

2009

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 1

General Instructions

- Reading Time- 5 minutes
- Working Time - 2 hours
- Write using a black or blue pen
- Approved calculators may be used
- A table of standard integrals is provided at the back of this paper.
- All necessary working should be shown for every question.
- Begin each question on a fresh sheet of paper.

Total marks (84)

- Attempt Questions 1-7
- All questions are of equal value

Question 1 (12 marks) Begin a NEW page.
MARKS
a) Differentiate $\sin ^{-1}(2 x)$
b) Find $\int x \sqrt{1+x^{2}} d x$ using the substitution $u=1+x^{2}$
c) Evaluate $\quad \int_{0}^{2} \frac{d x}{4+x^{2}}$

3
d) Evaluate $\lim _{x \rightarrow 0} \frac{\sin 3 x}{5 x}$

1
e) Find the acute angle between the lines $3 y=2 x+8$ and $y=5 x-9$

2
f) Find the remainder when the polynomial $P(x)=x^{3}-4 x$ is divided by $x+3$.
g) Given that $\log _{3} 7=m$, find an expression for $\log _{3} 21$ 1

End of Question 1

Question 2 (12 marks) Begin a NEW page.
MARKS
a) Solve $\quad \cos \theta+\sqrt{3} \sin \theta=1 \quad(0 \leq \theta \leq 2 \pi)$
b) Solve $\frac{3 x}{x-2} \leq 1$
c) Find the coordinates of the point P which divides the interval AB

2 externally in the ratio $1: 2$ where A is $(-2,7)$ and B is $(1,5)$.
d) \quad Solve $\cos 2 \theta=\cos \theta \quad(0 \leq \theta \leq 2 \pi)$

End of Question 2

Question 3 (12 marks) Begin a NEW page.
MARKS
a) ABCD is a cyclic quadrilateral and FAE is a tangent at A .
$\angle D A E=50^{\circ}$ and $B D \| F E$

i) Calculate $\angle B A F$, giving reasons.
ii) Calculate $\angle B C D$, giving reasons.
b) Solve the equation $2 x^{3}-21 x^{2}+42 x-16=0$ given that the roots form consecutive terms of a geometric sequence.
c) Evaluate $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \sin x \cos ^{2} x d x$ using the substitution $u=\cos x$
d) A packet of peas initially at $24^{\circ} \mathrm{C}$ is placed in a snap-freeze refrigerator which is maintained at an internal temperature of $-40^{\circ} \mathrm{C}$. Assuming Newton's Law of Cooling, the temperature T° of the peas will be given by $T=-40+64 e^{k t}$, where k is a constant and t is the time in seconds.
i) If after 5 seconds the temperature of the packet is $19^{\circ} \mathrm{C}$, Find the value of k.
ii) How long will it take for the packet's temperature to reduce to $0^{\circ} \mathrm{C}$? Give your answer to the nearest second.

End of Question 3

Question 4 (12 marks) Begin a NEW page.

MARKS
a) The chord $P Q$ of the parabola $x^{2}=4 y$ subtends a right angle at the origin O.
If the coordinates of P and Q are $\left(2 p, p^{2}\right)$ and $\left(2 q, q^{2}\right)$ respectively:
i) Find the gradients of $P O$ and $Q O$.
ii) Show $p q=-4$.
iii) Find the equation of the locus of the midpoint M of $P Q$.
b) A particle is moving along the x axis. Initially the particle is 2 m to the right of the origin and moving with a velocity of $5 \mathrm{~m} / \mathrm{s}$.
i) If the particle's acceleration is given by $\ddot{x}=2 x^{3}+2 x$, show that $\dot{x}=x^{2}+1$.
ii) Hence find an expression for x in terms of t.
c) Water flows from a hole in the base of a cylindrical tank at a rate given by $\frac{d h}{d t}=-k \sqrt{h}$ where k is a constant and h is the depth of the water in mm at any time t minutes.

If the depth of the water falls from 100 mm to 25 mm in one minute, find how much longer it will take for the tank to empty.

End of Question 4

Question 5 (12 marks) Begin a NEW page.

