Caringbah High School

2019 Year 12 Trial HSC Examination

Mathematics Extension 1

General Instructions

- Reading time - 5 minutes
- Working time - 2 hours
- Write using black pen.
- Board-approved calculators may be used.
- A reference sheet with standard formulae and integrals is provided.
- In Questions 11-14, show relevant mathematical reasoning and/or calculations.

Total marks - 70

Section I (Pages 3-5)
10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II (Pages 6-11)

60 marks

- Attempt Questions 11-14
- Allow about 1 hour and 45 minutes for this section.

Section I

10 marks

Attempt Questions 1-10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1-10.

1. The polynomial $P(x)=x^{4}-k x^{3}-2 x+33$ has $(x-3)$ as a factor. What is the value of k ?
(A) $-4 \frac{4}{9}$
(B) $\quad-4$
(C) 4
(D) $4 \frac{4}{9}$
2. Which is the correct condition for $y=m x+b$ to be a tangent to $x^{2}=4 a y$?
(A) $a m^{2}+b=0$
(B) $a m^{2}-b=0$
(C) $a m+b=0$
(D) $a m-b=0$
3. The roots of $3 x^{3}-2 x^{2}+x-1=0$ are α, β and γ. What is the value of $\alpha^{2} \beta \gamma+\alpha \beta^{2} \gamma+\alpha \beta \gamma^{2}$?
(A) $-\frac{1}{9}$
(B) $-\frac{2}{9}$
(C) 1
(D) $\frac{2}{9}$

$$
\text { Page | } 3
$$

4. Evaluate $\lim _{x \rightarrow \infty}\left(\frac{1+x}{2-x}\right)$.
(A) -2
(B) -1
(C) 1
(D) 2
5. What is the correct expression for $\int \frac{d x}{9+4 x^{2}}$?
(A) $\frac{1}{4} \tan ^{-1}\left(\frac{2 x}{3}\right)$
(B) $\frac{1}{3} \tan ^{-1}\left(\frac{2 x}{3}\right)$
(C) $\frac{1}{6} \tan ^{-1}\left(\frac{2 x}{3}\right)$
(D) $\frac{2}{3} \tan ^{-1}\left(\frac{2 x}{3}\right)$
6. A particle moves in simple harmonic motion so that its velocity, v, is given by $v^{2}=6-x-x^{2}$.

Between which two points does it oscillate?
(A) $x=2$ and $x=-3$
(B) $x=-2$ and $x=3$
(C) $x=1$ and $x=2$
(D) $x=6$ and $x=3$
7. $\tan ^{-1}(-1)=$
(A) $\frac{-3 \pi}{4}$
(B) $\frac{-\pi}{4}$
(C) $\frac{\pi}{4}$
(D) $\frac{3 \pi}{64}$
8.

Segment $A D$ lies on a tangent to the circle centre, O, radius 5 cm .
$B C$ is 6 cm and $C D$ is 9 cm .

Find the exact length of $A D$.
(A) $\sqrt{15}$
(B) $3 \sqrt{6}$
(C) $3 \sqrt{10}$
(D) $3 \sqrt{15}$
9. The general solution for $\cos 2 x=-\frac{1}{2}$, where $, n=0, \pm 1, \pm 2, \ldots$ is
(A) $\quad x=n \pi+(-1)^{n} \frac{\pi}{3}$
(B) $x=n \pi+(-1)^{n} \frac{\pi}{6}$
(C) $x=n \pi \pm \frac{\pi}{6}$
(D) $x=n \pi \pm \frac{\pi}{3}$
10. A flat semi-circular disc is being heated so that the rate of increase of the area $\left(A \mathrm{~m}^{2}\right)$, after t hours, is given by $\frac{d A}{d t}=\frac{1}{4} \pi t$

Initially the disc has a radius of 4 metres.
Which of the following is the correct expression for the area after t hours?
(A) $\quad A=\frac{1}{4} \pi t^{2}+8 \pi$
(B) $\quad A=\frac{1}{8} \pi t^{2}+8 \pi$
(C) $A=\frac{1}{4} \pi t^{2}+16 \pi$
(D) $A=\frac{1}{8} \pi t^{2}+16 \pi$

