Caringbah High School

2019 Year 12 Trial HSC Examination

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black pen.
- Board-approved calculators may be used.
- A reference sheet with standard formulae and integrals is provided.
- In Questions 11–14, show relevant mathematical reasoning and/or calculations.

Total marks – 70

Section I (Pages 3–5)

- Attempt Questions 1–10
- Allow about 15 minutes for this section

Section II (Pages 6-11)

60 marks

- Attempt Questions 11–14
- Allow about 1 hour and 45 minutes for this section.

Section I

10 marks Attempt Questions 1–10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1–10.

1. The polynomial $P(x) = x^4 - kx^3 - 2x + 33$ has (x - 3) as a factor. What is the value of k?

(A)
$$-4\frac{4}{9}$$
 (B) -4

- (C) 4 (D) $4\frac{4}{9}$
- 2. Which is the correct condition for y = mx + b to be a tangent to $x^2 = 4ay$?
 - (A) $am^2 + b = 0$ (B) $am^2 b = 0$
 - (C) am + b = 0 (D) am b = 0
- 3. The roots of $3x^3 2x^2 + x 1 = 0$ are α , β and γ . What is the value of $\alpha^2 \beta \gamma + \alpha \beta^2 \gamma + \alpha \beta \gamma^2$?

(A)
$$-\frac{1}{9}$$
 (B) $-\frac{2}{9}$

(C) 1 (D)
$$\frac{2}{9}$$

4. Evaluate
$$\lim_{x \to \infty} \left(\frac{1+x}{2-x} \right)$$
.
(A) -2 (B) -1
(C) 1 (D) 2

5. What is the correct expression for
$$\int \frac{dx}{9+4x^2}$$
?

(A)
$$\frac{1}{4} \tan^{-1}\left(\frac{2x}{3}\right)$$
 (B) $\frac{1}{3} \tan^{-1}\left(\frac{2x}{3}\right)$
(C) $\frac{1}{6} \tan^{-1}\left(\frac{2x}{3}\right)$ (D) $\frac{2}{3} \tan^{-1}\left(\frac{2x}{3}\right)$

6. A particle moves in simple harmonic motion so that its velocity, *v*, is given by $v^2 = 6 - x - x^2$.

Between which two points does it oscillate?

- (A) x = 2 and x = -3 (B) x = -2 and x = 3
- (C) x = 1 and x = 2 (D) x = 6 and x = 3

7. $\tan^{-1}(-1) =$ (A) $\frac{-3\pi}{4}$ (B) $\frac{-\pi}{4}$

(C)
$$\frac{\pi}{4}$$
 (D) $\frac{3\pi}{64}$

Segment *AD* lies on a tangent to the circle centre, *O*, radius 5 cm.

BC is 6 cm and CD is 9 cm.

Find the exact length of *AD*.

9. The general solution for $\cos 2x = -\frac{1}{2}$, where $n = 0, \pm 1, \pm 2, ...$ is

(A) $x = n\pi + (-1)^n \frac{\pi}{3}$ (B) $x = n\pi + (-1)^n \frac{\pi}{6}$

(C)
$$x = n\pi \pm \frac{\pi}{6}$$
 (D) $x = n\pi \pm \frac{\pi}{3}$

10. A flat semi-circular disc is being heated so that the rate of increase of the area (A m²),

after *t* hours, is given by $\frac{dA}{dt} = \frac{1}{4}\pi t$

Initially the disc has a radius of 4 metres.

Which of the following is the correct expression for the area after *t* hours?

(A)
$$A = \frac{1}{4}\pi t^2 + 8\pi$$

(B) $A = \frac{1}{8}\pi t^2 + 8\pi$
(C) $A = \frac{1}{4}\pi t^2 + 16\pi$
(D) $A = \frac{1}{8}\pi t^2 + 16\pi$

End of Section I

Section II 60 marks Attempt Questions 11–14 Allow about 1 hour and 45 minutes for this section .

Answer each question in the appropriate writing booklet. Extra writing booklets are available.

