

Caringbah High School

2016

Trial HSC Examination

Mathematics Extension I

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A data sheet is provided at the back of this paper
- In Questions 11–15, show relevant mathematical reasoning and/or calculations

Total marks – 70

Section I 10 marks

- Attempt Questions 1–10
- Allow about 15 minutes for this section

Section II 60 marks

- Attempt Questions 11–14
- Allow about 1 hour and 45 minutes for this section

Section I

10 marks Attempt Questions 1–10 Allow about 15 minutes for this section Use the multiple-choice answer sheet for Questions 1–10.

1 In the diagram, AB is a diameter of the circle and MN is tangent to the circle at C. $\angle CAB = 35^{\circ}$. What is the size of $\angle MCA$?

65°

C) 55° D)

2 Find
$$f^{-1}(x)$$
 given $f(x) = \frac{3x-3}{x-2}$

35°

A)

A) $f^{-1}(x) = \frac{3y-3}{x-2}$ B) $f^{-1}(x) = \frac{2x-3}{x-3}$ C) $f^{-1}(x) = \frac{x-2}{3x-3}$ D) $f^{-1}(x) = \frac{3-3x}{3-x}$

3 The acute angle between 2x + y - 3 = 0 and $y = \frac{1}{3}x + 1$ is

4

The remainder when $P(x) = 2x^3 - 6x^2 + 4x + 3$ is divided by 2x - 1 is

A) 3
B)
$$-9$$

C) $3\frac{3}{4}$
D) $\frac{-3}{4}$

5 The exact value of $\cos 15^{\circ}$ is

A)
$$\frac{\sqrt{6} + \sqrt{2}}{4}$$

B) $\frac{\sqrt{3}}{4}$
C) $\frac{1}{4}$
D) $\frac{\sqrt{6} - \sqrt{2}}{4}$

 $6 \qquad \int 2\cos^2 x \, dx = v$

A)
$$-\sin x \cos x + x + c$$

B) $\frac{1}{2} \sin 2x + x + c$
C) $\frac{2}{3} \cos^3 x + c$
D) $\frac{-2}{\sqrt{1 - x^2}} + c$

7 The velocity of a particle at a position x is given by $\dot{x} = 2e^{\frac{-x}{2}}$ m/s. The particles acceleration when its displacement is -2 metres is

A)
$$-e \text{ m/s}^2$$
 B) $\frac{-4}{e^2} \text{m/s}^2$

C)
$$-2e^2m/s^2$$
 D) e^2m/s^2

8 The value of
$$\sin^{-1}(\frac{1}{2}) + \cos^{-1}(\frac{-\sqrt{3}}{2})$$
 is

A)
$$\pi + \frac{\pi}{3}$$
 B) 0

C)
$$\frac{7\pi}{6}$$
 D) π

If $\log_a x = p$ and $\log_a y = q$, find the value of $\log_a x^2 y$ in terms of p and q.

A)
$$p^2 q$$

B) $2p+q$
C) p^2+q
D) $q-2p$

10 When $y = e^{x+2}$ is rotated about the y axis between x = 0 and x = 2, its volume is given by

A)
$$\pi \int_{e^2}^{e^4} (\ln y - 2)^2 dy$$

B) $\pi \int_{e^2}^{e^4} e^{2x+4} dx$
C) $\pi \int_{0}^{2} e^{x+2} dx$
D) $\pi \int_{0}^{2} (\ln y - 2) dy$

9

.

Section II

.