End of Section I

Section II

60 marks
Attempt Questions 11-14
Allow about 1 hour and 45 minutes for this section .
Answer each question in the appropriate writing booklet. Extra writing booklets are available.
In Questions 11-14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 Marks) Use the Question 11 Writing Booklet.
Marks
a) Calculate the acute angle between the lines $x-5 y-2=0$ and $x-2 y=0$ to the nearest degree.
b) Solve the inequality $\frac{3 x-2}{x+1} \geq 5$.
c) i) Express cos $2 x$ in terms of $\sin ^{2} x$.
ii) Hence evaluate $\lim _{x \rightarrow 0} \frac{\cos 2 x-1}{x \sin x}$.
d) Evaluate $\int_{0}^{3} x \sqrt{9-x^{2}} d x$ using the substitution $u=9-x^{2}$.
e) If A is the point $(-2,-1)$ and B is the point $(1,5)$, find the coordinates of the point P which divides the interval $A B$ externally in the ratio $2: 5$.
f) Ms Namvar bought a slurpy in Port Douglas which had a temperature of $5^{\circ} \mathrm{C}$. The temperature in Port Douglas was $35^{\circ} \mathrm{C}$. The slurpy warms at a rate proportional to the difference between the air temperature and the temperature (T) of the slurpy.

That is, T satisfies the equation $\frac{d T}{d t}=k(T-35)$.
i) Show that $T=35+A e^{k t}$ satisfies this equation.
ii) If the temperature of the slurpy after ten minutes is $10^{\circ} \mathrm{C}$, find its

End of Question 11

Question 12 (15 Marks) Use the Question 12 Writing Booklet.
a) The polynomial $P(x)$ is given by $P(x)=x^{3}+b x^{2}+c x-10$ where b and c are constants. The three zeroes of $P(x)$ are $-1,2$ and α.
i) Find the values of b and c.
ii) Hence or otherwise find the value of α.
b) The equation $2 x^{3}-6 x+1=0$ has roots α, β and γ.

Evaluate $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$.
c) By considering the expansion for $\tan (\alpha-\beta)$, find x so that

$$
\tan ^{-1} x=\tan ^{-1}\left(\frac{1}{2}\right)-\tan ^{-1}\left(\frac{1}{3}\right)
$$

d) Consider the function $f(x)=e^{2 x}+6 e^{x}+9$.
i) Explain why $y=f(x)$ has an inverse function $y=f^{-1}(x)$ for all x.
ii) Draw a neat sketch of $y=f(x)$ and $y=f^{-1}(x)$, showing all intercepts and asymptotes.
iii) Find the equation of the inverse function in terms of x.
iv) Hence or otherwise solve $e^{2 x}+e^{x}=6$.

Question 13 (15 Marks) Use the Question 13 Writing Booklet.
a) Evaluate $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \cos ^{2} 2 x d x$.
b) Given the parametric equations in terms of θ,
$x=3 \sin \theta$ and $y=4 \cos \theta$, find the Cartesian equation.
c) i) Express $3 \sin x-2 \cos x$ in the form $R \sin (x-\alpha)$.
ii) Hence solve $3 \sin x-2 \cos x=1,0 \leq x \leq \frac{\pi}{2}$. 1

Give your answer correct to 3 significant figures.

Question 13 continued on next page

Question 13 (continued)

d) Two points $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ lie on the parabola $x^{2}=4 a y$. The chords $O P$ and $O Q$ meet at right angles at the origin. M is the midpoint of the chord $P Q . R$ is a point (not on the parabola) such that $O P R Q$ is a rectangle, as shown in the diagram below.

i) Show that $p q=-4$.
ii) Explain why R has the coordinates $\left(2 a(p+q), a\left(p^{2}+q^{2}\right)\right)$.
iii) Find the equation of the locus of R.
e) A particle oscillates in a straight line under simple harmonic motion. At time, t, it has displacement of x metres from a fixed point O on the line. It's velocity, $v \mathrm{~ms}^{-1}$, is given by $v^{2}=32+8 x-4 x^{2}$.
i) Find and expression for the particle's acceleration in terms of x.
ii) Find the period and amplitude of the motion.
iii) Find the maximum speed of the particle.

