Caringbah High School

2016

Trial HSC Examination

Mathematics Extension

General Instructions

- Reading time -5 minutes
- Working time -2 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A data sheet is provided at the back of this paper
- In Questions $11-15$, show relevant mathematical reasoning and/or calculations

Total marks - 70

Section I 10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II 60 marks

- Attempt Questions 11-14
- Allow about 1 hour and 45 minutes for this section

Section I

10 marks
Attempt Questions 1-10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1-10.

1 In the diagram, $A B$ is a diameter of the circle and $M N$ is tangent to the circle at C. $\angle C A B=35^{\circ}$. What is the size of $\angle M C A$?

A) 35°
B) 45°
C) 55°
D) 65°

2 Find $f^{-1}(x)$ given $f(x)=\frac{3 x-3}{x-2}$
A) $\quad f^{-1}(x)=\frac{3 y-3}{x-2}$
B) $f^{-1}(x)=\frac{2 x-3}{x-3}$
C) $f^{-1}(x)=\frac{x-2}{3 x-3}$
D) $f^{-1}(x)=\frac{3-3 x}{3-x}$

3 The acute angle between $2 x+y-3=0$ and $y=\frac{1}{3} x+1$ is
A) 54^{0}
B) 82^{0}
C) 79°
D) 45°

4 The remainder when $P(x)=2 x^{3}-6 x^{2}+4 x+3$ is divided by $2 x-1$ is
A) 3
B) $\quad-9$
C) $3 \frac{3}{4}$
D) $\frac{-3}{4}$

5 The exact value of $\cos 15^{\circ}$ is
A) $\frac{\sqrt{6}+\sqrt{2}}{4}$
B) $\frac{\sqrt{3}}{4}$
C) $\frac{1}{4}$
D) $\frac{\sqrt{6}-\sqrt{2}}{4}$
$6 \quad \int 2 \cos ^{2} x d x=v$
A) $-\sin x \cos x+x+c$
B) $\frac{1}{2} \sin 2 x+x+c$
C) $\frac{2}{3} \cos ^{3} x+c$
D) $\frac{-2}{\sqrt{1-x^{2}}}+c$

7 The velocity of a particle at a position x is given by $\dot{x}=2 e^{\frac{-x}{2}} \mathrm{~m} / \mathrm{s}$. The particles acceleration when its displacement is -2 metres is
A) $-e \mathrm{~m} / \mathrm{s}^{2}$
B) $\frac{-4}{e^{2}} \mathrm{~m} / \mathrm{s}^{2}$
C) $-2 e^{2} \mathrm{~m} / \mathrm{s}^{2}$
D) $e^{2} \mathrm{~m} / \mathrm{s}^{2}$

8 The value of $\sin ^{-1}\left(\frac{1}{2}\right)+\cos ^{-1}\left(\frac{-\sqrt{3}}{2}\right)$ is
A) $\pi+\frac{\pi}{3}$
B) 0
C) $\frac{7 \pi}{6}$
D) π

9 If $\log _{a} x=p$ and $\log _{a} y=q$, find the value of $\log _{a} x^{2} y$ in terms of p and q.
A) $p^{2} q$
B) $2 p+q$
C) $p^{2}+q$
D) $q-2 p$

10 When $y=e^{x+2}$ is rotated about the y axis between $x=0$ and $x=2$, its volume is given by
A) $\pi \int_{e^{2}}^{e^{4}}(\ln y-2)^{2} d y$
B) $\pi \int_{e^{2}}^{e^{4}} e^{2 x+4} d x$
C) $\pi \int_{0}^{2} e^{x+2} d x$
D) $\pi \int_{0}^{2}(\ln y-2) d y$

