

CARINGBAH HIGH SCHOOL

2020 HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

Mathematics Extension 1

General	 Reading time – 10 minutes Working time – 2 hours 				
Instructions					
	 Write using blue or black pen 				
	 Calculators approved by NESA may be used 				
	• A reference sheet is provided on separate paper				
	 In Questions 11–14, show relevant mathematical reasoning and/or calculations 				
	_				
Total marks:	Section I – 10 marks (pages 2–4)				
70	Attempt Questions 1–10				
	• Allow about 15 minutes for this section				
	Section II – 60 marks (pages 5–10)				
	 Attempt Questions 11–14 				
	• Allow about 1 hour and 45 minutes for this section				

		Mar	ker's Use Only			
Section I		Secti	on II		То	tal
Q 1-10	Q11	Q12	Q13	Q14	10	tai
/10	/15	/15	/15	/15	/70	%

Section I

10 marks Attempt Questions 1 - 10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10

- 1 Which of the following pairs of parametric equations represents a circle that passes through the origin?
 - (A) $x=3+3\cos\theta$, $y=4+3\sin\theta$
 - (B) $x=3+4\cos\theta$, $y=4+4\sin\theta$
 - (C) $x=3+5\cos\theta, y=4+5\sin\theta$
 - (D) $x=3+7\cos\theta$, $y=4+7\sin\theta$
- 2 A spherical balloon is being inflated at a constant rate of 200π cm³ s⁻¹. At what rate is the radius of the balloon increasing when the radius is 10 cm?
 - (A) 0.25 cm s^{-1}
 - (B) 0.5 cm s^{-1}
 - (C) 1.0 cm s^{-1}
 - (D) 2.0 cm s^{-1}
- 3 In the diagram, *OABC* is parallelogram. The vector $\overrightarrow{OA} = a$ and $\overrightarrow{OC} = c \cdot M$ is the midpoint of *OA*. Which of the following expressions is represented by the vector \overrightarrow{MB} ?

(A)
$$\frac{1}{2}a - c$$

(B)
$$\frac{1}{2}a + c$$

(C)
$$a - \frac{1}{2}c$$

(D)
$$a + \frac{1}{2}c$$

- 4 What is the number of distinct solutions of the equation $3\cos\theta + 4\sin\theta = 5$ for $0 \le \theta \le 2\pi$?
 - (A) 1
 - (B) 2
 - (C) 3
 - (D) 4

5 Solve the inequality
$$\frac{x^2-4}{x} \ge 0$$
.

- (A) $-2 \le x < 0$ or $x \ge 2$
- (B) $-2 \ge x > 0$ or $x \le 2$
- (C) $-4 \le x < 0$ or $x \ge 4$
- (D) $-4 \ge x > 0$ or $x \le 4$
- 6 Which of the following vectors is perpendicular to the vector $\begin{pmatrix} 4 \\ -2 \end{pmatrix}$?

(A)
$$\begin{pmatrix} -4\\ 2 \end{pmatrix}$$

(B)
$$\begin{pmatrix} 2\\ -4 \end{pmatrix}$$

(C)
$$\begin{pmatrix} -2\\ 4 \end{pmatrix}$$

(D)
$$\begin{pmatrix} -2\\ -4 \end{pmatrix}$$

7 What is the value of
$$\frac{d}{dx}\sin^{-1}\sqrt{1-x^2}$$
?

(A)
$$\frac{-1}{x\sqrt{1-x^2}}$$

(B)
$$\frac{-1}{\sqrt{1-x^2}}$$

(C)
$$\frac{1}{\sqrt{1-x^2}}$$

(D)
$$\frac{1}{x\sqrt{1-x^2}}$$

- 8 What is the value of k such that the function $f(x) = \frac{k}{1+x^2}$, $-1 \le x \le 1$ is a probability density function?
 - (A) $k = \frac{\pi}{4}$ (B) $k = \frac{\pi}{2}$ (C) $k = \frac{2}{\pi}$ (D) $k = \frac{4}{\pi}$
- 9 A geometric series $1 \frac{1}{x} + \frac{1}{x^2} \frac{1}{x^3} + \dots$ has limiting sum *S*. For what values of *x* is S < 1?
 - (A) x > -1
 - (B) $x > -1, x \neq 0$
 - (C) x > 0
 - (D) x > 1
- 10 Three fair dice of different colours are rolled together. What is the probability that the product of the three scores is a perfect square?