End of Question 13

Question 14 (15 Marks) Use the Question 14 Writing Booklet.
a) Prove by mathematical induction that $\left(3^{2 n}-1\right)$ is divisible by 8 , for all integers $n=1,2,3, \ldots$
b) A point $P(x, y)$ moves so that its distance from $A(8,-2)$ is equal to twice its distance from $B(-1,4)$. Find its locus in algebraic form and describe the locus geometrically.
c) The curve $f(x)=\left(x^{3}-12 x\right)^{\frac{1}{3}}$ is shown below.

i) It can be seen that $y=f(x)$ crosses the x-axis near $x=-3 \cdot 3$. Use one application of Newton's method to obtain another approximation to the root of $f(x)=0$.
ii) Explain why using $x=-3 \cdot 3$ as a first approximation does not produce a better approximation to the root than the original approximation.

Question 14 (continued)

d) Mr Laurendet has taken some time off work to organize a ski-jump training session for the upcoming snow excursion. He has calculated that if he skis down a slope at Perisher at $54 \mathrm{~km} / \mathrm{h}$ and launches of a jump he can land on a target $37 \sqrt{2}$ metres down the slope. It is known that the slope below the jump falls away at an average rate of 45°.

Let acceleration due to gravity to be $g=-10 \mathrm{~ms}^{-2}$ and Mr Laurendet's angle of projection above the horizontal to be θ,
i) Show that his trajectory path is given by the equation

$$
y=-\frac{x^{2} \sec ^{2} \theta}{45}+x \tan \theta
$$

ii) Hence, find the smallest positive angle of projection, θ, to the nearest whole degree, that enables him to land on his target $37 \sqrt{2} \mathrm{~m}$ away.

End of Question 14

End of Examination

2019 Mathematics EXT 1
Solutions

1) C
2) A
3) D
4) B
5) C
b) A
6) B
7) D
8) D
(C) B

Question 11
a)

$$
\begin{aligned}
m_{1}=\frac{1}{5} \\
m_{2}=\frac{1}{2}
\end{aligned} \quad \tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|
$$

b) critical pts $x \neq-1 \quad 3 x-2=5(x+1)$

When $x=-2 \quad \angle H S=8$, True

$$
\begin{aligned}
& x=0 \quad \text { LiS }=-2, \text { Fable } \\
& x=-10 \quad \text { LAS }=-\frac{3-3}{9}, \text { False } \\
& \therefore \quad-\frac{7}{2} \leqslant x<-1
\end{aligned}
$$

c) i) $\cos 2 x=1-2 \sin ^{2} x$

$$
\text { ii) } \begin{aligned}
\lim _{x \rightarrow 0} \frac{1-2 \sin ^{2} x-1}{x \sin x} & =\lim _{x \rightarrow 0}-\frac{2 \sin x}{x} \\
& =-2
\end{aligned}
$$

d)

$$
\text { 1) } \begin{aligned}
& u=9-x^{2} \\
& d u=-2 x d x \\
& x=0 \quad u=9 \\
& x=3 \quad u=0
\end{aligned} \quad \begin{array}{rl}
3 \\
x-x^{2} & d x
\end{array}=-\frac{1}{2} \int_{9}^{0} u^{\frac{1}{2}} d u
$$

e) $\frac{m x_{2}-n x_{1}}{m-n}=\frac{2 \times 1+5 x^{2}}{2-5} \frac{m y_{2}-n y_{1}}{m-n}=\frac{10+5}{-3}$

$$
\begin{aligned}
& =-4=-5 \\
& P(-4,-5)
\end{aligned}
$$

$$
\text { f) i) } \begin{aligned}
& T=35+A e^{k t} \quad A e^{h t}=T-35 \\
& \frac{d T}{d t}=k A e^{h t} \\
&= k(T-35) \text { as required. } \\
& \text { ii) } t=0 \quad 5=35+A e^{0} \therefore A=-30 \\
& t=10 \quad 10=35-30 e^{10 k}= \\
& e^{10 k}=\frac{25}{30} \\
& k=\frac{\ln \frac{3}{6}}{10} \\
& T=35-30 e^{\frac{t}{10} \ln \left(\frac{3}{6}\right)} t=20 T=140
\end{aligned}
$$

