CARINGBAH HIGH SCHOOL

2020 HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

Mathematics Extension 1

General
- Reading time - 10 minutes
Instructions
- Working time - 2 hours

- Write using blue or black pen
- Calculators approved by NESA may be used
- A reference sheet is provided on separate paper
- In Questions $11-14$, show relevant mathematical reasoning and/or calculations

Total marks: Section I - 10 marks (pages 2-4)
70

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II - 60 marks (pages 5-10)

- Attempt Questions 11-14
- Allow about 1 hour and 45 minutes for this section

Marker's Use Only						
$\begin{gathered} \hline \text { Section I } \\ \hline \text { Q 1-10 } \\ \hline \end{gathered}$	Section II				Total	
	Q11	Q12	Q13	Q14		
/10	/15	/15	/15	/15	170	\%

Section I

10 marks

Attempt Questions 1-10
Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10

1 Which of the following pairs of parametric equations represents a circle that passes through the origin?
(A) $x=3+3 \cos \theta, y=4+3 \sin \theta$
(B) $x=3+4 \cos \theta, y=4+4 \sin \theta$
(C) $x=3+5 \cos \theta, y=4+5 \sin \theta$
(D) $x=3+7 \cos \theta, y=4+7 \sin \theta$

2 A spherical balloon is being inflated at a constant rate of $200 \pi \mathrm{~cm}^{3} \mathrm{~s}^{-1}$. At what rate is the radius of the balloon increasing when the radius is 10 cm ?
(A) $0.25 \mathrm{~cm} \mathrm{~s}^{-1}$
(B) $0.5 \mathrm{~cm} \mathrm{~s}^{-1}$
(C) $1.0 \mathrm{~cm} \mathrm{~s}^{-1}$
(D) $2.0 \mathrm{~cm} \mathrm{~s}^{-1}$

3 In the diagram, $O A B C$ is parallelogram. The vector $\overrightarrow{O A}=\underset{\sim}{a}$ and $\overrightarrow{O C}=\underset{\sim}{c} . M$ is the midpoint of $O A$. Which of the following expressions is represented by the vector $\overrightarrow{M B}$?

(A) $\underset{2}{1} \underset{\sim}{a}-\underset{\sim}{c}$
(B) $\frac{1}{2} \underset{\sim}{a}+\underset{\sim}{c}$
(C) $\underset{\sim}{a}-\frac{1}{2} \underset{\sim}{c}$
(D) $\underset{\sim}{a}+\frac{1}{2} \underset{\sim}{c}$

4 What is the number of distinct solutions of the equation $3 \cos \theta+4 \sin \theta=5$ for $0 \leq \theta \leq 2 \pi$?
(A) 1
(B) 2
(C) 3
(D) 4

5 Solve the inequality $\frac{x^{2}-4}{x} \geq 0$.
(A) $-2 \leq x<0$ or $x \geq 2$
(B) $-2 \geq x>0$ or $x \leq 2$
(C) $-4 \leq x<0$ or $x \geq 4$
(D) $-4 \geq x>0$ or $x \leq 4$

6 Which of the following vectors is perpendicular to the vector $\binom{4}{-2}$?
(A) $\binom{-4}{2}$
(B) $\binom{2}{-4}$
(C) $\binom{-2}{4}$
(D) $\binom{-2}{-4}$

7 What is the value of $\frac{d}{d x} \sin ^{-1} \sqrt{1-x^{2}}$?
(A) $\frac{-1}{x \sqrt{1-x^{2}}}$
(B) $\frac{-1}{\sqrt{1-x^{2}}}$
(C) $\frac{1}{\sqrt{1-x^{2}}}$
(D) $\frac{1}{x \sqrt{1-x^{2}}}$

8 What is the value of k such that the function $f(x)=\frac{k}{1+x^{2}},-1 \leq x \leq 1$ is a probability density function?
(A) $k=\frac{\pi}{4}$
(B) $k=\frac{\pi}{2}$
(C) $k=\frac{2}{\pi}$
(D) $k=\frac{4}{\pi}$

9 A geometric series $1-\frac{1}{x}+\frac{1}{x^{2}}-\frac{1}{x^{3}}+\ldots$ has limiting $\operatorname{sum} S$.
For what values of x is $S<1$?
(A) $x>-1$
(B) $x>-1, x \neq 0$
(C) $x>0$
(D) $x>1$

10 Three fair dice of different colours are rolled together. What is the probability that the product of the three scores is a perfect square?
(A) $\frac{6}{216}$
(B) $\frac{13}{216}$
(C) $\frac{32}{216}$
(D) $\frac{38}{216}$

Section II

60 marks

Attempt Questions 11 - 14
Allow about 1 hours and 45 minutes for this section

Answer each question in the appropriate writing booklet. Extra writing booklets are available.
In Question 11-14 your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use the Question 11 Writing Booklet.