(Λ)	_6
(A)	216
(B)	$\frac{13}{216}$
(C)	$\frac{32}{216}$
(D)	$\frac{38}{216}$

Section II

60 marks Attempt Questions 11 – 14 Allow about 1 hours and 45 minutes for this section

Answer each question in the appropriate writing booklet. Extra writing booklets are available. In Question 11-14 your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use the Question 11 Writing Booklet.

(a) Differentiate
$$\tan^{-1}(\log_e x)$$
 1
(b) Find $\int_0^{\frac{\pi}{6}} \sin x \cos x \, dx$ 2

(c)	(i)	Find the unit vector in the direction of the vector $(4i + 3j)$.	1
	(ii)	A particle is moving with velocity $v = (15\underline{i} + 20\underline{j}) ms^{-1}$.	
		Find the component of v in the direction of the vector $(4i + 3j)$.	2

(d) Use the substitution
$$t = \tan \frac{x}{2}$$
 to find the solutions of the equation
 $\cos x - 3\sin x + 3 = 0$ for $0 \le x \le 2\pi$ correct to 2 decimal places

- The discrete random variable *X* has a binomial distribution with *n* independent 3 (e) trials with probability of success p. If its mean is 6 and its standard deviation is 2, find the values of *n* and *p*.
- Use the mathematical induction to prove that $3^{2n+4} 2^{2n}$ is divisible by 5 for 3 (f) integers $n \ge 1$.

End of Question 11

Question 12 (15 marks) **Use the Question 12 Writing Booklet.**

- (a) (i) Sketch the graph of the function $y = \tan^{-1} \frac{1}{2}(x-2)$ showing clearly 2 the intercepts on the axes and the equations of the asymptotes.
 - (ii) The graph of the function $y = \tan^{-1} \frac{1}{2}(x-2)$ is transformed by a translation left by 1 unit, then a horizontal dilation with a scale factor 2.

Find the equation of the transformed graph.

- (b) (i) Records show that 64% of students at a school travelled to and from school by bus. Samples of 100 students at the school are taken to determine the proportion who travel to and from school by bus. Show that the distribution of such sample proportions has mean 0.64 and standard deviation 0.048.
 - (ii) Use the table (shown below) of P(Z < z), where Z has a standard normal distribution, to estimate the probability that a sample of 100 students will contain at least 58 and at most 64 students who travel to and from school by bus.

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177

(c) The polynomial equation $4x^3 - 12x^2 + 5x + 6 = 0$ has roots α , β and γ . It is known that one of the roots is the sum of the other two. Find α , β and γ .

(d) By using the fact that
$$(1+x)^{11} = (1+x)^3 (1+x)^8$$
. Show that

3

3

2

3

$$\binom{11}{5} = \binom{8}{5} + \binom{3}{1}\binom{8}{4} + \binom{3}{2}\binom{8}{3} + \binom{8}{2}$$

End of Question 12

Use the Question 13 Writing Booklet.

Question 13 (15 marks) (a)

In the diagram above, the region bounded by the curve $y = 2^x - 2$ and the *x* axis between x = -1 and x = 2 is rotated through one revolution about the *x* axis.

Find in simplest **exact** form the volume of the solid formed.