Section II

60 marks
Attempt Questions 11-14
Allow about 1 hour and 45 minutes for this section
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
In Questions 11-14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.
a) Find the gradient of the tangent to the curve $y=\cos ^{3} x$ at $x=\frac{\pi}{6}$
b) Evaluate $\lim _{x \rightarrow 0} \frac{\sin 3 x}{5 x}$
c) Consider the function $f(x)=3 \sin ^{-1}\left(\frac{x}{2}\right)$
i) Find the value of $f(2)$ 1
ii) State the domain and range of this function
iii) Draw the graph of $y=f(x)$
iv) Find $f^{\prime}(x)$
d) A particle moves in a straight line so its position x from a fixed point 0 at time t is given by $x=3 \sin 2 t+4 \cos 2 t$.
i) If the motion is expressed in the form $x=r \sin (2 t+\alpha)$ find the value of the constants r and $\alpha .(\alpha$ to the nearest degree)
ii) Show the motion is simple harmonic.
iii) What is the period of the oscillation?
iv) Determine the maximum displacement from the centre of the motion.

Question 12 (15 marks) Use a SEPARATE writing booklet.
a) Write a primitive for $(5-2 x)^{4}$
b) Find $\int \tan x d x$
c) If α, β, γ are the roots of the equation $x^{3}-4 x+1=0$ evaluate $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma} \quad 2$
d) A bottle of lemonade is taken out of a fridge at $4^{\circ} \mathrm{C}$ into a room where the air temperature is $25^{\circ} \mathrm{C}$. The rate at which the lemonade warms follows Newton's law, that is $\frac{d T}{d t}=k(T-25)$ where $k<0$, time t is measured in minutes, and the temperature T is in degrees celsius.
i) Show that $T=25+A e^{k t}$ is a solution to $\frac{d T}{d t}=k(T-25)$ and find the value of A
ii) The temperature of the lemonade reaches $15^{\circ} \mathrm{C}$ in 45 2 minutes. Find the value of k to four decimal places.
iii) Find the temperature of the lemonade 90 minutes after being removed from the fridge, to nearest degree.
e) Prove by the method of mathematical induction that $\sum_{r=1}^{n} 5^{r-1}=\frac{5^{n}-1}{4}$

Question 13 (15 marks) Use a SEPARATE writing booklet.

a) Find the first derivative of $y=\log _{e}\left(\frac{1}{\sqrt{\cos x}}\right)$
b) A capsule is in the shape of a cylinder with a hemisphere on each end. The radius of the cylindrical section is $r \mathrm{~cm}$, and the volume of the capsule is $16 \mathrm{~cm}^{3}$.
i) If the height of the cylinder is 4 cm show that $r^{3}+3 r^{2}=\frac{12}{\pi}$
ii) Show that one solution of the equation $r^{3}+3 r^{2}=\frac{12}{\pi}$ lies between $r=0$ and $r=1$
iii) The equation $r^{3}+3 r^{2}=\frac{12}{\pi}$ has one root close to $r=0.9$. Use one application of Newton's method of approximation to give a better approximation to three decimal places.
c) $\quad A E$ is tangent at B and $A D \| B C$. Prove that $\triangle B C D\|\| D B A$

d) Find the indefinite integral of $\int \frac{1}{\sqrt{1-4 x^{2}}} d x$
e) The polynomial $3 x^{3}-17 x^{2}-8 x+12=0$ has roots α, β, γ. Given that the product of two of the roots is 4 , solve the equation for α, β, γ

Question 14 (15 marks) Use a SEPARATE writing booklet.
a) Evaluate $\int_{0}^{\sqrt{3}} \frac{x}{\sqrt{1+x^{2}}} d x$ using the substitution $u=1+x^{2}$
b) i) Sketch the graph of $y=\cos x$ and $y=\sin x$ on the same diagram for $0 \leq x \leq \frac{\pi}{2}$
ii) Show that if $0<x<\frac{\pi}{4}$, then $\sin 2 x>2 \sin ^{2} x$ 2

Question 14 (continued)

c) A projectile fired with velocity V and at an angle of 45° to the horizontal, just clears the top of two vertical posts of height $8 a^{2}$ units. The posts at A and B are $12 a^{2}$ units apart. Also $\mathrm{OA}=\mathrm{BC}=\mathrm{b}$ units. There is no air resistance and the acceleration due to gravity is g.