MARKS
a) Prove by Mathematical Induction that $7^{n}+5$ is divisible by 6 , for positive integral values of n.
b) A missile is projected with a speed of $50 \mathrm{~m} / \mathrm{s}$, at an angle of elevation of 45°. It is aimed at a tall building which is at a horizontal distance of 200 m from the point of projection.
i) By taking $g=10 \mathrm{~m} / \mathrm{s}^{2}$ and neglecting air resistance, show that the equations of motion for this missile may be expressed as:

$$
x=25 \sqrt{2} t \quad \text { and } \quad y=-5 t^{2}+25 \sqrt{2} t
$$

ii) Hence find the time of flight until the missile hits the building.
iii) Find the height of the missile when it hits the building.

1
c) Find m if: $\int_{0}^{\frac{\pi}{6}} \frac{\cos x d x}{1+\sin x}=\log _{e} m$.

2
d) i) Find $\frac{d}{d x}\left[\tan ^{-1} x+x\right]$
ii) Hence evaluate $\int_{0}^{1} \frac{x^{2}+x+2}{x^{2}+1} d x$ 2
(leave your answer in exact form)

End of Question 5

Question 6 (12 marks) Begin a NEW page.

MARKS
a) For the curve with equation $y=\frac{x^{2}}{1-x^{2}}$
i) Show $\frac{d y}{d x}=\frac{2 x}{\left(1-x^{2}\right)^{2}}$
ii) Find any stationary points and determine their nature.
iii) Find the equations of any vertical asymptotes.

1
iv) Find the equations of any horizontal asymptotes.

1
v) Sketch the curve.
b) A spherical balloon is being inflated and its volume increases at a 3 constant rate of $50 \mathrm{~mm}^{3} / \mathrm{s}$.

At what rate is its surface area increasing when the radius is 20 mm .
c) A particle moves such that $x=3 \cos 2 t-4 \sin 2 t$.

Show this motion is Simple Harmonic Motion, and find the greatest speed of the particle.

End of Question 6

Question 7 (12 marks) Begin a NEW page.
a)

The triangle $A B C$ is isosceles with $A B=B C$ and $B D$ is perpendicular to $A C$. Let $\angle A B D=\angle C B D=\alpha$ and $\angle B A D=\beta$.
i) Show $\sin \beta=\cos \alpha$
ii) Using the sine rule in $\triangle A B C$ show $\sin 2 \alpha=2 \sin \alpha \cos \alpha$
iii) Given that $0 \leq \alpha \leq \frac{\pi}{2}$, express the limiting sum of the geometric 2 series $\sin 2 \alpha+\sin 2 \alpha \cos ^{2} \alpha+\sin 2 \alpha \cos ^{4} \alpha+\ldots$ in terms of α.
b) i) Evaluate: $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos ^{2} x d x$ Leave your answer in exact form.
ii) Hence, if the curve $y=2+\cos x$ is rotated about the x axis from $\frac{\pi}{4} \leq x \leq \frac{\pi}{2}$ find the volume of the solid of revolution. (leave your answer in exact form)
c) Show without the use of a calculator: $\tan ^{-1}(4)-\tan ^{-1}\left(\frac{3}{5}\right)=\frac{\pi}{4}$.

End of Question 7

End of Examination

STANDARD INTEGRALS

$$
\mathrm{NOTE}: \ln x=\log _{e} x, \quad x>0
$$

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x \quad=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

CHS - Solutions 2009 Trial HSC Ext (1) Mathematics

$$
\text { (1) a) } \frac{d}{d x} \sin ^{-1}(2 x)=\frac{2}{\sqrt{1-4 x^{2}}}
$$

b) $\int x \sqrt{1+x^{2}} d x \quad u=1+x^{2}$
$=\frac{1}{2} \int \sqrt{u} d u$
$\frac{d u}{d x}=2 x$
$=\frac{1}{2} \times \frac{2}{3} u^{3 / 2}+c=\frac{1}{3}\left(1+x^{2}\right)^{3 / 2}+c$
c) $\int_{0}^{2} \frac{d x}{4+x^{2}}=\frac{1}{2}\left[\tan ^{-1}\left(\frac{x}{2}\right)\right]_{0}^{2}$

