) i) Prove by mathematical induction that for all integers $n \ge 1$, 3 $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{1}{6}n(n+1)(2n+1)$. ii) Use this result to show that $2^2 + 4^2 + 6^2 + \dots + 100^2 = 171700$. 1

iii) Hence evaluate $1^2 + 3^2 + 5^2 + \dots + 99^2$. 1

End of Questions 13

Question 14 (15 marks) Use a SEPARATE writing booklet.

- a) A man standing 100 metres from the base of a high-rise building observes an external lift moving up the outside wall of the building at a constant rate of 6.5 metres per second.
 - i) If θ radians is the angle of elevation of the lift from the observer,

2

show that
$$\frac{d\theta}{dt} = \frac{13\cos^2\theta}{200}$$

- ii) Evaluate $\frac{d\theta}{dt}$ at the instant when the lift is 40 metres above the **2** observer's horizontal line of vision.
- b) The point $P(2ap, ap^2)$ lies on the parabola $x^2 = 4ay$. S(0, a) is the focus of the parabola. The normal to the parabola at *P* meets the *y*-axis at *R*.
 - i) Given that the equation of the normal at *P* is $x + py = ap^3 + 2ap$ 1 (DO NOT PROVE THIS). Find the coordinates of *R*.
 - ii) N lies on PR so that $SN \perp PR$. Find the coordinates of N. 2
 - iii) Show that, as P moves along the parabola, the locus of N is another 2 parabola. Find the vertex and focus of this parabola.

c) A projectile is fired from the origin 0 with velocity V and with angle of elevation θ , where $\theta \neq \frac{\pi}{2}$. You may assume that

$$x = Vt \cos \theta$$
 and $y = -\frac{1}{2}gt^2 + Vt \sin \theta$

where x and y are the horizontal and vertical displacements of the projectile in metres from 0 at time t seconds after firing.

i) Show that the equation of flight of the projectile can be written as 2

$$y = x \tan \theta - \frac{1}{4h} x^2 (1 + \tan^2 \theta)$$
, where $h = \frac{V^2}{2g}$.

- ii) Show that the point (X, Y), where $X \neq 0$, can be hit by firing at two different angles θ_1 and θ_2 provided $X^2 < 4h(h Y)$.
- iii) Show that no point above the *x*-axis can be hit by firing at two **2** different angles θ_1 and θ_2 , satisfying $\theta_1 < \frac{\pi}{4}$ and $\theta_2 < \frac{\pi}{4}$.

End of Paper

2018 Mathematics Extension 1 Trial Solutions

Section 1		
1	$B = \int \sin^2 8x dx$ = $\int \frac{1}{2} (1 - \cos 16x) dx$ = $\frac{1}{2} \left(x - \frac{1}{16} \sin 16x \right) + C$ = $\frac{1}{2} x - \frac{1}{32} \sin 16x + C$	1 Mark
2	C $f(x) = \frac{5}{x+2} + 3$ Asymptotes of $f(x)$ are $x = -2$ and $y = 3$ Asymptotes of $f^{-1}(x)$ are $x = 3$ and $y = -2$	1 Mark
3	C $y = \frac{1}{2}\cos^{-1}x - \frac{\pi}{2}$ Range for: $y = \cos^{-1}x \rightarrow 0 \le y \le \pi$ $y = \frac{1}{2}\cos^{-1}x \rightarrow 0 \le y \le \frac{\pi}{2}$ $y = \frac{1}{2}\cos^{-1}x - \frac{\pi}{2} \rightarrow -\frac{\pi}{2} \le y \le 0$	1 Mark
4	A 4 vowels, A, I, U, E 4! ways of arranging all the vowels 1 group of vowels and 5 other letters 6! × 4!	1 Mark
5	B Let the ratio be $k: 1$ $8 = \frac{5k + (-4) \times 1}{k+1}$ 8k + 8 = 5k - 4 3k = -12 k = -4 $\therefore -4: 1$	1 Mark
6	B $x = 6 \sin 5t + 8 \cos 5t$ $\dot{x} = 30 \cos 5t - 40 \sin 5t$ Amplitude (greatest speed) = $\sqrt{30^2 + 40^2} = 50$	1 Mark
7	C Let $BR = x \ cm$ $CP = CR = 3 \ cm; \ AP = AQ = 6 \ cm; \ BQ = BR = x \ cm$ (two tangents from an external point have equal lengths) $AC^2 + BC^2 = AB^2$ (Pythagoras' Theorem $(6+3)^2 + (3+x)^2 = (6+x)^2$ $81+9+6x+x^2 = 36+12x+x^2$ 6x = 54 x = 9 $BR = 9 \ cm$ $BC = 3+9 = 12 \ cm$	1 Mark