If the projectile is at a point $P(x, y)$ at time t, expressions for x and y in terms of t are $x=\frac{V t}{\sqrt{2}}$ and $y=\frac{-g t^{2}}{2}+\frac{V t}{\sqrt{2}}$. Do not prove these results.
i) Show that the path of the projectile is given by $y=x-\frac{g x^{2}}{V^{2}}$
ii) Using the information in (ii) show that the range of the projectile is $\frac{V^{2}}{g}$
iii) If the first post is b units from the origin show that
(a) $\frac{V^{2}}{g}=2 b+12 a^{2}$
(β) $8 a^{2}=b-\frac{g b^{2}}{V^{2}}$
iv) Hence or otherwise prove that $V=6 a \sqrt{g}$.

Cidrandreh thigh Scherel yo 12 Exi 1 Trial H. S.c. 2016
Muitiple chace
$1, C 2, B \quad 3, B 4, C \quad 5, A \quad 6, B \quad 7, C 8, D \quad 9, B 10, A$
Questear II
(a)

$$
\begin{gathered}
y=\cos ^{3} x \\
y^{i}=3(\cos x)^{2}-\sin x
\end{gathered}
$$

when $x=\pi / 6$

$$
\begin{aligned}
M_{\tau} & =3(\cos \pi / 6)^{2} \cdot-\sin \pi / 6 \\
& =3(\sqrt{3} / 2)^{2} \cdot-1 / 2 \\
& =-9 / 8
\end{aligned}
$$

(b)

$$
\begin{aligned}
\operatorname{Lim}_{x \rightarrow 0} & \frac{\operatorname{Sin} 3 x}{5 x} \\
= & \frac{\sin 3 x}{3 x} \times \frac{3}{5} \\
= & 3 / 5
\end{aligned}
$$

(c) (i) $f(2)=3 \pi / 2$
(ii) $P:-2 \leqslant x \leqslant 2$

$$
R:-\frac{3 \pi}{2} \leqslant y \leqslant 3 \pi / 2 .
$$

(iv) $f(x)=3 \sin ^{-1}(x / 2)$

$$
\begin{aligned}
f^{i}(x) & =3 \cdot \frac{1}{\sqrt{1-(x / 2)^{2}}} \times \frac{1}{2} \\
& =\frac{3}{2}\left[\frac{2}{\sqrt{4-x^{2}}}\right] \\
& =\frac{3}{\sqrt{4-x^{2}}}
\end{aligned}
$$

(d) Question $\|$ (cont'd)

SOLOTIONS
(ii) $r=5, \alpha=53^{\circ}$

$$
\text { (ii) } \begin{aligned}
\dot{x} & =5 \cos \left(2 t+53^{\circ}\right) \times 2 \\
& =10 \cos \left(2 t+53^{\circ}\right) \\
\ddot{x} & =-20 \sin \left(2 t+53^{\circ}\right) \\
\ddot{x} & =-4 x .
\end{aligned}
$$

(iii)

$$
\begin{aligned}
T & =\frac{2 \pi}{2} \\
& =\pi
\end{aligned}
$$

(iv) 5

Question 12
(a) $\frac{(5-2 x)^{5}}{-10}+c$
(b) $\int \tan x d x$

$$
\begin{aligned}
& =\int \frac{\sin x}{\cos x} d x \\
& =-\int \frac{\sin x}{\cos x} \\
& =-\ln (\cos x)+c
\end{aligned}
$$

$$
\text { (c) } \begin{aligned}
& \frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{y} \\
= & \frac{\beta y+\alpha y+\alpha \beta}{\alpha \beta \gamma} \\
= & -\frac{4}{-1} \\
= & +4
\end{aligned}
$$