(b) A vertical tower of height *h* metres stands with its base at a point *O* on horizonal ground. At the same instant, stone *A* is projected from *O* with speed $V ms^{-1}$ at an angle α above the horizontal and stone *B* is projected from the top of the tower with speed $U ms^{-1}$ at an angle β above the horizontal, where $\alpha > \beta$. The two stones move in the same vertical plane under gravity, where the acceleration due to gravity is $g ms^{-2}$, and collide after *T* seconds. At time *t* seconds after firing, the position vectors of the two stones are

$$r_A(t) = (Vt \cos \alpha)\underline{i} + (-\frac{1}{2}gt^2 + Vt \sin \alpha)\underline{j}$$
$$r_B(t) = (Ut \cos \beta)\underline{i} + (h - \frac{1}{2}gt^2 + Ut \sin \beta)\underline{j} . \text{ (DO NOT PROVE THIS)}$$

Show that $T = \frac{h \cos \alpha}{U \sin(\alpha - \beta)}$.

Question 13 continues on page 8

Question 13 (continued)

(c) (i) Prove the trigonometric identity
$$\tan 3\theta = \frac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta}$$
 using the 2 compound angle formula.

(ii) Hence find expressions for the exact values of the solutions to the equation
$$\frac{3x - x^3}{1 - 3x^2} = \sqrt{3}$$
.

(iii) Hence show that
$$\tan \frac{\pi}{9} \times \tan \frac{4\pi}{9} \times \tan \frac{7\pi}{9} = -\sqrt{3}$$
. 2

End of Question 13

Question 14 (15 marks) **Use the Question 14 Writing Booklet.**

(a) The cubic equation $2x^3 - x^2 + x - 1 = 0$ has roots α , β and γ . Show without finding each individual root that

(i)
$$\alpha^2 + \beta^2 + \gamma^2 = -\frac{3}{4}$$
 2

(ii)
$$\alpha^3 + \beta^3 + \gamma^3 = \frac{7}{8}$$
 2

(b) (i) Using the substitution
$$x = \cos 2\theta$$
, show

$$\int_{0}^{1} \sqrt{\frac{1-x}{1+x}} \, dx = \int_{0}^{\frac{\pi}{4}} 4\sin^{2}\theta \, d\theta$$

(ii) Hence evaluate in simplest exact form
$$\int_0^1 \sqrt{\frac{1-x}{1+x}} dx$$
 2

Question 14 continues on page 10

Question 14 (continued)

(c) The function $f(x) = 1 + \ln x$ is defined in the domain (0,1].

(i) Show that
$$\frac{d}{dx}(x \ln x) = 1 + \ln x$$

The diagram shows the graphs of the function y = f(x) and the inverse function $y = f^{-1}(x)$.

- (ii) Find in simplest exact form the area of the shaded region in the first **3** quadrant bounded by the curves y = f(x), $y = f^{-1}(x)$ and the coordinate axes.
- (iii) Sketch the graph of the curve $y = \frac{1}{f(x)}$, showing clearly the coordinates 2 of the endpoints and the equations of any asymptotes.
- (iv) Use **interval notation** to state the **range** of the function $y = \frac{1}{f(x)}$ 1

End of Examination

Student Name/Number _____

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

• If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

 If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word correct and drawing an arrow as follows.

1.	$_{\rm A}$ O	ВO	сO	DO
2.	$_{\rm A}$ O	BO	сO	DO
3.	$_{\rm A}$ \bigcirc	ВО	СО	DO
4.	$_{\rm A}$ \bigcirc	ВО	СО	DO
5.	$A \bigcirc$	ВO	СО	DO
6.	$_{\rm A}$ O	BO	сO	DO
7.	$_{\rm A}$ O	ВО	сO	DO
8.	$_{\rm A}$ \bigcirc	ВO	сO	DO
9.	$_{\rm A}$ \bigcirc	ВО	СО	DO
10.	$_{\rm A}$ \bigcirc	вO	СО	DO