$$
\therefore P(-5,9)
$$

$=\frac{1}{2}\left[\tan ^{-1} 1-\tan ^{-1} 0\right]$
$=\frac{1}{2}\left[\frac{\pi}{4}-0\right]=\frac{\pi}{8}$
d) $\lim _{x \rightarrow 0} \frac{\sin 3 x}{5 x}=\lim _{x \rightarrow 0} \frac{3}{5}\left(\frac{\sin 3 x}{3 x}\right)$

$$
=\frac{3}{5}
$$

e) $y=\frac{2 x}{3}+\frac{8}{3} \quad y=5 x-9$ $m_{1}=2 / 3$
$m_{2}=5$

$$
\begin{aligned}
\tan \theta & =\left|\frac{2 / 3-5}{1+2 / 3 \times 5}\right|=1 \\
\theta & =45^{\circ}
\end{aligned}
$$

f) $P(x)=x^{3}-4 x$

Remainder $=P(-3)=(-3)^{3}-4(-3)$

$$
\text { 9) } \quad \begin{aligned}
\log _{3} 7=m & \log _{3} 21 \\
& =\log _{3}(7 \times 3) \\
& =\log _{3} 7+\log _{3} 3
\end{aligned}
$$

$=m+1$
(2) a) $\cos \theta+\sqrt{3} \sin \theta=1$ $2\left[\frac{1}{2} \cos \theta+\frac{\sqrt{3}}{2} \sin \theta\right]=1$

$$
\begin{aligned}
& \cos (\theta-\pi / 3)=\frac{1}{2} \\
& \theta-\frac{\pi}{3}=\frac{\pi}{3}, 2 \pi-\frac{\pi}{3} \\
& \theta=0,2 \pi, \frac{2 \pi}{3}
\end{aligned}
$$

$$
\begin{array}{cc}
\text { c) } & A(-2,7) \\
-1: 2 & B(1,5) \\
x=\frac{-1 \times 1+2 \times-2}{-1+2} & y=\frac{-1 \times 5+2 \times 7}{-1+2}
\end{array}
$$

d) $\quad \cos 2 \theta=\cos \theta$
$2 \cos ^{2} \theta-1=\cos \theta=0$ Let $m=\cos Q$
$2 m^{2}-m-1=0$ $(m-1)(2 m+1)=0$
$\cos \theta=1 \quad \cos \theta=-\frac{1}{2}$
$\theta=0,2 \pi, \frac{2 \pi}{3}, \frac{4 \pi}{3}$
(3) a)

i) $\angle D B A=50^{\circ}$ (aH. segment hm) $\therefore \angle B A F=50^{\circ}(a H \angle \prime s, B D \| F A)$
ii) $\angle B A D=80^{\circ}$ (\angle sum straight line)
$\angle B C D=100^{\circ}$ (opp L's cyclic quad)
b) $2 x^{3}-21 x^{2}+42 x-16=0$ Let roots be $\frac{\alpha}{\beta}, \alpha, \alpha \beta$
$\therefore \quad-\frac{b}{a}=\frac{2}{\beta}+\alpha+\alpha \beta=\frac{21}{2}$
$\frac{c}{a}=\frac{\alpha^{2}}{\beta}+\alpha^{2}+\alpha^{2} \beta=21$
$-\frac{\alpha}{\alpha}=\alpha^{3}=8 \quad \therefore \alpha=2$

(3)b) cont

Page (2)

$$
\begin{aligned}
\frac{2}{\beta}+2+2 \beta & =\frac{21}{2} \\
4 \beta^{2}-17 \beta+4 & =0 \\
(\beta-4)(4 \beta-1) & =0 \\
\beta & =4, \frac{1}{4}
\end{aligned}
$$