60 marks Attempt Questions 11–14 Allow about 1 hour and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11–14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.

a)	Find the	gradient of the tangent to the curve $y = \cos^3 x$ at $x = \frac{\pi}{6}$		
b)	Evaluate	tate $\lim_{x \to 0} \frac{\sin 3x}{5x}$		
c)	Consider the function $f(x) = 3\sin^{-1}(\frac{x}{2})$			
	i)	Find the value of $f(2)$	1	
	ii)	State the domain and range of this function	2	
	iii)	Draw the graph of $y = f(x)$	2	
	iv)	Find $f'(x)$	1	
d)	A particle moves in a straight line so its position x from a fixed point 0 at time t is given by $x = 3\sin 2t + 4\cos 2t$.			
	i)	If the motion is expressed in the form $x = r \sin(2t + \alpha)$ find the value of the constants r and α . (α to the nearest degree)	2	
	ii)	Show the motion is simple harmonic.	2	
	iii)	What is the period of the oscillation?	1	
	iv)	Determine the maximum displacement from the centre of the motion.	1	

End of Question 11

Question 12 (15 marks) Use a SEPARATE writing booklet.

a) Write a primitive for
$$(5-2x)^4$$

b) Find $\int \tan x \, dx$
2

c) If
$$\alpha, \beta, \gamma$$
 are the roots of the equation $x^3 - 4x + 1 = 0$ evaluate $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$ 2

d) A bottle of lemonade is taken out of a fridge at $4^{\circ}C$ into a room where the air temperature is $25^{\circ}C$. The rate at which the lemonade warms follows Newton's law, that is $\frac{dT}{dt} = k(T-25)$ where k < 0, time t is measured in minutes, and the temperature T is in degrees celsius.

i) Show that
$$T = 25 + Ae^{kt}$$
 is a solution to $\frac{dT}{dt} = k(T-25)$ and 2 find the value of A

ii) The temperature of the lemonade reaches
$$15^{\circ}C$$
 in 45 2
minutes. Find the value of k to four decimal places.

iii) Find the temperature of the lemonade 90 minutes after being 1
 removed from the fridge, to nearest degree.

e) Prove by the method of mathematical induction that
$$\sum_{r=1}^{n} 5^{r-1} = \frac{5^{n} - 1}{4}$$

End of Question 12

.

Question 13 (15 marks) Use a SEPARATE writing booklet.

a) Find the first derivative of
$$y = \log_e(\frac{1}{\sqrt{\cos x}})$$
 3

b) A capsule is in the shape of a cylinder with a hemisphere on each end. The radius of the cylindrical section is $r \ cm$, and the volume of the capsule is 16 $\ cm^3$.

i) If the height of the cylinder is
$$4 cm$$
 show that $r^3 + 3r^2 = \frac{12}{\pi}$ 2

ii) Show that one solution of the equation $r^3 + 3r^2 = \frac{12}{\pi}$ lies 1 between r = 0 and r = 1

- iii) The equation $r^3 + 3r^2 = \frac{12}{\pi}$ has one root close to r = 0.9. Use 2 one application of Newton's method of approximation to give a better approximation to three decimal places.
- c) AE is tangent at B and $AD \parallel BC$. Prove that $\triangle BCD \parallel \triangle DBA$

- d) Find the indefinite integral of $\int \frac{1}{\sqrt{1-4x^2}} dx$ 2
- e) The polynomial $3x^3 17x^2 8x + 12 = 0$ has roots α, β, γ . Given that the product of two of the roots is 4, solve the equation for α, β, γ

End of Question 13

2

3

Question 14 (15 marks) Use a SEPARATE writing booklet.

.

a) Evaluate
$$\int_{0}^{\sqrt{3}} \frac{x}{\sqrt{1+x^2}} dx$$
 using the substitution $u = 1 + x^2$ 3

b) i) Sketch the graph of
$$y = \cos x$$
 and $y = \sin x$ on the same diagram for 1
 $0 \le x \le \frac{\pi}{2}$

ii) Show that if $0 < x < \frac{\pi}{4}$, then $\sin 2x > 2\sin^2 x$ 2

Question 14 continues on page 10

c) A projectile fired with velocity V and at an angle of 45° to the horizontal, just clears the top of two vertical posts of height $8a^2$ units. The posts at A and B are $12a^2$ units apart. Also OA=BC = b units . There is no air resistance and the acceleration due to gravity is g.