In Questions 11–14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 Marks) Use the Question 11 Writing Booklet.		Marks
a)	Calculate the acute angle between the lines $x - 5y - 2 = 0$ and $x - 2y = 0$ to the nearest degree.	2
b)	Solve the inequality $\frac{3x-2}{x+1} \ge 5$.	2
c)	i) Express $\cos 2x$ in terms of $\sin^2 x$.	1
	ii) Hence evaluate $\lim_{x \to 0} \frac{\cos 2x - 1}{x \sin x}$.	1
d)	Evaluate $\int_{0}^{3} x \sqrt{9 - x^{2}} dx$ using the substitution $u = 9 - x^{2}$.	3
e)	If <i>A</i> is the point $(-2, -1)$ and <i>B</i> is the point $(1, 5)$, find the coordinates of the point <i>P</i> which divides the interval <i>AB</i> externally in the ratio 2:5.	2
f)	Ms Namvar bought a slurpy in Port Douglas which had a temperature of 5° C. The temperature in Port Douglas was 35° C. The slurpy warms at a rate proportional to the difference between the air temperature and the temperature (T) of the slurpy.	
	That is, <i>T</i> satisfies the equation $\frac{dT}{dt} = k(T - 35)$.	
	i) Show that $T = 35 + Ae^{kt}$ satisfies this equation.	1
	ii) If the temperature of the slurpy after ten minutes is 10° C, find its temperature, to the nearest whole degree, after 20 minutes.	3

End of Question 11

- a) The polynomial P(x) is given by $P(x) = x^3 + bx^2 + cx 10$ where *b* and *c* are constants. The three zeroes of P(x) are -1, 2 and α .
 - i) Find the values of b and c. 2
 - ii) Hence or otherwise find the value of α . 1

b) The equation
$$2x^3 - 6x + 1 = 0$$
 has roots α, β and γ . 2

Evaluate $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$.

c) By considering the expansion for $\tan(\alpha - \beta)$, find *x* so that **3**

$$\tan^{-1} x = \tan^{-1}\left(\frac{1}{2}\right) - \tan^{-1}\left(\frac{1}{3}\right).$$

d) Consider the function
$$f(x) = e^{2x} + 6e^x + 9$$
.

- i) Explain why y = f(x) has an inverse function $y = f^{-1}(x)$ for all x. 1
- ii) Draw a neat sketch of y = f(x) and $y = f^{-1}(x)$, 2 showing all intercepts and asymptotes.
- iii) Find the equation of the inverse function in terms of *x*. **3**
- iv) Hence or otherwise solve $e^{2x} + e^x = 6$. 1

End of Question 12

a) Evaluate
$$\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \cos^2 2x \, dx.$$
 3

Marks

b) Given the parametric equations in terms of θ , 1 $x = 3 \sin \theta$ and $y = 4 \cos \theta$, find the Cartesian equation.

- c) i) Express $3 \sin x 2 \cos x$ in the form $R \sin(x \alpha)$. 2
 - ii) Hence solve $3 \sin x 2 \cos x = 1$, $0 \le x \le \frac{\pi}{2}$. Give your answer correct to 3 significant figures.

Question 13 continued on next page

Question 13 (continued)

d) Two points $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ lie on the parabola $x^2 = 4ay$. The chords *OP* and *OQ* meet at right angles at the origin. *M* is the midpoint of the chord *PQ*. *R* is a point (not on the parabola) such that *OPRQ* is a rectangle, as shown in the diagram below.

- i) Show that pq = -4. 1
- ii) Explain why *R* has the coordinates $(2a(p+q), a(p^2+q^2))$. 1

2

- iii) Find the equation of the locus of *R*.
- e) A particle oscillates in a straight line under simple harmonic motion. At time, *t*, it has displacement of *x* metres from a fixed point *O* on the line. It's velocity, $v \text{ ms}^{-1}$, is given by $v^2 = 32 + 8x 4x^2$.

i)	Find and expression for the particle's acceleration in terms of <i>x</i> .	1
ii)	Find the period and amplitude of the motion.	2
iii)	Find the maximum speed of the particle.	1

End of Question 13

- a) Prove by mathematical induction that $(3^{2n} 1)$ is divisible by 8, for all integers n = 1, 2, 3, ...
- b) A point P(x, y) moves so that its distance from A(8, -2) is equal to twice its distance from B(-1, 4). Find its locus in algebraic form and describe the locus geometrically.

- i) It can be seen that y = f(x) crosses the *x*-axis near $x = -3 \cdot 3$. Use one application of Newton's method to obtain another approximation to the root of f(x) = 0.
- ii) Explain why using x = -3.3 as a first approximation does not produce a better approximation to the root than the original approximation.

Question 14 continued on next page

3

Marks

1

Question 14 (continued)

d) Mr Laurendet has taken some time off work to organize a ski-jump training session for the upcoming snow excursion. He has calculated that if he skis down a slope at Perisher at 54 km/h and launches of a jump he can land on a target $37\sqrt{2}$ metres down the slope. It is known that the slope below the jump falls away at an average rate of 45°.