Caringbah High School Examination: Answers. MCQ 1) C 2) B 3) B 4) A 5) A 6) D Answersen Answe			Extensi	on 1 Trial
$\frac{MCG}{1) C} \xrightarrow{2} B \xrightarrow{3} B \xrightarrow{4} A \xrightarrow{5} A \xrightarrow{6} D$ $= \underbrace{1}{1 + (\log_{e}x)^{2} \times \frac{1}{2}} \underbrace{1 + (\log_{e}x)^{2}}_{x \times \frac{1}{2}} \underbrace{1 + \log_{e}x}_{x \times $	CELENCE HIS	Caringbah Examination	High Schoo Answer	Student Number
1) C 2) B 3) B 4) A 5) A 6) D 7) B 8) C 9) D (0) D. (Question 11) a) $\frac{d}{dx} \left(+ (nx^{-1}(\log e x))) - \frac{1}{nork} - for correct ensurements i + (\log_{ex})^{2} \times \frac{1}{2x} - \frac{1}{nork} - for correct ensurements = \frac{1}{x(1+(\log_{ex})^{2})} - \frac{1}{x(1+(\log_{ex})^{2})} - \frac{1}{x(1+\log_{ex})^{2}} - $	MCQ			
7) B 8) C 9) D (0) D. $\frac{Question 1!}{Question 1!}$ a) $\frac{d}{dx} \left(\frac{10x^{-1}(\log e^{-x})}{(\log e^{-x})} \right)$ $= \frac{1}{1 + (\log_{2}x)^{-x} - \frac{1}{x}}$ $= \frac{1}{x (1 + (\log_{2}x)^{-x} - \frac{1}{x} - \frac{1}{x})}$ b) $\int_{1}^{\frac{1}{2}} e_{inx} \cos x dx$ $= \int_{2}^{\frac{1}{2}} (\sin x)^{2} \int_{0}^{\frac{1}{2}}$ $= \int_{2}^{\frac{1}{2}} (\sin x)^{2}$	<u>)</u>	2) 13	3) B	4) A 5) A 6) D
Question 11 a) $\frac{d}{dx} \left(\tan^{-1}(\log_e x) \right)$ $= \frac{1}{1 + (\log_e x)^2} \times \frac{1}{2}$ $= \frac{1}{1 + (\log_e x)^2} \times \frac{1}{2}$ $= \frac{1}{2}$ $x \left(1 + (\log_e x)^2 \right)$ $y \left(\frac{1}{2} + (\log_e x)^2 \right)$ $y \left(\frac{1}{2} + (\log_e x)^2 \right)$ $= \frac{1}{2} \left(\sin x \cos x dx - \frac{1}{2} + \log_e x \cos x + \log_e x - \log_e x + $	7) B	8) C	9) D	10) D.
$= \frac{1}{x(1+(\log n)^{2})}$	Question a) $\frac{d}{dx}$	$\frac{11}{(-tax^{-1}(-log)^{2})^{2}}$ $\frac{1}{(-tax^{-1}(-log)^{2})^{2}}$	$\left(\frac{e^{2}}{2}\right)$	1 mark for correct enswer
b) $\int_{\overline{b}}^{\overline{b}} \sin x \cos x dx$ $\int_{\overline{a}}^{\overline{b}} \sin x \cos x dx$ $\int_{\overline{a}}^{\overline{b}} \sin x \cos x dx$ $\int_{\overline{a}}^{\overline{b}} - \frac{1}{2} \int_{\overline{b}}^{\overline{b}} \cos x dx$ $\int_{\overline{a}}^{\overline{b}} - \frac{1}{2} \int_{\overline{b}}^{\overline{b}} - \frac{1}{2} \int_{\overline{b}}^{\overline{b}} - \frac{1}{2} \int_{\overline{b}}^{\overline{b}} \cos x dx$ $= \frac{1}{2} (\sin \frac{\pi}{b})^{2} - 0$ $= \frac{1}{2} \times \frac{1}{4}$	=)	1 ((1 + (logen))	
$= \frac{1}{2} \left(n \cdot n \cdot \frac{1}{6} \right)^2 - 0$ $= \frac{1}{2} \times \frac{1}{6}$	b)]= 	rinzioszdz z (sinz)²]	1 6 4	I mark for working I mark for correct answer
$=\frac{1}{6}$	- 7 - 7	$\left(nn \frac{1}{6}\right)^2 - 1$)	
۰ ۱	= 1/8			