If the projectile is at a point P(x, y) at time t, expressions for x and y in terms of t are $x = \frac{Vt}{\sqrt{2}}$ and $y = \frac{-gt^2}{2} + \frac{Vt}{\sqrt{2}}$. Do not prove these results.

i) Show that the path of the projectile is given by
$$y = x - \frac{gx^2}{V^2}$$
 2

ii) Using the information in (ii) show that the range of the 2 projectile is $\frac{V^2}{g}$

iii) If the first post is *b* units from the origin show that

$$(\alpha) \quad \frac{V^2}{g} = 2b + 12a^2 \tag{1}$$

$$(\beta) \ 8a^2 = b - \frac{gb^2}{V^2}$$
 1

iv) Hence or otherwise prove that $V = 6a\sqrt{g}$. 3

End of Exam

Carringlah High S	chool YR 12 Ed 1 Trial H.S.C. 2016
Multiple Choice	SOLUTIONS
1, C 2, B 3, B	4, C 5, A 6, B 7, C 8, D 9, B 10, A
Burnetion 11	(d) <u>Question II (cont'd)</u>
$(a, y \in (a)^3 x)$	$(1, 7 = 5, \alpha = 55$
$y' = 3(\cos x)^2 - \sin^2 x$	$x = 5\cos(2t+53^{\circ}) \times 2$
when $\alpha = T_{12}$	$= 10 \cos(2t + 53^{\circ})$
$M_{T} = 3\left(Los T_{Y}\right)^{2} - Since$	$\ddot{x} = -20 \operatorname{Sin}(2t + 53^{\circ})$
$= 3 (\sqrt{3})^2 - \sqrt{3}$	$\mathcal{X} = -4\mathbf{X}.$
$= -9_{/8}$	$(in) T = 2\overline{y}$
by Lim Sir 35c	$=\pi$
$\frac{32}{52} = \frac{52}{52} = \frac{32}{52} = \frac{3}{52}$	
= <u></u> X = 3a 5	Cuestion 12
(c) (i) $f(z) = 3T_{1}$	$\frac{(4)}{-10} + C$
$(\underline{U}) = \underline{D}; -2 \leq 2 \leq 3$	ster. C. La 1
$R^{-3\sqrt{3}} \leq 4 \leq 3\sqrt{3}$	Tanz dr
	J Sunse de Cosse de
2	$= -\int \frac{-S_{UD}x}{C_{DSM}}$
-2 2	$= -\ln(\cos n) + c$
	$(C) \frac{1}{x} + \frac{1}{\beta} + \frac{1}{y}$
(i) $f(x) = 35m^{-1}(x)$	$= \beta \chi + \alpha \gamma + \alpha \beta$
f(x) = 3	~BY
VI-(3) 2	$= -\frac{4}{-1}$
$=$ $\frac{3}{2} \left[\frac{1}{4} - \frac{1}{2} \right]$	= + 4
$= \frac{3}{\sqrt{4-x^2}}$	
• • • •	

(d) (i)
$$T = 25 + Ae^{Kt}$$

$$\frac{dT}{dt} = K \cdot Ae^{Kt}$$

$$= K \cdot (T - 25)$$
When $t = 0$, $T = 4$
 $4 = 25 + Ae^{0}$
 $A = -21$
 $\therefore T = 25 - 21e^{Kt}$
(ii) $15 = 25 - 21e^{Kt}$
 $\frac{10}{21} = e^{45K}$
 $1n (\frac{10}{24}) = 45K$
 $K = -0 \cdot 01b5$
(iii) $T = 25 - 21e^{-0 \cdot 01b5}$ (90)
 $T = 20^{\circ}C$ (to nearest degree)
(e) $\sum_{T=1}^{\infty} 5^{T-1} = 5^{n} - 1$
 $1 = 1$
 4
 $\frac{1}{1 = 1}$
 $\frac{5^{K} - 1}{4}$
 $\frac{5^{K} - 1}{4$