(a) Differentiate $\tan ^{-1}\left(\log _{e} x\right)$
(b) Find $\int_{0}^{\frac{\pi}{6}} \sin x \cos x d x$
(c) (i) Find the unit vector in the direction of the vector $(4 \underset{\sim}{i}+\underset{\sim}{j})$.
(ii) A particle is moving with velocity $v=(15 \underset{\sim}{i}+20 \underset{\sim}{j}) \mathrm{ms}^{-1}$. Find the component of v in the direction of the vector $(4 \underset{\sim}{i}+3 \underset{\sim}{j})$.
(d) Use the substitution $t=\tan \frac{x}{2}$ to find the solutions of the equation $\cos x-3 \sin x+3=0$ for $0 \leq x \leq 2 \pi$ correct to 2 decimal places
(e) The discrete random variable X has a binomial distribution with n independent trials with probability of success p. If its mean is 6 and its standard deviation is 2 , find the values of n and p.
(f) Use the mathematical induction to prove that $3^{2 n+4}-2^{2 n}$ is divisible by 5 for integers $n \geq 1$.

End of Question 11

Question 12 (15 marks) Use the Question 12 Writing Booklet.

(a) (i) Sketch the graph of the function $y=\tan ^{-1} \frac{1}{2}(x-2)$ showing clearly the intercepts on the axes and the equations of the asymptotes.
(ii) The graph of the function $y=\tan ^{-1} \frac{1}{2}(x-2)$ is transformed by a translation left by 1 unit, then a horizontal dilation with a scale factor 2 .

Find the equation of the transformed graph.
(b) (i) Records show that 64% of students at a school travelled to and from school by bus. Samples of 100 students at the school are taken to determine the proportion who travel to and from school by bus. Show that the distribution of such sample proportions has mean 0.64 and standard deviation 0.048.
(ii) Use the table (shown below) of $P(Z<z)$, where Z has a standard normal distribution, to estimate the probability that a sample of 100 students will contain at least 58 and at most 64 students who travel to and from school by bus.

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177

(c) The polynomial equation $4 x^{3}-12 x^{2}+5 x+6=0$ has roots α, β and γ. It is known that one of the roots is the sum of the other two. Find α, β and γ.
(d) By using the fact that $(1+x)^{11}=(1+x)^{3}(1+x)^{8}$. Show that

$$
\binom{11}{5}=\binom{8}{5}+\binom{3}{1}\binom{8}{4}+\binom{3}{2}\binom{8}{3}+\binom{8}{2}
$$

End of Question 12

Question 13 (15 marks) Use the Question 13 Writing Booklet.
(a)

In the diagram above, the region bounded by the curve $y=2^{x}-2$ and the x axis between $x=-1$ and $x=2$ is rotated through one revolution about the x axis.

Find in simplest exact form the volume of the solid formed.
(b) A vertical tower of height h metres stands with its base at a point O on horizonal ground. At the same instant, stone A is projected from O with speed $V \mathrm{~ms}^{-1}$ at an angle α above the horizontal and stone B is projected from the top of the tower with speed $U \mathrm{~ms}^{-1}$ at an angle β above the horizontal, where $\alpha>\beta$. The two stones move in the same vertical plane under gravity, where the acceleration due to gravity is $\mathrm{g} \mathrm{ms}^{-2}$, and collide after T seconds. At time t seconds after firing, the position vectors of the two stones are

$$
\begin{aligned}
& r_{A}(t)=(V t \cos \alpha) \underset{\sim}{i}+\left(-\frac{1}{2} g t^{2}+V t \sin \alpha\right) \underset{\sim}{j} \\
& r_{B}(t)=(U t \cos \beta) \underset{\sim}{i}+\left(h-\frac{1}{2} g t^{2}+U t \sin \beta\right) \underset{\sim}{j} . \text { (DO NOT PROVE THIS) }
\end{aligned}
$$

Show that $T=\frac{h \cos \alpha}{U \sin (\alpha-\beta)}$.

Question 13 continues on page 8

Question 13 (continued)
(c) (i) Prove the trigonometric identity $\tan 3 \theta=\frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}$ using the compound angle formula.
(ii) Hence find expressions for the exact values of the solutions to the equation $\frac{3 x-x^{3}}{1-3 x^{2}}=\sqrt{3}$.
(iii) Hence show that $\tan \frac{\pi}{9} \times \tan \frac{4 \pi}{9} \times \tan \frac{7 \pi}{9}=-\sqrt{3}$.