\therefore roots are $x=\frac{1}{2}, 2,8$
c)

$$
\begin{aligned}
& y=\frac{1}{2}\left[x^{2}-2(-4)\right] \\
& y=\frac{1}{2}\left(x^{2}+8\right)
\end{aligned}
$$

b) $t=0 \quad x=2 \quad v=5$

1) $\ddot{x}=2 x^{3}+2 x$
$\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=2 x^{3}+2 x$

$$
\frac{1}{2} v^{2}=\frac{2 x^{4}}{4}+\frac{2 x^{2}}{2}+c
$$

$\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \sin x \cos ^{2} x d x$
$=-\int_{\frac{1}{2}}^{0} u^{2} d u$
$=\left[\frac{\mu^{3}}{3}\right]_{0}^{1 / 2}=\frac{1}{24}$
d) $T=-40+64 e^{k t}$
i) $\begin{array}{ll}t=19 & 19=-40+69 e^{5 k} \\ 59 & =e^{5 k}\end{array}$

$$
\frac{59}{64}=e^{5 k}
$$

$$
{ }_{k=\frac{1}{5}}^{5} \ln \left(\frac{59}{54}\right) \doteqdot-0.016269
$$

ii) $T=0$

$$
0=-40+64 e^{k t}
$$

$$
\frac{40}{64}=e^{l t}
$$

$$
z=\frac{\ln \left(\frac{(00}{60}\right)}{k}=28.889
$$

\therefore takes approx 29 sec .

i) $m(p 0)=\frac{p^{2}-0}{2 p-0}=\frac{p}{2} \quad m(Q 0)=\frac{q^{2}-0}{2 q-0}=\frac{q}{2}$
ii) as $\angle P O Q=90^{\circ}$, then $m(P O) \times m(Q D)=-1$ $\frac{p}{2} \times \frac{q}{2}=-1$
$p q=-4$

(1)c) cont.

$$
\begin{aligned}
5 t & =-\sqrt{h}+10 \\
h & =(10-5 t)^{2}
\end{aligned}
$$

$$
\text { empty when } h=0 \text { ie } 0=(10-5 t)^{2}
$$

$t=2$
\therefore takes a further 1 min to empty
5) a) If $n=1,7^{\prime}+5=12$ which is divisible

$$
\therefore \text { True for } n=1
$$

Assume true for $n=k$
le $7^{k}+5=6 M$ where M is an integer

$$
7^{k}=6 m-5
$$

Aim to prove true for $n=k+1$
ie $7^{k+1}+5=7.7^{k}+5$

$$
\begin{aligned}
& =7(6 M-5)+5 \\
& =42 M-35+5 \\
& =42 M-30 \\
& =6(7 M-5) \\
& =60 \text { under } \theta \text { is integer }
\end{aligned}
$$

\therefore If true for $n=k$, then true for $n=k+1$
Proved true for $n=1$, thus true for $n=1+1=2$ Hence by the principle of mathematical induction, true for all imeger $n, n \geqslant 1$

$$
\begin{aligned}
& \Pi+=0, x=0, \quad y=0 \\
& \frac{T}{1} \cos 45=\frac{\dot{x}}{50} \\
& \dot{x}=50 \cos 45=\frac{50}{\sqrt{2}} \\
& \dot{y}=25 \sqrt{2}
\end{aligned}
$$

$$
\ddot{y}=-10
$$

$$
\dot{y}=-10 t+c_{2}
$$

$t=0, \dot{x}=25 \sqrt{2}, \dot{y}=25 \sqrt{2}$
$\dot{x}=25 \sqrt{2}$ $i y=-10 t+25 \sqrt{2}$
$x=25 t \sqrt{2}+c_{3}$
$y=-5 t^{2}+25 t \sqrt{2}+4$

$$
=0, x=0, y=0
$$

i) $y^{\prime}=\frac{\left(1-x^{2}\right) \times 2 x-x^{2} \times(-2 x)}{\left(1-x^{2}\right)^{2}}$

$$
=\frac{2 x-2 x^{3}+2 x^{3}}{\left(1-x^{2}\right)^{2}}=\frac{2 x}{\left(1-x^{2}\right)^{2}}
$$