Caringbah High School Examination:	Student Number
(c) (i) $U_{n(\bar{t})}$ Vector : $\sqrt{4^2 + 3^2} = 5$	I made for conjectan
Henre required unit vector is	$\frac{4}{5}\dot{i} + \frac{3}{5}\dot{j}$
$(ii') \begin{pmatrix} 15\\20 \end{pmatrix} \circ \begin{pmatrix} \frac{3}{5}\\\frac{3}{5} \end{pmatrix}$	I made la course de sudi
= 12 +12	1 mails for correct final answer
= 24 Required component of X is =	$24\left(\frac{4}{5}\right) + \frac{3}{5}\right) = \frac{96}{5}\left(1 + \frac{72}{5}\right)$
(d) let $t = \tan \frac{2t}{2}$ Sinx = $\frac{2t}{1+t^2}$ (OS x = $\frac{1-t^2}{1+t^2}$	0 ≤ X ≤ 21(
(0SX - 3Sinx + 3 = 0)	t=1 t=2
$\frac{1-t^2}{1+t^2} - \frac{6t}{1+t^2} + 3 = 0$	For $\tan \frac{\alpha}{2} = 1$ $\tan \frac{\alpha}{2} = 2$
$1-t^2-bt+3(1+t^2)=0$	$\frac{2}{2} = ton^{-1}(1)$ $\frac{2}{2} = ton^{-1}(2)$
$ -t^2-6t+3+3t^2=0$	$\frac{x}{z} = \frac{4}{2}$ $\frac{x}{z} = 1.107$
$2t^2 - 6t + 4 = 0$	$\chi = \frac{\pi}{2} \qquad \gamma(=2,2)$
$t^2 - 3t + 2 = 0$	$y_{1} = 2.21, \frac{1}{2}(1.57)$
(t-1)(t-2)=0	1 mark for obtaining correct 2 simplified quadratic equation in t
	1 mark for $x = \frac{\pi}{2}(1.57)$, 1 mark for $2(=2.2)$

Caringbah High School Student Number Examination: (e) $\mu = 6 \implies np = 6$ (f) I mark for writing expressions for $6^2 = 4 \Rightarrow npq = 4$ (2) M and G in terms of n.p.q. 1 mark for p= = $q = \frac{2}{3}$ $P = \frac{1}{3}$ and n = 18I made for showing truth n=1 (f) Step 1: Let n=1 21 mortes for understanding and apply $3^{2+4} - 2^2 = 725 = 5 \times 145$ the induction process : the statement is true for n=1 Step 2 = Assume this statement is true for n=k i.e. $3^{2k+4} - 2^{2k} = 5M$ for some integer M. RTP the statement is true for n= 12+1 RTP $3^{2(k+1)+4} - 2^{2(k+1)}$ is divisible by 5 $= 3^2 \times 3^{2k+4} - 2^2 \times 2^{2k}$ $= 9 \times (5M + 2^{2k}) - 4 \times 2^{2k}$ $= 45M + 9x2^{2k} - 4x2^{2k}$ $= 45M + 5 \times 2^{2k}$ = 5x (9M+22k) Where 9M+22k is integral. 3 Step 3 = Hence of n=k is true, then the statement is true for n=k+1