$$\begin{array}{l} (A) \\ y = \log_{2} \left(\frac{1}{\sqrt{\cos x}} \right) \\ y = \log_{2} \left[(\cos x)^{\frac{1}{2}} \right] \\ y' = -\frac{1}{2} \left((\cos x)^{\frac{3}{2}} - \sin x \right) \\ \hline \left((\cos x)^{\frac{3}{2}} - \sin x \right) \\ \hline \left((\cos x)^{\frac{3}{2}} \right)^{\frac{1}{2}} \\ y' = \frac{1}{2} \left(\sin x \right) \\ = \frac{1}{2} \left(\cos x \right)^{-\frac{1}{2}} \\ (\cos x)^{-\frac{1}{2}} \\ = \frac{1}{2} \left(\cos x \right)^{-\frac{1}{2}} \\ = \frac{1}{2} \left(\sin x \right)^{-\frac{1}{2}}$$

$$\frac{(c)}{(c)}$$

$$LADB = LDBC$$

$$(alt L's II lines
(B, DA),$$

$$LOBA = LDCB$$

$$(alt sey thm)$$

$$\Delta BCD III \Delta DBA$$

$$(equiangular)$$

$$(e) \int \frac{1}{\sqrt{1-4x^{2}}}$$

$$dx$$

$$= \int \frac{1}{\sqrt{4(c)^{2}-x^{2}}}$$

$$= \frac{1}{2} \int \sqrt{(\frac{1}{\sqrt{2}})^{2}-x^{2}}$$

$$(c) \int \frac{1}{\sqrt{1-2x^{2}}}$$

$$(c) \int \frac{1}{\sqrt{1-2x^{2}}}$$

$$(c) \int \frac{1}{\sqrt{(\frac{1}{\sqrt{2}})^{2}-x^{2}}}$$

$$(c) \int \frac{1}{\sqrt{(\frac{1}{\sqrt{2})^{2}-x^{2}}}}$$

$$(c) \int \frac{1}{\sqrt{(\frac{1}{\sqrt{2})^{2}-x^{2}}}}}$$

$$(c) \int \frac{1}{\sqrt{(\frac{1}{\sqrt{2})^{2}-x^{2}}}}$$

$$(c) \int \frac{$$

$$\frac{dulles |unv| |4}{(2)} \int_{\frac{\sqrt{33}}{\sqrt{1+x^2}}}^{\frac{\sqrt{33}}{\sqrt{1+x^2}}} \int_{\frac{\sqrt{33}}{\sqrt{1+x^2}}}^{\frac{\sqrt{33}}{\sqrt{1+x^2}}}} \int_{\frac{\sqrt{33}}{\sqrt{1+x^2}}}^{\frac{\sqrt{33}}{\sqrt{1+x^2}}}} \int_{\frac{\sqrt{33}}{\sqrt{1+x^2}}}^{\frac{\sqrt{33}}{\sqrt{1+x^2}}} \int_{\frac{\sqrt{33}}{\sqrt{1+x^2}}}^{\frac{\sqrt{33}}{\sqrt{1+x^2}}}} \int_{\frac{\sqrt{33}}{\sqrt{1+x^2}}}^{\frac{\sqrt{33}}{\sqrt{1+x^2}}} \int_{\frac{\sqrt{33}}{\sqrt{1+x^2}}}^{\frac{\sqrt{33}}{\sqrt{1+x^2}}} \int_{\frac{\sqrt{33}}{\sqrt{1+x^2}}}^{\frac{\sqrt{33}}{\sqrt{1+x^2}}} \int_{\frac{\sqrt{33}}{\sqrt{1+x^2}}}^{\frac{\sqrt{33}}{\sqrt{1+x^2}}} \int_{\frac{\sqrt{33}}{\sqrt{1+x^2}}}^{\frac{\sqrt{33}}{\sqrt{1+x^2}}}} \int_{\frac{\sqrt{33}}{\sqrt{1+x^2}}}^{\frac{\sqrt{33}}{\sqrt{1+x^2}}} \int_{\frac{\sqrt{33}}{\sqrt{1+x^2}}}^{\frac{\sqrt{33}}{\sqrt{1+x^2}}}} \int_{\frac{\sqrt{33}}{\sqrt{1+x^2}}}^{\frac$$