at $x=0, y=0 \quad \frac{x}{x} \left\lvert\,-\frac{1}{2} \quad 0 \quad \frac{1}{2}\right.$
$\therefore \min _{\substack{ \\\text { turning }}} \quad y^{\prime} \mid-v e \quad 0,+y e$

$$
x=25 t \sqrt{2} \quad y=-5 t^{2}+25 t \sqrt{2}
$$

) hits building when $x=200$

$$
\text { ie } 200=25 t \sqrt{2}
$$

$t=\frac{8}{\sqrt{2}}=4 \sqrt{2} \sec$
$=\frac{\pi}{4}+1+\frac{1}{2} \ln 2$
(b) a) $y=\frac{x^{2}}{1-x^{2}}$
ii) Stat pis when $y^{\prime}=0$
ie. $\begin{aligned} 2 x & =0 \\ x & =0\end{aligned}$
iii) $\begin{aligned} 1-x^{2} & =0 \\ x & \neq \pm 1\end{aligned} \quad \therefore$ vertical asymptotes at
iv) $\begin{gathered}1-x^{2} \frac{-1}{\frac{x^{2}}{2}} \quad \therefore y=\frac{x^{2}}{1-x^{2}}=-1+\frac{1}{1-x^{2}} \\ \frac{x^{2}-1}{1} \quad \text { as } x \rightarrow \infty \frac{1}{1-x^{2}} \rightarrow 0\end{gathered}$
$\therefore y=\frac{x^{2}}{1-x^{2}} \rightarrow y=-1$

Page (3)
iii) when $t=4 \sqrt{2} \quad \begin{aligned} y & =-5(4 \sqrt{2})^{2}+25 \sqrt{2}(4 \sqrt{2}) \\ & =40\end{aligned}$
Hits 40 m off ground
c) $\int_{0}^{\pi / 6} \frac{\cos x d x}{1+\sin x}=[\ln (1+\sin x)]_{0}^{\pi / 6}$ $=\ln \left[1+\sin \frac{\pi}{6}\right]-\ln [1+\sin 0]$
$=\ln 1.5-0$
$=\ln 1.5$
$\therefore m=1.5$
d) i) $\frac{d}{d x}\left(\tan ^{-1} x+x\right)=\frac{1}{1+x^{2}}+1$

$$
=\frac{2+x^{2}}{1+x^{2}}
$$

ii) $\int_{0}^{1} \frac{x^{2}+x+2}{x^{2}+1} d x$
$=\int_{0}^{1} \frac{2+x^{2}}{1+x^{2}}+\frac{x}{1+x^{2}} d x$
$=\left[\tan ^{-1} x+x+\frac{1}{2} \ln \left(1+x^{2}\right)\right]$
$=\left[\tan ^{-1} 1+1+\frac{1}{2} \ln (2)\right]-$
$\left[\tan ^{-1} 0+0+\frac{1}{2} \ln 1\right]$
(ba) v)

b)

$\frac{d V}{d t}=50 \mathrm{~mm}^{3} / \mathrm{s}$

$$
\begin{array}{ll}
V=\frac{4}{3} \pi r^{3} & A=4 \pi r^{2} \\
\frac{d v}{d r}=4 \pi r^{2} & \frac{d A}{d r}=8 \pi r
\end{array}
$$

$\frac{d A}{d t}=\frac{d A}{d r} \cdot \frac{d r}{d t}$

$$
=\frac{1}{4 \pi r^{2}} \times 50
$$

$$
=8 \pi r \times \frac{2}{2 m}
$$

$$
=\frac{25}{2 \pi r^{2}}
$$

$$
=\frac{100}{r}
$$

\therefore when $r=20 \frac{d A}{d t}=5 \mathrm{~mm}^{2} / \mathrm{s}$
c) $x=3 \cos 2 t-4 \sin 2 t$

$$
\dot{x}=-6 \sin 2 t-8 \cos 2 t
$$

$$
\ddot{x}=-12 \cos 2 t+16 \sin 2 t
$$

$$
=-4(3 \cos 2 t-4 \sin 2 t)
$$

$$
=-4 x \quad \text { which is S.H.M. }
$$

Greatest speed at centre of motion
ie $0=3 \cos 2 t-4 \sin 2 t$
$\frac{\sin 2 t}{\cos 2 t}=\frac{3}{4}=\tan 2 t$