(d)

$$
\begin{aligned}
\text { (i) } T & =25+A e^{k t} \\
\frac{d T}{d t} & =K \cdot A e^{k \cdot t} \\
& =K \cdot(T-25)
\end{aligned}
$$

when $t=0, T=4$

$$
\begin{aligned}
4 & =25+A e^{0} \\
A & =-21 \\
\therefore T & =25-21 e^{k \cdot t}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& 15=25-21 e^{45 k} \\
& \frac{10}{21}=e^{45 k} \\
& \ln \left(\frac{10}{21}\right)=45 k \\
& k=-0.0165
\end{aligned}
$$

(iii)

$$
\begin{array}{r}
T=25-21 e^{-0.0165(90)} \\
T=20^{\circ} \mathrm{C} \quad(\text { to nearest } \\
\text { degree) }
\end{array}
$$

(e) $\sum_{r=1}^{n} 5^{r-1}=\frac{5^{n}-1}{4}$
when $r=1 \quad 5^{1-1}=\frac{5^{1}-1}{4}$

$$
1=1
$$

Assurne vru for $n=k$

$$
s_{k}=\frac{5^{k}-1}{4}
$$

Prace thece for $n=k+1$

$$
\begin{aligned}
S_{k+1} & =S_{k+} T_{k+1} \\
& =5^{k}-1+5^{k} 4 \\
& =\frac{5^{k}-1+4 \cdot 5^{k}}{4} \\
& =\frac{5 \cdot 5^{k}-1}{5^{k+1}} \\
& =\frac{5^{4}-1}{4} \text { (ptatemect) }
\end{aligned}
$$

(a)

$$
\begin{aligned}
& \text { (a) } \begin{aligned}
y & =\log _{2}\left(\frac{1}{\sqrt{\cos x}}\right) \\
y & =\log _{e}\left[(\cos x)^{-1 / 2}\right] \\
y^{\prime} & =\frac{-\frac{1}{2}(\cos x)^{-3 / 2}-\sin x}{(\cos x)^{-1}} \\
y^{\prime} & =\frac{1}{2} \sin x(\cos x)^{-1} \\
& =\frac{1}{2} \frac{\sin x}{\cos x} \\
& =\frac{1}{2} \tan x
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b) } V=\pi r^{2} 4+\frac{4}{3} \pi r^{3} \\
& \text { (i) } \\
& 16=4 \pi r^{2}+\frac{4}{3} \pi r^{3} \\
& 48=12 \pi r^{2}+4 \pi r^{3} \\
& 48=4 \pi\left(3 r^{2}+r^{3}\right) \\
& \frac{12}{\pi}=r^{3}+3 r^{2}
\end{aligned}
$$

(ii)

Let $f(r)=t^{3}+3 r^{2}-\frac{12}{\pi}$

$$
r=0 \quad f(0)=-\frac{i 2}{\bar{\pi}}
$$

$\begin{aligned} r=1 \quad f(1) & =1+2-\frac{12}{\pi} \\ & =0.192\end{aligned}$

$$
=0.18 \ldots \ldots
$$

$f(1)<0$ and $f(1)>0$

$$
\begin{aligned}
& \text { iii) } f(r)=r^{3}+3 r^{2}-\frac{12}{\pi} \\
& f(0.9) \div-0.6607 \\
& f^{\prime}(r)=3 r^{2}+6 r \\
& f^{\prime}(0.9)=7.83 . \\
& r_{2}=r_{1}-\frac{f\left(r_{1}\right)}{f^{\prime}\left(r_{1}\right)} \\
& r_{2} \doteqdot 0.984
\end{aligned}
$$