Question 12

$$
\begin{array}{rl}
(a), P(-1)=-1+b-c-10=0 & P(2)=8+4 b+2 c-10=0 \\
b-c=11-(1) \quad & 4 b+2 c=2 \\
2 b+c & =1-(2)
\end{array}
$$

$$
\text { (1) (2) } \rightarrow 3 b=12, b=4, c=-7
$$

$$
\text { ii) }-1 \times 2 \times \alpha=10 \text { or }-1+2+\alpha=-4
$$

$$
\alpha=-5
$$

$$
\alpha=5
$$

$$
\begin{aligned}
& \text { b) } \begin{aligned}
\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma} & =\frac{\alpha \beta+\alpha \gamma+\beta \gamma}{\alpha \beta \gamma} \\
\alpha \beta+\alpha \gamma+\beta \gamma & =-\frac{6}{2} \quad \alpha \beta \gamma=-\frac{1}{2} \frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}=6 \\
& =-3
\end{aligned}
\end{aligned}
$$

c) Let $\tan ^{-1} \frac{1}{2}=\alpha$ and $\tan ^{-1} \frac{1}{3}=\beta$

$$
\begin{aligned}
\tan \left[\tan ^{-1} x\right] & =\tan [\alpha-\beta] \\
x & =\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta} \\
& =\frac{\frac{1}{2}-\frac{1}{3}}{1+\frac{1}{2} \times \frac{1}{3}}=\frac{1}{7}
\end{aligned}
$$

d) i, $y=e^{2 x}$ and $y=e^{x}$ are monotonic
increasing functions so $f(x)$ is a monotonic increasing function for all x. Hence, a hor 2 anal line will cross only once, so $f^{-1}(x)$ exists for all x.
$Q 12 d i i)$

iv)

$$
\begin{aligned}
& x=e^{2 y}+6 e^{y}+9 \\
& \quad \text { let } m=e^{y} \quad e^{2 y}=m^{2} \\
& x=m^{2}+6 m+9 \\
& =(m+3)^{2} \\
& m+3= \pm \sqrt{x} \text { as } m>0 \quad m+3=\sqrt{x} \\
& e^{y}+3=\sqrt{x} \\
& \quad e^{y}=\sqrt{x}-3 \\
& y=\ln (\sqrt{x}-3)
\end{aligned}
$$

Question 13
a)

$$
\begin{aligned}
\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \cos ^{2} 2 x d x & =\frac{1}{2} \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \cos 4 x+1 d x \\
& =\frac{1}{2}\left[\frac{\sin 4 x}{4}+x\right]_{\frac{\pi}{3}}^{\frac{\pi}{3}} \\
& =\frac{1}{8}\left[\sin 2 \pi-\sin \frac{4 \pi}{3}\right] \\
& =\frac{\sqrt{3}}{16}+\frac{1}{3}\left[\frac{\pi}{2}-\frac{\pi}{3}\right]
\end{aligned}
$$

b)

$$
\begin{gathered}
\sin \theta=\frac{x}{3} \\
\cos \theta=\frac{y}{4} \\
\sin ^{2} \theta+\cos ^{2} \theta=1 \\
\frac{x^{2}}{9}+\frac{y^{2}}{16}=1
\end{gathered}
$$

c) $3 \sin x-2 \cos x$
$R \sin x \cos \alpha-R \cos k \sin a$
$\cos \alpha=\frac{3}{R} \quad \sin \alpha=\frac{2}{R}$