8	$ \frac{\mathbf{D}}{\frac{nP_{r}}{nC_{r}}} = \frac{n!}{(n-r)!} \div \frac{n!}{(n-r)!r!} \\ \frac{\frac{nP_{r}}{nP_{r}}}{\frac{nP_{r}}{nC_{r}}} = \frac{n!}{(n-r)!} \times \frac{(n-r)!r!}{n!} \\ \frac{\frac{nP_{r}}{nP_{r}}}{\frac{nP_{r}}{nC_{r}}} = r! $	1 Mark
9	A $\cos 2x = p$ $2x = 2n\pi \pm \cos^{-1} p$ $x = n\pi \pm \frac{1}{2} \cos^{-1} p$	1 Mark
10	D When $t = 0, x = 7$ Only B or D are possible. In D, $x = 3 + 4e^{t}$ $v = \frac{dx}{dt} = 4e^{t}$ $4e^{t} = x - 3$ v = x - 3	1 Mark

Section 2		
Q11 a)	$\frac{4x}{x+5} < 2 \qquad x \neq -5$ $4x(x+5) < 2(x+5)^{2}$ $4x(x+5) - 2(x+5)^{2} < 0$ $(x+5)(4x-2(x+5)) < 0$ $(x+5)(2x-10) < 0$ $(x+5)(x-5) < 0$ $-5 < x < 5$	2 Marks Correct solution 1 Mark Correctly identifies 5 and -5 as important, or equivalent merit
Q11 b)	$\begin{aligned} x - 5y &= 0\\ y &= \frac{1}{5}x\\ m_1 &= \frac{1}{5}\\ 2x + y - 3 &= 0\\ y &= -2x + 3\\ m_2 &= -2 \end{aligned}$ $\tan \theta = \left \frac{\frac{1}{5} - (-2)}{1 + \frac{1}{5} \times (-2)} \right \\ \tan \theta &= \frac{11}{3}\\ \theta &= 74^{\circ}44' 41.57''\\ \theta &= 74^{\circ}45' \text{ (nearest minute)} \end{aligned}$	2 Marks Correct solution 1 Mark Correctly identifies the gradients of both lines and attempts to substitute into the formula
Q11 c)	$\frac{d}{dx}(x\sin^{-1}x + \sin^{-1}x) = \frac{d}{dx}((x+1)\sin^{-1}x) = \sin^{-1}x + \frac{x+1}{\sqrt{1-x^2}}$	2 Marks Correct solution 1 Mark Differentiate $\sin^{-1} x$ correctly
Q11 d)	$x = 5\cos\theta$ $\cos\theta = \frac{x}{5}$ $y = 5\sin\theta$ $\sin\theta = \frac{y}{5}$ $\sin^{2}\theta + \cos^{2}\theta = 1$ $\left(\frac{y}{5}\right)^{2} + \left(\frac{x}{5}\right)^{2} = 1$ $\frac{y^{2}}{25} + \frac{x^{2}}{25} = 1$ $x^{2} + y^{2} = 25$	2 Marks Correct solution 1 Mark Makes significant progress to eliminate θ
Q11 e) i)	Let $t = \tan \frac{\theta}{2}$ $\frac{\sin \theta}{1 - \cos \theta} = \frac{\frac{2t}{1 + t^2}}{1 - \frac{1 - t^2}{1 + t^2}}$ $\frac{\sin \theta}{1 - \cos \theta} = \frac{2t}{1 + t^2 - (1 - t^2)}$ $\frac{\sin \theta}{1 - \cos \theta} = \frac{2t}{2t^2}$ $\frac{\sin \theta}{1 - \cos \theta} = = \frac{1}{t}$	2 Marks Correct solution 1 Mark Correct substitution of <i>t</i> formula