- Cllestion i)
(c)
$\angle A D B=\angle D B C$
Calt lis II lunis $C B, D A$)
$\angle D B A=\angle D C B$
(alt sey thm)
$\triangle B C D \| \triangle D B A$ (equicungalar)

$$
\begin{aligned}
& \text { (d) } \int \frac{1}{\sqrt{1-4 x^{2}}} d x \\
& =\int \frac{1}{\sqrt{4\left[\left(\frac{1}{2}\right)^{2}-x^{2}\right]}} d x \\
& =\frac{1}{2} \int \frac{1}{\sqrt{\left(\frac{1}{2}\right)^{2}-x^{2}}} \\
& =\frac{1}{2} \sin ^{-1}\left(\frac{x}{1 / 2}\right)+c \\
& =\frac{1}{2} \sin ^{-1} 2 x+c
\end{aligned}
$$

$$
\begin{equation*}
\alpha \beta+\alpha y+\beta y=-z / 3 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\alpha \beta y=-4 . \tag{3}
\end{equation*}
$$

Let $\alpha \beta=4 \Rightarrow \beta=\frac{4}{\alpha}$

$$
4 y=-4
$$

$$
i=-i
$$

using. (1)

$$
\begin{gathered}
\alpha+\beta-1=17 / 3 \\
\alpha+\beta=\frac{20}{3}
\end{gathered}
$$

suib $3=4 / \alpha$

$$
\begin{aligned}
& \alpha+4 / \alpha=\frac{20}{3} \\
& 3 \alpha^{2}-20 \alpha+12=0 \\
& (\alpha-6)(3 \alpha-2)=0 \\
& \alpha=6, \alpha=2 / 3
\end{aligned}
$$

\therefore Roots cere

$$
6,2 / 3,-1
$$

wiesian 14
(a)

$$
\int_{0}^{3} \frac{x d x}{\sqrt{1+x^{2}}}
$$

If $u=1+x^{2}$

$$
d u=2 x \cdot d x
$$

when $x=\sqrt{3}$

$$
u=4
$$

when $x=0$

$$
\begin{aligned}
& \frac{1}{2} \int_{0}^{\sqrt{3}} \frac{2 x}{\sqrt{1+x^{2}}} d x \\
& \frac{1}{2} \int_{1}^{4} \frac{d u}{u^{i / 2}} \\
& \frac{1}{2} \int_{1}^{4} u^{-1 / 2} d u \\
& \frac{1}{2}\left[\frac{u^{1 / 2}}{1 / 2}\right]_{1}^{4} \\
& =\frac{1}{2}[4-2] \\
& =1
\end{aligned}
$$

(b)

for $0<x<\pi / 4$
(ii) $\cos x>\operatorname{son} x$ and

Sunda Swan 70
$\cos x \sin x>\sin ^{2} x$
$2 \cos x \sin x>2 \sin ^{2} x$
Sin $2 x>2 \sin ^{2} x$
OR $\operatorname{Sin} 2 x>2 \operatorname{Sin}^{2} \pi \quad$ si $2 \sin x \cos x>2 \sin ^{2} x$
(C)

$$
\begin{aligned}
& \text { c) (i) } x=\frac{v t}{\sqrt{2}}, y=-\frac{g t^{2}}{2}+\frac{v t}{\sqrt{2}} \\
& t=\frac{\sqrt{2} x}{V} \\
& \therefore y=-\frac{g}{2}\left(\frac{\sqrt{2} x}{v}\right)^{2}+\frac{v}{\sqrt{2}}\left(\frac{\sqrt{2} x}{v}\right) \\
& y=-\frac{g}{2} \cdot \frac{2^{2} x^{2}}{v^{2}}+x \\
& y=-\frac{g x^{2}}{v^{2}}+x
\end{aligned}
$$