Caringbah High Scho Examination:	Student Number
Question 12 1 mark	for sketching graph correctly
a) (i)	for labelling the intercepty =] 2 and equations of the asymptotes
	11 7 7
- 3 - b - 4 - 2	2468
	- <u>п</u> 4
<u> </u>	$y = -\frac{\Pi}{2}$
(ii) Translation left by 1	UnFi
$= y \in 1 + x < -x$	$tan^{-1}(\frac{1}{2}(x+1)-2)$
~	$y = +0n^{-1} \pm (x-1)$
Then horizontal delation	1 mark for translation left
by scale factor 2=	1 mark for horizontal dilation
$\chi \rightarrow \frac{1}{2}\chi \rightarrow M$	$= f \omega n^{-1} \pm (\frac{1}{2} \alpha - 1)$
V 1	$= -ton^{-1} \frac{1}{4} (2t-2)$
	4

	Caringbah High School		
Balant a Men Statery	Examination:	Student Number	

(b) For students in the sample, the number of students travelling. to and from school by bus is a random variable X with the Bino runa) distribution B(100, 0.64). Itenue the sample proportion has mean $\mu = 0.64$ (since $\Xi\left(\frac{X}{n}\right) = \frac{nP}{n} = P$) standard deviation mark for correct explaination $\mathcal{C} = \left[0.bux \left[\left[-0.bu \right] \right] \right]$ 1 mark for applying = 0.048appropriate formula t $= \frac{nPq}{n^2}$ Since $VAR\left(\frac{x}{n}\right)$ (j_{1}^{\dagger}) $0.58 \leq \frac{\chi}{100} \leq 0.64$ 0.64-0.64 Z siones for o.by = 0.000 = 0,58-0.64 -1125 Z scores for 0.58 0,048 -1.25 < Z < O) 1 Mark Calculating the Z scores the interval limits 261.25) - 0.5 = 0.8944-0.5 2 marks for Using the normal approx. = 0.3944 to the distribution of the sample proporcio estimate the required probability from the table 5

Caringbah High School Student Number Examination: (1) $431^3 - 1221^2 + 52 + 6 = 0$ Let & B and y be the roots of this equation $d + \beta + \Gamma = 3$ () $d = \beta + \Gamma$ (A) $d\beta + dr + \beta r = \frac{5}{4} = 2$ $d \beta f = -\frac{3}{2}$ Mark for collect d+B+r=3 Sub (a) into (a) $B + dr + Br = \frac{5}{4}$ and $aBr = -\frac{3}{2}$ 2d = 3 2 marks for connect working out $d = \frac{3}{2}$ as $d = \beta + t$ and correct answer $\operatorname{RLb} \mathcal{A} = \frac{3}{2} \quad \text{into} \quad (3)$ $\frac{3}{2} \beta T = -\frac{2}{3}$ $\beta r = -1 \ (3) \quad and \quad \beta + r = \frac{3}{2} \ (3)$ From (6) $\beta = \frac{3}{2} - f$ sub Binto 6 $(\frac{2}{2} - \Gamma) \Gamma = -1$ - d= = = = $\frac{3}{2} \left(- 1^2 = -1 \right)$ $\int_{-\frac{3}{2}}^{2} f + -1 = 0$ B = 2 $\gamma = -\frac{1}{2}$ 21-31-2=0 $(\gamma - 2)(2\gamma + 1) = 0$ $\gamma = 2 + \frac{1}{2}$

Caringbah High School
Examination:
(d) $(x)^{"} = (x)^{8} (x+1)^{8}$
(teneral Term of (1+2)"
$T_{k} = \frac{1}{k} \frac{1}{k} \frac{1}{k} \frac{1}{k}$
- 11C5 13 the coefficient of 215
$\left((\pm 2)^3 - \frac{3}{2} (\pm 3)^2 + \frac{3}{2} (\pm 3)^2$
$(1+\chi)^{2} = {}^{8}(_{0} + {}^{8}(_{1}\chi + {}^{8}(_{2}\chi^{2} + {}^{8}(_{3}\chi^{3} + {}^{8}(_{4}\chi^{4} + {}^{8}(_{5}\chi^{5} + \cdots +$
-', (definition of x^{2} in $(1+x)^{2}(1+x)^{4}$
$= \frac{3}{9} \times \frac{3}{5} + \frac{3}{1} \times \frac{3}{5} + \frac{3}{2} \times \frac{3}{5} \times $
$= \frac{3}{(5+3)} (5+3) (5$
Equating coefficients
$\binom{11}{5} = \binom{9}{5} + \binom{3}{1}\binom{9}{4} + \binom{3}{2}\binom{9}{3} + \binom{9}{2}$
I mark for correct expansion of the LHS and knowing "Cs is the
2 masks the callect expansion of the RHS and earching coefficients
of as consectly
7