	$\sin \theta$ 1	
	$\frac{1}{1-\cos\theta} = \frac{1}{\tan\left(\frac{\theta}{2}\right)}$	
	$\sin\theta$ $\left(\theta\right)$	
	$\frac{1}{1-\cos\theta} = \cot\left(\frac{1}{2}\right)$	
	π	
Q11 e) ii)	$\frac{\pi}{2} < \theta < \pi$	2 Marks
	$\frac{5}{\sin \theta} = \frac{5}{2}$	
	5 m v = 6	1 Mark
	$\cos\theta = -\frac{\sqrt{11}}{6}$	Find the correct exact value of $\cos \theta$
	π_θ_π	
	$\overline{4}$ $\overline{2}$ $\overline{2}$ $\overline{2}$ sin θ	
	$\cot\left(\frac{\theta}{2}\right) = \frac{\sin\theta}{1 - \cos\theta}$	
	$\cot\left(\frac{\theta}{\pi}\right) = \frac{\frac{3}{6}}{\frac{1}{6}}$	
	$1 - \left(-\frac{\sqrt{11}}{6}\right)$	
	$\cot\left(\frac{\theta}{2}\right) = \frac{\frac{3}{6}}{6+\sqrt{11}}$	
	(θ) $\overline{5}$	
	$\cot\left(\frac{\sigma}{2}\right) = \frac{\sigma}{6 + \sqrt{11}}$	
Q11 f)	$d\ln \sqrt{3}$ x	3 Marks
	$I = \int_{1}^{1} \frac{2}{1 + 4e^{2x}} dx$	Correct solution
	$\ln \frac{1}{2} = 2e^x$	2 Marks
	$du = 2e^{x} dx$	Correct primitive
		function
	$x = \ln \frac{\sqrt{3}}{\sqrt{3}}$ $u = \sqrt{3}$	
	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	1 Mark Obtains $du = 2e^{x} dr$
	$x = \ln \frac{1}{2}, u = 1$	and correct boundary
	-	values in terms of u
	$1 \int^{\ln \sqrt{3}} 2e^x$	rather than x
	$I = \frac{1}{2} \int_{\ln \frac{1}{2}} \frac{1}{1 + (2e^x)^2} dx$	
	$1 \int_{-\infty}^{\sqrt{3}} du$	
	$I = \frac{1}{2} \int_{1}^{1} \frac{1}{1+u^2}$	
	$I = \frac{1}{2} [\tan^{-1}(u)]_1^{\sqrt{3}}$	
	$I = \frac{1}{2} [\tan^{-1} \sqrt{3} - \tan^{-1} 1]$	
	$I = \frac{1}{2} \left(\frac{\pi}{2} - \frac{\pi}{2} \right)$	
	$1 - \frac{1}{2} \left(\frac{3}{3} - \frac{1}{4} \right)$	
	$I = \frac{1}{24}$	
012 -1 11	$C(x) = \frac{1}{2} + \frac{3}{2} + \frac{1}{2}$	
Q12 a) i)	$f(x) = \log_e(2x - 1) + x^3 + 1$ $f(0.6) = \log_e(2 \times 0.6 - 1) + 0.6^3 + 1 = -0.3934$	1 Mark Correction solution
	f(0.6) < 0	
	$f(0.7) = \log_e(2 \times 0.7 - 1) + 0.7^3 + 1 = 0.4267 \dots$	
	f(0.7) > 0 Since there is a sign change, and the function is continuous for	
	Since there is a sign change, and the function is continuous for $0.6 < x < 0.7$, therefore there exist a root between 0.6 and 0.7	