$$
R=\sqrt{2^{2}+3^{2}}
$$

$=\sqrt{13} \quad \tan \alpha=\frac{2}{3}$

$$
3 \sin x-2 \cos x=\frac{\sqrt{13} \sin \left(x-\tan ^{-1} \frac{2}{3}\right)}{x \div 0.588}
$$

$$
\begin{aligned}
& \text { ii) } \sqrt{13} \sin (x-0.588)=1 \\
& \sin (x-0.588)=\frac{1}{\sqrt{13}} \\
& x-0.588=0.281 \\
& x \div 0.869(3 \operatorname{sig} \text { fig })
\end{aligned}
$$

$$
\begin{aligned}
& \text { d)ip} m_{O p} \times m_{O Q}=-1 \\
& \begin{aligned}
& m_{O p}=\frac{a p^{2}}{2 a p} \quad m_{O Q}=\frac{a q^{2}}{2 a q} \\
&=\frac{p}{2} \\
& \therefore \frac{p}{2} \times \frac{q}{2}=-1
\end{aligned}
\end{aligned}
$$

$p q=-4$ as requited
ii) $O(0,0) \rightarrow Q$
add $2 a q$ to x cooed. (o $2 a q$) add $a q^{2}$ to y coord. (o raq2)

$$
P\left(2 a p, a p^{2}\right) \rightarrow R
$$

add $2 a q$ to $x \operatorname{cood}(2 a p+2 a q)$
add $a^{\prime} q^{2}$ to $y \operatorname{coord}\left(a p^{2}+c q^{2}\right)$

$$
\begin{array}{r}
\therefore R\left[2 a(p+q), a\left(p^{2}+q^{2}\right)\right] \\
x=2 a(p+q) \quad y=a\left(p^{2}+q^{2}\right) \\
p+q=\frac{x}{2 a} \quad p^{2}+q^{2}=\frac{y}{a} \\
(p+q)^{2}-2 p q=\frac{y}{a} \\
\left(\frac{x}{2 a}\right)^{2}-2 x(-4)=\frac{y}{a} \\
\frac{x^{2}}{4 a^{2}}+8=\frac{y}{a} \\
x^{2}=4 a y-32 a^{2}
\end{array}
$$

Q132

$$
\begin{aligned}
v^{2} & =32+8 x-4 x^{2} \\
\frac{1}{2} v^{2} & =16+4 x-2 x^{2} \\
\frac{d\left(\frac{1}{2} v^{2}\right)}{d x} & =4-4 x \\
& =-4(x-1)
\end{aligned}
$$

ii)

$$
\begin{aligned}
& v=0 \quad 4 x^{2}-8 x-32=0 \\
& 2 x^{2}-4 x-16=0 \\
&(2 x-8)(x+2)=0 \\
& x=-2 \text { or } x=4 \\
& \therefore \text { oscillates between } x=-2,4 \\
& \text { ie amplitude }=3 \\
& T=\frac{2 \pi}{n} \quad n^{2}=4 \therefore n=2 \\
&=\prod^{2} \text { seconds }
\end{aligned}
$$

iii) Max speed at centre ole oxcitlition

$$
\begin{aligned}
x=1 \quad v^{2} & =32+8-4 \\
& =36
\end{aligned}
$$

\therefore max speed $=6 \mathrm{~m} / \mathrm{s}$
Q14

$$
n=1 \quad 3^{2 n}-1=8 \therefore \text { true for }
$$

Assume true for $n=k$.

$$
\begin{array}{cc}
3^{2 h}-1=8 M & \text { (Misinteger) } \\
2 \text { for } n-h \cdot 1 & \text { for }
\end{array}
$$