Caringbah High School Student Number Examination:... Question 13 writing correct definite integ mosk $\pi \left(2^{2}-2\right)^{2} dx$ or correct integration contect answer in sim $= \pi \int_{-2}^{2x} - 4 \times 2^{x} + 4 dx$ $= \pi \int \frac{1}{2 \ln 2} \times \frac{2^{2n}}{1n^2} - \frac{4}{1n^2} \times \frac{2^n}{2} + \frac{4^n}{1n^2} + \frac{4^n}{1n^2}$ $\left[\left(\frac{1}{2 \ln 2} \times 2^{4} - \frac{4}{1 \ln 2} \times 2^{2} + 8 \right) - \left(\frac{1}{2 \ln 2} \times 2^{2} - \frac{4}{1 \ln 2} \times 2^{-1} - 4 \right) \right]$ $\frac{1}{2\ln 2} \times 16 - \frac{4}{\ln 2} \times 4 + 8 - \frac{1}{2\ln 2} \times \frac{1}{4} + \frac{4}{\ln 2} \times \frac{1}{2} + 4$ $(16 - \frac{1}{4}) - \frac{4}{1n^2}(4 - \frac{1}{2}) + 12$ T $= \pi \left[\frac{6^{2}}{8 \ln 2} - \frac{14}{\ln 2} + 12 \right]$ $= \pi \left[-\frac{49}{8 \ln 2} + 12 \right]$ PE1

Caringbah High School Student Number Examination: (b) At time $T_{A}(T) = f_{B}(T)$ Hence VTIOSZ = UTIOSA Ø $-\frac{1}{2}qT^{2} + VTsind = h - \frac{1}{2}qT^{2} + UTsinB$ $-1, D => V \cos \beta \qquad (3)$ I mark for Vcos 2 = Vcos B for VTSIN2 = h+UTSINF 2 => VISINZ = h + VISINB @ #2 marks for nutiting correct Pair of simultaneous equation 3 × Tsind to model equal position vector VTrind cos 2 = Uteos & sind and solve for T (× cosd VISMALOSA = hcosa + UT MA COSA (6 - 6) h cos2 + UT sin Bros2 - UT cosp sind =0 UT (sinfrosd - cospina) = - housd UT (cindros & - sin Brusd) = hrosd $UT \neq Nin(d-B) = h \cos d$ $T = \frac{hiosd}{Usin(d-p)}$

	Caringbah High School
Contraction of the second	Evamination:

Student Number										

(c) i) $LHS = tan 3 \Theta$ | mark for writing tom 30 in terms of = tom(20+0) tan 20 and tan 0. 1 mar TONZO + TONO for Using appropria 1 - tonze tome to obtain the secu $\left(\frac{2\tan\theta}{1-\tan^2\theta}\right)$ + ton θ $1 - \pm 0n\theta \times \frac{2 \tan \theta}{1 - \pm \tan^2 \theta}$ $2 \tan \theta + \tan \theta (1 - \tan^2 \theta)$ $1 - t0n^2 \theta = 2t0n^2 \theta$ $3 \pm 000 - \pm 000^{3} \theta$ $1 - 3 t \eta n^2 \theta$ = RHS iii Let ton $\Theta = \alpha$ $3x - x^3 = 3$ $2x = \tan \frac{\pi}{9}$, $\tan \frac{4\pi}{9}$ and $\tan \frac{\pi}{9}$ $3 \tan \theta - \tan^3 \theta$ $1 - 3 \tan^2 \theta$ mark for making substit evaluating tan3 +an30 = 13 answels for final $3\theta = \frac{11}{3}, \frac{411}{3}, \frac{411}{3}$ in

Caringbah High School

Student Number

Examination:.....