Q12 a) ii)	$f(x) = \log_e(2x - 1) + x^3 + 1$ $f(0.6) = \log_e(2 \times 0.6 - 1) + 0.6^3 + 1$	2 Marks Correct solution
	$f'(x) = \frac{2}{2x - 1} + 3x^2$ $f'(0.6) = \frac{2}{2 \times 0.6 - 1} + 3 \times 0.6^2$	1 Mark Correct differentiation of $f(x)$ and substitution
	$x = 0.6 - \frac{f(0.6)}{f'(0.6)}$ $x = 0.6 - \frac{\log_e(2 \times 0.6 - 1) + 0.6^3 + 1}{2}$	
	$\frac{2}{2 \times 0.6 - 1} + 3 \times 0.6^{2}$ x = 0.6355 x = 0.636 (3 significant figures)	
Q12 b) i)	$3x^{3} - 7x - 2 = 0$ $\alpha + \beta + \gamma = 0$	2 Marks Correct solution
	$\alpha\beta + \alpha\gamma + \beta\gamma = -\frac{7}{2}$	1 Mark
	$\alpha\beta\gamma = \frac{2}{3}$	Obtains correct sum and product of roots
	$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\beta\gamma + \alpha\gamma + \alpha\beta}{\frac{\gamma}{\gamma}}$	
	$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{-\frac{7}{3}}{\frac{2}{3}}$	
	$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = -\frac{7}{2}$	
Q12 b) ii)	$\alpha^{2} + \beta^{2} + \gamma^{2} = (\alpha + \beta + \gamma)^{2} - 2(\alpha\beta + \alpha\gamma + \beta\gamma)$ $\alpha^{2} + \beta^{2} + \gamma^{2} = 0 - 2 \times -\frac{7}{2}$	2 Marks Correct solution
	$\alpha^2 + \beta^2 + \gamma^2 = \frac{14}{3}$	1 Mark Correct manipulation of the algebraic expression
Q12 c) i)	Choosing 2 men from 11 men and 2 women from 9 women ${}^{11}C_2 \times {}^9C_2 = 1980$	1 Mark Correct solution
Q12 c) ii)	2 member has already been set, so only choosing 2 people from the left over 18 people. ${}^{18}C_2 = 153$	1 Mark Correct solution
Q12 d)	$\left(x^{5} - \frac{3}{x}\right)^{16} = \sum_{k=0}^{16} {}^{16}C_{k}(x^{5})^{16-k}(-3x^{-1})^{k}$	3 Marks Correct solution
	$\left(x^{5} - \frac{3}{x}\right)^{16} = \sum_{k=0}^{16} {}^{16}C_{k}x^{80-5k}(-3)^{k}x^{-k}$ $\left(x^{5} - \frac{3}{2}\right)^{16} = \sum_{k=0}^{16} {}^{16}C_{k}(-3)^{k}x^{80-6k}$	2 Marks Attempts to solve k by matching up the correct terms in the expansion
	Constant term in the expansion of:	1 Mark Obtains the correct
	$\frac{1}{x^2} \left(x^5 - \frac{3}{x} \right)^{16} \to x^{-2} \times x^{80-6k} = x^0$	expression for the binomial expansion