Let acceleration due to gravity to be $g = -10 \text{ ms}^{-2}$ and Mr Laurendet's angle of projection above the horizontal to be θ ,

i) Show that his trajectory path is given by the equation

$$y = -\frac{x^2 \sec^2 \theta}{45} + x \tan \theta$$

ii) Hence, find the smallest positive angle of projection, θ , to the nearest **3** whole degree, that enables him to land on his target $37\sqrt{2}$ m away.

3

End of Question 14

End of Examination

$$\frac{2019 \text{ MATHEMATICS EXT 1}}{\frac{5040710NS}{2}}$$
1) C 2) A 3) D 4)B 5) C
6) A 7) B 8) D 9) D 0) B

$$\frac{Question II}{M_2 = \frac{1}{2}}$$

$$\frac{1}{m_2 = \frac{1}{m_2}}$$

$$\frac{1}{m_2}$$

F) i)
$$T = 35 + Ae^{kt}$$
 He^{kt} $He^{kt} = 7-35$
 $\frac{dT}{dt} = kAe^{kt}$
 $iii = k(T-35)$ as required.
 $e^{10k} = 25$
 $k = 1n\frac{5}{35}$
 $k = \frac{1}{16}\frac{5}{35}$
 $T = 35-30e^{\frac{1}{15}h(\frac{5}{2})} = 20T = 14^{\circ}$
 $Question 12$
 $Question 12$

$$Q | 2 d i \rangle A_{5} x = -i \rho f_{x} = q$$

$$x = o f_{0} = 16$$

$$y = \frac{1}{16}$$

$$y = \frac{$$

c) i)
$$3 \sin x - 2 \cos x$$

Romacosa - R cost sina
 $\cos \alpha = \frac{3}{R} \sin \alpha = \frac{2}{R}$
 $= \sqrt{2^2 + 3^2}$
 $= \sqrt{3}$ $\tan \alpha = \frac{2}{3}$
 $3 \sin x - 2\cos x = \sqrt{13} \sin (n - \tan^2 \frac{3}{3})$
 $\alpha = \frac{1}{2} \cos x - \frac{1}{2} \cos x = \frac{1}{2} \sin (n - \tan^2 \frac{3}{3})$
 $\alpha = \frac{1}{2} \cos x = \sqrt{13} \sin (n - \tan^2 \frac{3}{3})$
 $\alpha = \frac{1}{2} \cos x = \frac{1}{2} \sin (n - \tan^2 \frac{3}{3})$
 $x = 0 - 588 = 1$
 $\sin (x - 0 - 588) = \frac{1}{13}$
 $x = 0 - 588 = 0 - 281$
 $x = 0 - 869$ ($3 \sin g$ fig)
 $\frac{1}{2}$) i) $M_{OP} \times M_{OR} = -1$
 $M_{OP} = \frac{\alpha p^2}{2\alpha p}$
 $m_{OR} = \frac{\alpha q^2}{2\alpha q}$
 $= \frac{p}{2}$
 $\therefore \frac{p}{2} \times \frac{q}{2} = -1$
 $Pg = -4$ as regular
ii) $O(0, 0) \rightarrow \alpha$
 $add ag^2 ho x coord. (o + 2ag)$
 $add ag^2 ho y coord. (ap^2 + cy^2)$
 $\therefore R\left[2\alpha(p+q), \alpha(p^2+q^2)\right]$
 $Y = 2\alpha(p+q)$
 $y = \alpha(p^2+q^2 = \frac{9}{\alpha}$
 $(p+q)^2 - 2pq = \frac{9}{\alpha}$
 $(\frac{1}{2\alpha})^2 - 2s(y) = \frac{9}{\alpha}$
 $\frac{x^2}{4\alpha^2} + 8 = \frac{9}{\alpha}$
 $x^2 = 4\alpha y - 32\alpha^2$

Q13 e i)
$$\nabla^2 = 32 + 8x - 4x^2$$

 $\frac{1}{2}v^2 = 16 + 4x - 2x^2$
 $\frac{d(kv^2)}{dx} = 4 - 4x$
 $\frac{d(kv^2)}{dx} = 4 - 4x = 0$
 $2x - 8x - 32 = 0$
 $2x - 8y (x + 2) = 0$
 $x = -2$ or $x = 4$
 $\therefore 0 = cillates between $x = -2, 4$
 $i = amplitude = 3$
 $T = 2\pi$ $n = 4$ $\therefore n = 2$
 $= 1$ $5e conds$
111) Max speed at centre of oscillation
 $x = 1$ $\sigma^2 = 32 + 8 - 4$
 $\therefore max speed = 6 m/s$
Q14
 $n = 1$ $3^{2n} - 1 = 8$ is true for
 $n = 1$
 $1 = 3^{2n} - 1 = 8$ is true for
 $n = 1$
 $1 = 3^{2n} - 1 = 8$ is true for
 $n = 1$
 $1 = 3^{2n} - 1 = 8$ is true for
 $n = 1$
 $2^{(k+1)} - 1 = 3 = 3 - 1$
 $= q(8m + 1) - 1$
 $= 72m + 8$
 $= 8(4m + 1) = 1$
 $= 72m + 8$
 $= 8(4m + 1) = 1$
 $k = 1$ $k = 1$
 $4x = 1$ $k = 1$
 $4x = 1$ $k = 1$ $k = 1$
 $4x = 1$ $k = 1$ $k = 1$
 $4x = 1$ $k = 1$ $k = 1$
 $k = 1$ $k = 1$ $k = 1$ $k = 1$ $k = 1$
 $k = 1$ $k = 1$$