(ii) when $y=0$

$$
0=-\frac{g x^{2}}{v^{2}}+x
$$

start
$x=0$

$$
0=x\left(1-\frac{g x}{v^{2}}\right)=0
$$

$\cos x>\sin x$. (Since
graph shows $\cos x$ is $\sin x>0$
higher tho $\sin x$ for

$$
0<x<\pi / 4
$$

(iii)

$$
\begin{gathered}
(\alpha) O C=\frac{v^{2}}{g}=O A+A B+B C \\
\frac{v^{2}}{g}=b+12 a^{2}+b \\
\frac{r^{2}}{g}=2 b+12 a^{2} \\
y=x-\frac{9 x^{2}}{v} \\
(B) \quad x=b, y=8 a^{2} \\
8 a^{2}=b-\frac{g b^{2}}{v^{2}}
\end{gathered}
$$

$\therefore \therefore$ Questron 14

$$
\begin{align*}
\text { (iv) } \frac{v^{2}}{g} & =2 b+12 a^{2} \\
8 a^{2} & =b-\frac{g b^{2}}{v^{2}} \tag{2}
\end{align*}
$$

from (1)

$$
v^{2}=g\left(2 v+12 a^{2}\right)
$$

suit into (2)

$$
\begin{aligned}
& 8 a^{2}=b-\frac{9 b^{2}}{9\left(2 b+12 a^{2}\right)} \\
& 5 a^{2}=\frac{2 b^{2}+12 a^{2} b-b^{2}}{2 b+12 a^{2}} \\
& 16 a^{2} b+96 a^{4}=b^{2}+12 a^{2} b \\
& b^{2}-4 a^{2} b-96 a^{4}=0 \\
& \left(b-12 a^{2}\right)\left(b+8 a^{2}\right)=0 \\
& b=12 a^{2} \quad b=-8 a^{2} \\
& \therefore b=12 a^{2} \\
& \frac{v^{2}}{9}=2\left(12 a^{2}\right)+12 a^{2} \\
& \frac{v^{2}}{9}=36 a^{2} \\
& v=6 a \sqrt{g} .
\end{aligned}
$$

$O R(i V)$

$$
\begin{align*}
& \frac{v^{2}}{9}=2 b+12 a^{2} \\
& 8 a^{2}=b-\frac{q b^{2}}{v^{2}} \tag{2}
\end{align*}
$$

from (1) $b=\frac{v^{2}}{2 g}-6 a^{2}$
sut into (2)

$$
\begin{aligned}
& 8 a^{2}=\frac{v^{2}}{2 g}-6 a^{2}-\frac{g}{v^{2}}\left(\frac{v^{2}}{2 g}-6 a^{2}\right)^{2} \\
& 8 a^{2}=\left(\frac{v^{2}}{2 g}-6 a^{2}\right)\left[1-\frac{g}{v^{2}}\left(\frac{v^{2}}{2 g}-6 a^{2}\right)^{-}\right. \\
& 8 a^{2}=\left(\frac{v^{2}}{2 g}-6 a^{2}\right)\left[1-\frac{1}{2}+\frac{6 a^{2} g}{v^{2}}\right] \\
& 8 a^{2}=\frac{v^{2}-12 a^{2} g}{2 g}\left[\frac{1}{2}+\frac{6 a^{2} g}{v^{2}}\right] \\
& 8 a^{2}=\left(v^{2}-12 u^{2} g\right)\left[\frac{v^{2}+12 a^{2} g}{2 g}\right] \\
& 8 a^{2}=\frac{v^{4}-144 a^{4} g^{2}}{4 g v^{2}} \\
& 32 a^{2} g v^{2}=v^{4}-144 a^{4} g^{2} \\
& v^{4}-32 a^{2} g v^{2}-144 a^{4} g^{2}=0 \\
& \left(v^{2}-36 a^{2} g\right)\left(v^{2}+4 a^{2} g\right)=0 \\
& \therefore v^{2}-36 a^{2} g=0 \\
& v^{2}=36 a^{2} g \\
& v=6 a \sqrt{g} .
\end{aligned}
$$