	-6k = -78	
	K = 13	
	Constant term is $-c_{13}(-3)^{13}$	
	$\pi \to t - kt$	2.1.1
Q12 e) i)	$T = B + Ae^{-\kappa t}$	2 Marks
		Correct solution
	l = 0, B = 25, I = 96	1 Marile
	$96 = 25 + Ae^{\circ}$	
	A = 71	Obtains the correct
	t = 2 P = 2E T = 90	value for A or K
	1 - 5, b - 25, 1 - 60 $99 - 25 + 71e^{-k \times 3}$	
	63 - 23 + 716	
	$\frac{33}{71} = e^{-3k}$	
	$\ln \frac{1}{71} = \ln e^{-3k}$	
	63	
	$-3\kappa = \ln \frac{1}{71}$	
	$k = -\frac{1}{\ln \frac{63}{2}}$	
	^{<i>k</i>} 3 ^{<i>m</i>} 71	
Q12 e) ii)	Further 10 minutes $t = 3 + 10 = 13$	1 Mark
	$T = 25 + 71e^{-\left(-\frac{1}{3}\ln\frac{35}{71}\right) \times 13}$	Correct solution
	$T = 67.29 \dots$	
	$T = 67^{\circ}C$ (nearest degree)	
Q13 a) i)	$d^{2}x = 98 d (1 + 2)$	3 Marks
	$\left \frac{dt^2}{dt^2} - \frac{dt^2}{dx} - \frac{dt^2}{dx} \left(\frac{dt^2}{2}\right)\right $	Correct solution
	$\left \frac{1}{2}v^2\right = \int -98x^{-2}dx$	
	$\begin{bmatrix} 2 \\ -1 \end{bmatrix}$ for all $\begin{bmatrix} -1 \\ -1 \end{bmatrix}$	2 Marks
	$\frac{1}{2}v^2 = \frac{-98x^{-1}}{-98x^{-1}} + C$	Correct integral for $\frac{1}{2}v^2$
	2° -1	and attempt to find \tilde{C}
	$v^2 = \frac{190}{100} + C$	•
	x = 4 $y = 7$	1 Mark
	196	Express
	$7^2 = \frac{1}{4} + C$	$\frac{1}{2}n^2 - \int -98r^{-2}dr$
	C = 0	$2^{\nu} = \int \int \partial x dx$
	106	
	$v^2 = \frac{150}{r}$	
	$\therefore v = \frac{1}{\sqrt{x}} (v > 0)$	
Q13 a) ii)	dx = 14	2 Marks
	$v = \frac{1}{dt} = \frac{1}{\sqrt{x}}$	Correct solution
	dx 14	
	$\frac{1}{dt} = \frac{1}{\frac{1}{12}}$	1 Mark
	$\begin{array}{c} x_2 \\ 1 \end{array}$	Correct expression for t
	$\frac{dt}{dt} - \frac{x^2}{2}$	and attempt to find C
	dx 14	
	1 (1	
	$t = \frac{1}{14} \int x^{\overline{2}} dx$	
	$\frac{3}{1 r^2}$	
	$t = \frac{1}{14} \times \frac{x^2}{3} dx$	
	$14 \frac{3}{2}$	
	$1 \frac{3}{2}$	
	$t = \frac{1}{21}x^2 + c$	