 $(iii) \quad \underline{3x-x^3}$ _____ 13 $\sqrt{3} - 3\sqrt{3}\chi^2 = 3\chi - \chi^3$ $x^{3} - 3(3)(2 - 3)(+3 = 0)$ SMILE ton of ton of and ton of are the roots of this equation -'. $\tan \frac{\pi}{2} \times \tan \frac{\pi}{2} = -\frac{d}{a} = -13$ mark for obtaining the connect polynomial equation Mark for using the relationships between roots and coefficients of cubic on to decluce the result

Caringbah High School Student Number **Examination:** QUESTION IU $\alpha) \quad (i) \quad \exists = \cos 2\theta$ du $= -2\sin 2\theta d\theta$ (0120 120 $\chi = 1 \quad \theta = >$ x 251/20 do 14 $\theta = \phi \cdot \frac{\pi}{4}$ 220 <u>î</u> 4 2 Sin 2 O 4SIMBLOSE RD 21052A collect substitution = <u>Sino</u> x 4.51'n0 COS0 d0 to simply integran 4 4SIM20 de 4 4 sin2 D de (ii) mar correct integration 14 (1- (0520) do 2 14 - 1/2 sin 20 0 2 $= 2 \left[\frac{1}{4} - \frac{1}{2} \sin \frac{1}{2} \right] - (0)$ T 1

Caringbah High School Student Number Examination:.... (b) $2x^3 - x^2 + x - 1 = 0$. Let & B r be the roots $d^{\beta} + dr + \beta r = \frac{1}{2}$ | maik for correct roots and coefficients LBT = 1 relations I mark for connect process to show (i) $\alpha^2 + \beta^2 + \gamma^2$ the answer $= \left(d + \beta + \Gamma \right)^2 - 2 \left(d \beta + d \Gamma + \beta \Gamma \right)$ $= (\frac{1}{2})^2 - 2 \times \frac{1}{2}$ = 4-1 - 4 ii) sub & P and 1 into $P(x) = 2x^3 - x^2 + x - 1 = 0$ $2d^{3} - d^{2} + d - 1 = 0$ 5 $2\beta^3 - \beta^2 + \beta - 1 = 0$ (mask for connect wor 213-12+1-1=0 3 maile for convert provers $2(d^3+\beta^2+\gamma^3) - (d^2+\beta^2+\gamma^2) + (d+\beta+\gamma) - 3 = 0$ show the $2(d^3+\beta^3+\beta^3)+\frac{3}{4}+\frac{1}{2}-3=0$. $2(x^3 + (x^3 + x^3)) = \frac{7}{4}$ $2^{3} + \beta^{3} + \beta^{3} = \frac{7}{4}$ 13

Caringbah High School Student Number Examination (c) the in do (ochoc) * mac + 1n2(+ 1 2 e = Area e tribugle OAB - Area under the curve y=f(oc) ż x | -(t Ina) da >(Insu 1/n1 - e Ine] 2 0 + -1 alla e shaded part = 2x (==== tofal Area o 14 -

	Caringbah High Sc	hool		Student Number
(Ìù')	/	Ø	1	
			e-1 ,	» X
			ł 	1 mark for wares graph.
			$x = \frac{1}{e}$	I mark for showing All the required detail
		~		
(iv) R	anye is (-~	o) (). <u>[1,</u> +~) I mait box intertal atomos
	End of	F Exc , 1	mination.	range in interval netation