\therefore Greatest speed $=\left|-6 \times \frac{3}{5}-8 \times \frac{4}{5}\right|=10$

i) $I_{n} \triangle A B D$,
$\sin \beta=\frac{B D}{A B}$
$\cos \alpha=\frac{B D}{A B}$
$\sin \beta=\cos \alpha$
ii) In $\triangle A B C$

$$
\begin{aligned}
\frac{A C}{\sin 2 \alpha} & =\frac{B C}{\sin \beta} \\
\sin 2 \alpha & =\frac{A C \sin B}{B C} \\
& =\frac{2 D C \sin B}{B C} \quad(A C=2 D C) \\
& =2 \sin \alpha \sin B \quad\left(\sin \alpha=\frac{D C}{B C}\right)
\end{aligned}
$$

Page (4)
iii) $0 \leq \alpha \leq \frac{\pi}{2} \quad \begin{array}{r}\sin 2 \alpha+ \\ \\ \sin 2 \alpha \cos ^{4} \alpha+\ldots\end{array}$

$$
\rightarrow G P \quad a=\sin 2 \alpha \quad r=\cos ^{2} \alpha
$$

$$
\begin{aligned}
\therefore S_{\infty}=\frac{a}{1-r}=\frac{\sin 2 \alpha}{1-\cos ^{2} \alpha} & =\frac{2 \sin \alpha \cos \alpha}{\sin ^{2} \alpha} \\
& =2 \frac{\cos \alpha}{\sin \alpha} \\
& =2 \cot \alpha
\end{aligned}
$$

b) 1) $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos ^{2} x d x=\frac{1}{2} \int_{\pi / 4}^{\pi / 2}(\cos 2 x+1) d x$
$=\frac{1}{2}\left[\frac{\sin 2 x}{2}+x\right]_{\pi / 4}^{\pi / 2}$
$=\frac{1}{2}\left[\left(\frac{1}{2} \sin \pi+\frac{\pi}{2}\right)-\left(\frac{1}{2} \sin \frac{\pi}{2}+\frac{\pi}{4}\right)\right]$
$=\frac{1}{2}\left[\frac{\pi}{2}-\frac{1}{2}-\frac{\pi}{4}\right]=\frac{\pi}{8}-\frac{1}{4}$
iii) $y=2+\cos x$
$y^{2}=4+4 \cos x+\cos ^{2} x$
$V=\pi \int_{\pi / 4}^{\pi / 2} 4+4 \cos x+\cos ^{2} x d x$

$$
=\pi[4 x+4 \sin x]_{\pi / 4}^{\pi / 2}+\pi \int_{\pi / 4}^{\pi / 2} \cos ^{2} x d x
$$

$$
=\pi\left[\left(2 \pi+4 \sin \frac{\pi}{2}\right)-\left(\pi+4 \sin \frac{\pi}{4}\right)\right]
$$

$$
=\pi\left[\frac{9 \pi}{8}+\frac{15}{4}-2 \sqrt{2}\right] \text { units }^{3}
$$

c) $L H S=\tan ^{-1}(4)-\tan ^{-1}\left(\frac{3}{5}\right)$

Let $\tan ^{-1} 4=x \quad \tan ^{-1}\left(\frac{3}{5}\right)=y$

$$
\tan x=4 \quad \tan y=\frac{3}{5}
$$

$\tan (x-y)=\frac{\tan x-\tan y}{1+\tan x \cdot \tan y}$

$$
\begin{aligned}
& =\frac{4-\frac{3}{5}}{1+4 \times \frac{3}{5}} \\
& =1
\end{aligned}
$$

$$
\begin{aligned}
& =1 \\
x-y & =\tan ^{-1}(1)
\end{aligned}
$$

$\therefore \tan ^{-1} 4-\tan ^{-1}\left(\frac{3}{5}\right)=\frac{\pi}{4}$
THE END!