	t = 0, x = 4 $0 = \frac{1}{21} \times 4^{\frac{3}{2}} + C$ $C = -\frac{8}{21}$	
	$\therefore t = \frac{1}{21}x^{\frac{3}{2}} - \frac{8}{21}$	
Q13 a) iii)	x = 121 $t = \frac{1}{21} \times 121^{\frac{3}{2}} - \frac{8}{21}$ t = 63 seconds $\therefore \text{ It took 63 seconds for the particle to reach a point 121 metres to the right of the origin.}$	1 Mark Correct solution
Q13 a) iv)	t = 15 $15 = \frac{1}{21}x^{\frac{3}{2}} - \frac{8}{21}$ $15 + \frac{8}{21} = \frac{1}{21}x^{\frac{3}{2}}$ $x^{\frac{3}{2}} = \frac{323}{21} \div \frac{1}{21}$ $x^{\frac{3}{2}} = 323$ $x = 323^{\frac{2}{3}}$ $x = 47.07 \dots$ x = 47 m (nearest metre) $\therefore \text{ The particle is at 47 metres to the right of the origin after 15 seconds.}$	1 Mark Correct solution
Q13 b) i)	$\angle ABC = \angle ADE$ (exterior angle of a cyclic quadrilateral is equal to its opposite interior angle)	1 Mark Correct solution
Q13 b) ii)	Let $\angle ABC = \theta$ $\triangle ABC$ is an isosceles triangle ($AB = AC$) $\angle ABC = \angle ACB = \theta$ (Equal base angles of isosceles $\triangle ABC$) $\angle ACB = \angle ADB = \theta$ (Angles in the same segment) $\angle ABC = \angle ADE$ (shown in the previous part) $\angle ADB = \angle ADE = \theta$ $\therefore AD$ bisects $\angle BDE$.	2 Marks Correct solution 1 Mark Identify $\angle ACB = \angle ADB$ and provided correct reasoning

012 -) :)	1	2 Martin
Q13 c) I)	$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{1}{6}n(n+1)(2n+1)$	3 Marks Correct solution
	1. Prove statement is true for $n = 1$. LHS = 1^2 LHS = 1 RHS = $\frac{1}{6} \times 1 \times (1 + 1) \times (2 \times 1 + 1)$	2 Marks Makes significant progress in proving the statement involving n = k + 1
	$RHS = \frac{1}{6} \times 2 \times 3$ RHS = 1 LHS = RHS \therefore Statement is true for $n = 1$	1 Mark Establishes result for n = 1
	2. Assume statement is true for $n = k$ (k some positive integer) i. e . $1^2 + 2^2 + 3^2 + \dots + k^2 = \frac{1}{6}k(k+1)(2k+1)$	
	3. Prove statement is true for $n = k + 1$ i. e. $1^2 + 2^2 + 3^2 + \dots + k^2 + (k+1)^2 = \frac{1}{6}(k+1)(k+2)(2k+3)$	
	$LHS = 1^{2} + 2^{2} + 3^{2} + \dots + k^{2} + (k+1)^{2}$ $LHS = \frac{1}{6}k(k+1)(2k+1) + (k+1)^{2}$	
	$LHS = \frac{1}{6}(k+1)[k(2k+1) + 6(k+1)]$	
	$LHS = \frac{1}{6}(k+1)[2k^2 + k + 6k + 6]$	
	$LHS = \frac{1}{6}(k+1)[2k+7k+6]$ $LHS = \frac{1}{7}(k+1)(k+2)(2k+3)$	
	LHS = RHS	
	\therefore Statement is true by mathematical induction for all integers $n \ge 1$.	
Q13 c) ii)	$2^{2} + 4^{2} + 6^{2} + \dots + 100^{2}$ = 2 ² (1 ² + 2 ² + 3 ² + \dots + 50 ²)	1 Mark Correct solution
	$= 4 \times \frac{1}{6} \times 50 \times (50 + 1)(2 \times 50 + 1)$ = 171700	
Q13 c) iii)	$1^{2} + 3^{2} + 5^{2} + \dots + 99^{2}$ = $(1^{2} + 2^{2} + 3^{2} + \dots + 99^{2} + 100^{2}) - (2^{2} + 4^{2} + 6^{2} + \dots + 100^{2})$ = $\frac{1}{6} \times 100 \times (100 + 1) \times (2 \times 100 + 1) - 171700$ = 166650	1 Mark Correct solution
Q14 a) i)	$\tan \theta = \frac{h}{100}$ $\sec^2 \theta d\theta = \frac{1}{100} dh$ $d\theta = 1$	2 Marks Correct solution 1 Mark Obtains the correct
	$\frac{dh}{d\theta} = \frac{\cos^2 \theta}{100}$ $\frac{d\theta}{dh} = \frac{\cos^2 \theta}{100}$	terms of θ