b)
$$f = 2BP$$

 $f = 4BP^{2}$
 $(x - 3)^{2} + (y + 2)^{2} = 4[(x + 1)^{2} + (y - 4)^{2}]$
 $x^{2} - 16x + 64 + y^{2} + 4y + 4z = 4x^{2} + 8x + 44 - 4y^{2} - 32y + 64$
 $3x^{2} + 24x + 3y^{2} - 36y = 0$
 $x^{2} + 8x + y^{2} - 12y = 0$
 $(x + 4)^{2} + (y - 6)^{2} = 52$
 $circle contre(46) radhs = \sqrt{52}$
 $= 2\sqrt{13}$
c) i) $f(x) = (x^{3} - 12x)^{3}$
 $f'(x) = \frac{1}{3}(3x^{2} - 12)(x^{-1}2x)^{3}$
 $= \frac{x^{2} - 4}{(x^{3} - 12x)^{2}}$
 $x_{1} = -3 \cdot 3$ $f(-3 \cdot 3) = 1 \cdot 542$
 $f'(x) = \frac{1}{2 \cdot 9}(3x^{2} - 12)(x^{-1}2x)^{3}$
 $x = -3 \cdot 3$ $f(-3 \cdot 3) = 1 \cdot 542$
 $f'(x, 1) = -3 \cdot 3 - \frac{1}{15} \frac{542}{2 \cdot 9}$
 $f'(x, 1) = -3 \cdot 3 - \frac{1}{15} \frac{542}{2 \cdot 9}$
 $i) Newton's method uses the x-interepts of trangents to find an approximate.
At $x = -3 \cdot 3$ the slope of $y = 6x$ is not very steep and these pushes the transformation the root rother than closer.$

Q14d
i)
$$x = V_{coso}$$
 $y = -gt + V_{sind}$
 $V = 54 hm/h = 15 ms'$
 $x = 15 coso$ $y = -10t + 15 sino$
 $x = 15 t coso + c$ $y = -st + 15 t sino + c$
 $t = 0$ $n = 0$ $y = 0$ $i. Both c = 0.$
 $y = -st coso$ $y = -st + 15 t sino$
 $t = \frac{n}{15 coso}$ $y = -st + 15 t sino$
 $t = \frac{n}{15 coso}$ $y = -st + 15 t sino$
 $t = \frac{n}{15 coso}$ $y = -st + 15 t sino$
 $t = \frac{n}{15 coso}$ $y = -st + 15 t sino$
 $t = \frac{n}{15 coso}$ $y = -st + 15 t sino$
 $t = \frac{n}{15 coso}$ $y = -37$
 $y = -37$ $y = -37$
 $2 x^{2} = 37^{2} x^{2}$
 $y = -37$ $y = -37$
 $2 x^{2} = 37^{2} x^{2}$
 $y = -37, y = 37$
 $-37 = -(37^{2}) scio + 37 tano)$
 $sec^{2} = 11 tan^{2} + 37 tano)$
 $-37 = -37 (11 tan^{2} + 37 tano)$
 $-37 = -37 - 37 tano)$ $+ 37 tono$
 $-45 = -37 - 37 tano)$ $+ 37 tono$
 $-45 = -37 - 37 tano)$ $+ 37 tono$
 $-45 = -37 - 37 tano)$ $+ 37 tono$
 $-45 = -37 - 37 tano)$ $+ 35 tano)$
 $37 tan^{2} - 45 tano - 8 = 0$
 $1et m = tano$

$$37M^{2} - 45m - 9 = 0$$

$$M = 45 \pm \sqrt{45^{2} + 4 \times 37 \times 8}$$

$$= 1 \cdot 373 \text{ or } -0 \cdot 157$$

$$as m = 0$$

$$\Theta = 4an^{2} (1 \cdot 373)$$

$$= 54^{\circ}$$