Prove true for $n=k_{1} 1$

$$
\begin{aligned}
3^{2(k+1)}-1 & =3^{2} \cdot 3^{2 k}-1 \\
& =9(8 m+1)-1 \\
& =72 m+8 \\
& =8(9 m+1) \therefore \text { divisible }
\end{aligned}
$$

$$
\text { by } 8
$$

\therefore If true for $n=k$, then true for $n=k!1$ As it is tace for $n=1$, then $b y$, the principle ot matte maliél induction, it is true for all integers $n=1,2,3, \ldots$
b)

$$
\begin{aligned}
& A P=2 B P \\
& A P^{2}=4 B P^{2} \\
& (x-8)^{2}+(y+2)^{2}=4\left[(x+1)^{2}+(y-4)^{2}\right] \\
& x^{2}-16 x+64+y^{2}+4 y+4=4 x^{2}+8 x+4+4 y^{2}-32 y+64 \\
& 3 x^{2}+24 x+3 y^{2}-36 y=0 \\
& x^{2}+8 x+y^{2}-12 y=0 \\
& \begin{array}{l}
(x+4)^{2}+(y-6)^{2}-52 \\
\text { circlecontre }(-4,6) \\
\end{array} \quad \text { radius }=\sqrt{52} \\
& =2 \sqrt{13}
\end{aligned}
$$

c) i)

$$
\text { c) i) } \begin{aligned}
f(x)= & \left(x^{3}-12 x\right)^{\frac{1}{3}} \\
f^{\prime}(x)= & \frac{1}{3}\left(3 x^{2}-12\right)\left(x^{3}-12 x\right)^{\frac{2}{3}} \\
= & \frac{x^{2}-4}{\left(x^{3}-12 x\right)^{\frac{2}{3}}} \\
x_{1}=-3.3 \quad & \quad f(-3.3) \doteqdot 1.542 \\
& f^{\prime}(-3.3) \doteqdot 2.900
\end{aligned}
$$

$$
\begin{aligned}
x_{2} & =x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)} \\
& =-3.3-\frac{1.542}{2.9} \\
& =-3.83\left(3 \operatorname{sig} f_{g}\right)
\end{aligned}
$$

ii) Newton's method uses the x-interepts of tangents to find an approximate. At $x=-3.3$ the slope $b y=f(x)$ is not rex steep and the pushes the tangent away from the root rather than closer.

Q14d
i)

$$
\begin{aligned}
& \dot{x}=V \cos \alpha \quad y=-g t+V \sin \alpha \\
& V=54 \mathrm{~km} / \mathrm{h}=15 \mathrm{~ms}^{-1} \\
& \dot{x}=15 \cos \theta \quad \dot{y}=-10 t+15 \sin \theta \\
& x=15 t \cos \theta+c \quad y=-5 t^{2}+15 \sin \theta+c \\
& t=0 \quad x=0 \quad y=0 \quad \therefore B_{0}+h c=0 \\
& x=15 t \cos \theta \\
& t=\frac{x}{15 \cos \theta} \\
& y=-5\left(\frac{x}{15 \cos \theta}\right)^{2}+15\left(\frac{x}{15 \cos \theta}\right) \sin \theta \\
&=\frac{-x^{2}}{4 \cos ^{2} \theta}+\frac{x \sin \theta}{\cos \theta} \\
&=-\frac{x^{2} \sec ^{2} \theta}{45}+x \tan \theta .
\end{aligned}
$$

ii)

$$
\begin{aligned}
& x=37 \\
& \frac{x+37 \sqrt{2}}{x}
\end{aligned}
$$

$$
y=-37
$$

$$
\begin{aligned}
x^{2}+x^{2} & =(37 \sqrt{2})^{2} \\
2 x^{2} & =37^{2} \times 2 \\
x & =37, y=37
\end{aligned}
$$

$$
\begin{gathered}
-37=-\frac{\left(37^{2}\right) \sec ^{2} \theta}{45}+37 \tan \theta \\
\sec ^{2} \theta=1+\tan ^{2} \theta \\
-37=-\frac{37^{2}}{45}\left(1+\tan ^{2} \theta\right)+37 \tan \theta \\
-45=-37-37 \tan ^{2} \theta+45 \tan \theta \\
37 \tan ^{2} \theta-45 \tan \theta-8=0 \\
\text { let } m=\tan \theta
\end{gathered}
$$