	Or $\theta = \tan^{-1} \frac{h}{100}$ $\frac{d\theta}{dh} = \frac{100}{100^2 + h^2}$ $\frac{d\theta}{dh} = \frac{100}{100^2 + 100^2 \tan^2 \theta}$ $\frac{d\theta}{dh} = \frac{100}{100^2(1 + \tan^2 \theta)}$ $\frac{d\theta}{dh} = \frac{1}{100 \sec^2 \theta}$ $\frac{d\theta}{dh} = \frac{\cos^2 \theta}{100}$ $\frac{d\theta}{dt} = \frac{d\theta}{dh} \times \frac{dh}{dt}$ $\frac{d\theta}{dt} = \frac{\cos^2 \theta}{100} \times 6.5$ $\frac{d\theta}{dt} = \frac{13 \cos^2 \theta}{200}$	
Q14 a) ii)	When $h = 40$ $\tan \theta = \frac{40}{100}$ $\sqrt{40^2 + 100^2}$ $= \sqrt{11600}$ $= 20\sqrt{29}$ $40 \ m$ $20\sqrt{29} \ m$ $\cos \theta = \frac{100}{20\sqrt{29}}$ $\cos^2 \theta = \frac{10000}{11600}$ $\cos^2 \theta = \frac{25}{29}$ $\frac{d\theta}{dt} = \frac{13 \cos^2 \theta}{200}$ $\frac{d\theta}{dt} = \frac{13}{200} \times \frac{25}{29}$ $\frac{d\theta}{dt} = \frac{13}{232} \ rad/s$	2 Marks Correct solution 1 Mark Obtains the correct value for $\cos^2 \theta$
Q14 b) i)	At $R, x = 0$ $x + py = ap^3 + 2ap$ $py = ap^3 + 2ap$ $y = ap^2 + 2a$ $\therefore R(0, ap^2 + 2a)$	1 Mark Correct solution
Q14 b) ii)	$m_{SN} = m_T \text{ (gradient of the tangent at } P)$ $x^2 = 4ay$ $y = \frac{x^2}{4a}$ $\frac{dy}{dx} = \frac{2x}{4a}$ $\frac{dy}{dx} = \frac{x}{2a}$ $m_T = \frac{2ap}{2a}$ $m_T = p$	2 Marks Correct solution 1 Mark Obtains the correct equation of <i>SN</i>

	Equation of SN y - a = p(x - 0) y = px + a Sub into $x + py = ap^3 + 2ap$ to find N $x + p(px + a) = ap^3 + 2ap$ $x + p^2x + ap = ap^3 + 2ap$ $x(1 + p^2) = ap^3 + ap$ $x = \frac{ap(p^2 + 1)}{p^2 + 1}$ x = ap $y = p \times ap + a$ $y = ap^2 + a$	
	$\therefore N(ap, ap^2 + a)$	
Q14 b) iii)	$N(ap, ap^2 + a)$ x = ap	2 Marks
	$p = \frac{x}{a}$	1 Mark
	$y = ap^2 + a$	Obtains the locus of N
	$y = a \times \left(\frac{x}{a}\right)^2 + a$	
	$y = \frac{x^2}{a} + a$	
	$ay = x^2 + a^2$ $x^2 = ay - a^2$	
	$x^{2} = a(y - a)$: Locus of N is another parabola with vertex (0, a), the focal length is	
	$\frac{a}{4}$, focus $\left(0, \frac{5a}{4}\right)$	
Q14 c) i)	$x = Vt\cos\theta \dots \dots (1)$	2 Marks
	$y = -\frac{1}{2}gt^2 + Vt\sin\theta\dots\dots(2)$	Correct solution
	From (1)	1 Mark
	$t = \frac{x}{V\cos\theta}$	$t = \frac{x}{V \cos \theta}$
	Substitute into (2)	into y and attempts to
	$y = -\frac{1}{2}g\left(\frac{x}{V\cos\theta}\right)^2 + V\left(\frac{x}{V\cos\theta}\right)\sin\theta$	Simplify
	$y = -\frac{gx^2}{2V^2 \cos^2 \theta} + \frac{x \sin \theta}{\cos \theta}$	
	$y = -\frac{gx^2 \sec^2 \theta}{2W^2} + x \tan \theta$	
	$y = -\frac{2gx^2 \sec^2 \theta}{4W^2} + x \tan \theta$	
	$y = \frac{2g}{\pi^2} \times -\frac{x^2 \sec^2 \theta}{x^2 + x \tan \theta} + x \tan \theta$	
	$y = \frac{1}{h} \times -\frac{x^2 \sec^2 \theta}{4} + x \tan \theta \qquad \left(\frac{V^2}{2g} = h\right)$	
	$y = -\frac{x^2(1 + \tan^2 \theta)}{4h} + x \tan \theta \qquad (\sec^2 \theta = 1 + \tan^2 \theta)$	
	$y = x \tan \theta - \frac{1}{4h} x^2 (1 + \tan^2 \theta)$	