الا رال $(C)(i) = \frac{Vt}{\sqrt{2}}, \quad y = -\frac{gt}{2} + \frac{Vt}{\sqrt{2}}$ JESINA (i) TTY 2 $t = \sqrt{2x}$ for 0 < 2 < The $y = -\frac{q}{2}, \frac{2^{2}x^{2}}{y^{2}} + x$ (11) Const 7 Surver and $y = -\frac{qx^2}{v^2} + x$ sind Sunse 70 Cosa Suna > Sunta (ii) when y=0 2 Coso Suna 7 2 Sun 2 $0 = -\frac{qx^2}{1} + x$ Sin 22 > 2 Sin 2 $0 = \chi \left(1 - \frac{q_{22}}{\sqrt{2}} \right) = 0$ OR Sun Za 72Sun 2 " start 25mor (052 > 25m2 250 1-qx = 0Graph shows (os x is Sur 270) $\frac{9x}{\sqrt{2}} = 1$ higher than Sing for $x = \frac{v^2}{q}$ のくっしく、11/4 $(iii) (\alpha) OC = \frac{v^2}{9} = OA + AB + BC$ $\frac{V^2}{q} = b + 12a^2 + b$ $\frac{v^2}{9} = 2b + ba^2$ $y = 2c - \frac{qa^2}{v^2}$

 $(\beta) x = b , y = 8a^2$ $8a^2 = b - \frac{qb^2}{r^2}$

$$\frac{\partial uestent}{\partial u} = \frac{14}{14}$$

$$\frac{\partial V}{\partial y} = \frac{14}{2} + \frac{14}{2} = \frac{14}{2} + \frac{14}{2} = \frac{14}{2}$$

$$\frac{\partial V}{\partial y} = \frac{1}{2} + \frac{14}{2} = \frac{14}$$

.

.

.

۰.

$$\frac{OK}{g} (1V)$$

$$\frac{V^{2}}{g} = 2b + 12a^{2} - 0$$

$$8a^{2} = b - \frac{gb^{2}}{V^{2}} - 0$$
from (1) $b = \frac{V^{2}}{V^{2}} - ba^{2}$

$$8a^{2} = \frac{V^{2}}{2g} - ba^{2} \frac{g}{V^{2}} (\frac{V^{2}}{2g} - ba^{2})^{2}$$

$$8a^{2} = (\frac{V^{2}}{2g} - ba^{2}) \left[1 - \frac{g}{V^{2}} (\frac{V^{2}}{2g} - ba^{2})\right]$$

$$8a^{2} = (\frac{V^{2}}{2g} - ba^{2}) \left[1 - \frac{V}{2} + \frac{ba^{2}g}{V^{2}}\right]$$

$$8a^{2} = (\frac{V^{2} - ba^{2}}{2g} \left[\frac{1}{2} + \frac{ba^{2}g}{V^{2}}\right]$$

$$8a^{2} = (\frac{V^{2} - ba^{2}g}{2g} \left[\frac{1}{2} + \frac{ba^{2}g}{2}\right]$$

$$8a^{2} = (\frac{V^{2} - ba^{2}g}{2} - \frac{ba^{2}g}{2} - \frac{ba^{2}g}{2}$$

$$(\sqrt{2} - 3ba^{2}g) \left(\sqrt{2} + 4a^{2}g\right) = 0$$

$$V^{2} = 3ba^{2}g$$

$$V = ba^{2}g$$