Q14 c) ii)	$y = x \tan \theta - \frac{1}{4h} x^2 (1 + \tan^2 \theta)$ $4hy = 4hx \tan \theta - x^2 (1 + \tan^2 \theta)$ $4hy = 4hx \tan \theta - x^2 - x^2 \tan^2 \theta$ $x^2 \tan^2 \theta - 4hx \tan \theta + x^2 + 4hy = 0$	2 Marks Correct solution
	Substitute (X, Y) into the above: $X^{2} \tan^{2} \theta - 4hX \tan \theta + X^{2} + 4hY = 0$ This quadratic equation in $\tan \theta$ has two distinct roots if $\Delta > 0$. $(-4hX)^{2} - 4X^{2}(X^{2} + 4hY) > 0$ $16h^{2}X^{2} - 4X^{4} - 16hX^{2}Y > 0$ $4h^{2} - X^{2} - 4hY > 0$ (since $X^{2} > 0$) $4h^{2} - 4hY > X^{2}$ $X^{2} < 4h^{2} - 4hY$	1 Mark Substitute (X, Y) and forms quadratic equation in $\tan \theta$
	$X^2 < 4h(h - Y)$ If $X^2 < 4h(h - Y)$, there are two solutions, $\tan \theta_1$ and $\tan \theta_2$, for the equation, two differeng angles, θ_1 and θ_2 can be used to hit the point (X, Y) .	
Q14 c) iii)	Let $\tan \theta_1$, $\tan \theta_2$ be roots of $X^2 \tan^2 \theta - 4hX \tan \theta + X^2 + 4hY = 0$ Product of roots	2 Marks Correct solution
	$\tan \theta_1 \tan \theta_2 = \frac{X^2 + 4hY}{X^2}$ $\tan \theta_1 \tan \theta_2 = 1 + \frac{4hY}{X^2}$ $\tan \theta_1 \tan \theta_2 > 1 \qquad (X^2 > 0, Y > 0)$	1 Mark Obtains the expression $\tan \theta_1 \tan \theta_2 > 1$ from the product of roots
	If both $0 < \theta_1 < \frac{\pi}{4}$ and $0 < \theta_2 < \frac{\pi}{4}$, then $0 < \tan \theta_1 < 1$ and $0 < \tan \theta_2 < 1$, so $\tan \theta_1 \tan \theta_2 < 1$. This contradicts to the product of roots.	
	\therefore No point above the x-axis can be hit from two different angles θ_1 and θ_2 satisfying $\theta_1 < \frac{\pi}{4}$ and $\theta_2 < \frac{\pi}{4}$.	