End of Question 13

Question 14 (15 marks) Use the Question 14 Writing Booklet.
(a) The cubic equation $2 x^{3}-x^{2}+x-1=0$ has roots α, β and γ. Show without finding each individual root that
(i) $\alpha^{2}+\beta^{2}+\gamma^{2}=-\frac{3}{4}$
(ii) $\quad \alpha^{3}+\beta^{3}+\gamma^{3}=\frac{7}{8}$
(b) (i) Using the substitution $x=\cos 2 \theta$, show

$$
\int_{0}^{1} \sqrt{\frac{1-x}{1+x}} d x=\int_{0}^{\frac{\pi}{4}} 4 \sin ^{2} \theta d \theta
$$

(ii) Hence evaluate in simplest exact form $\int_{0}^{1} \sqrt{\frac{1-x}{1+x}} d x$

Question 14 continues on page 10

Question 14 (continued)
(c) The function $f(x)=1+\ln x$ is defined in the domain $(0,1]$.
(i) Show that $\frac{d}{d x}(x \ln x)=1+\ln x$

The diagram shows the graphs of the function $y=f(x)$ and the inverse function $y=f^{-1}(x)$.

(ii) Find in simplest exact form the area of the shaded region in the first quadrant bounded by the curves $y=f(x), y=f^{-1}(x)$ and the coordinate axes.
(iii) Sketch the graph of the curve $y=\frac{1}{f(x)}$, showing clearly the coordinates of the endpoints and the equations of any asymptotes.
(iv) Use interval notation to state the range of the function $y=\frac{1}{f(x)}$

End of Examination

Student Name/Number

\qquad
Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.
Sample: $2+4=$
(A) 2
(B) 6
(C) 8
(D) 9
$\mathrm{A} \bigcirc$
B
C \bigcirc
D \bigcirc

- If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.
A
B
C

D \bigcirc
- If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word correct and drawing an arrow as follows.

A

D
1.
2.
A \bigcirc
$\mathrm{B} \bigcirc$
$\mathrm{C} \bigcirc$
$\mathrm{D} \bigcirc$
A
B \bigcirc
$\mathrm{C} \bigcirc$
$\mathrm{D} \bigcirc$
3.
A
B \bigcirc
$\mathrm{C} \bigcirc$
D
4.
A \bigcirc
$\mathrm{B} \bigcirc$
$\mathrm{C} \bigcirc$
D
5.
B
$\mathrm{C} \bigcirc$
$\mathrm{D} \bigcirc$
6.
7.
7.
A
B
$\mathrm{C} \bigcirc$
$\mathrm{D} \bigcirc$
8.
A
B \bigcirc
$\mathrm{C} \bigcirc$
$\mathrm{D} \bigcirc$
9.
B
$\mathrm{C} \bigcirc$
$\mathrm{D} \bigcirc$
10.
A
B \bigcirc
$\mathrm{C} \bigcirc$
$\mathrm{D} \bigcirc$

Extension 1 Trial
Caringbah High School
Examination:.........nnswers.........

MC

1) C
2) B
3) B
4) A
5) A
6) D
7) $\quad B$
8) C
9) D
10) D.

Question 11
a) $\frac{d}{d x}\left(\operatorname{tax}^{-1}\left(\log _{e} x\right)\right)$

$$
\begin{aligned}
& =\frac{1}{1+\left(\log _{e} x\right)^{2}} \times \frac{1}{x} \\
& =\frac{1}{x\left(1+\left(\log _{x} x\right)^{2}\right)}
\end{aligned}
$$

b) $\int_{0}^{\frac{\pi}{6}} \sin x \cos x d x$

1 mark for working. $=\left[\frac{1}{2}(\sin x)^{2}\right]_{0}^{\frac{\pi}{6}}$ mark for correct answer

$$
=\frac{1}{2}\left(\sin \frac{\pi}{6}\right)^{2}-0
$$

$$
=\frac{1}{2} \times \frac{1}{4}
$$

$$
=\frac{1}{8}
$$

Examination:
(c) (i) Una Vector.

$$
\sqrt{4^{2}+3^{2}}=5
$$

Hence required unit vector is $\frac{4}{5} i+\frac{3}{5} j$

$$
\text { (ii) } \begin{aligned}
&\left({ }_{20}^{15}\right) \cdot\left({ }_{\frac{3}{5}}^{5}\right) \\
&=12+12 \\
&=24
\end{aligned}
$$

Requited component of v is $24\left(\frac{4}{5} i+\frac{3}{5} j\right)$

$$
=\frac{96}{5} i+\frac{72}{5} j
$$

(d)

$$
\begin{aligned}
& \text { Let } t=\tan \frac{x}{2} \\
& \sin x=\frac{2 t}{1++1} \quad \cos x=\frac{1-t}{1+2} \quad 0 \leq x \leq 2 \pi \\
& \cos x-3 \sin x+3=0 \quad t=1 \quad t=2 \\
& \frac{1-t^{2}}{r^{2}}-\frac{6 t}{1+t^{2}}+3=0 \quad \text { For } \quad \tan \frac{x}{2}=1 \quad \tan \frac{x}{2}=2 \\
& 1-t^{2}-6 t+3\left(1+t^{2}\right)=0 \quad \frac{x}{2}=\tan ^{-1}(1) \quad \frac{x}{2}=\tan ^{-1}(2) \\
& 1-t^{2}-6 t+3+3 t^{2}=0 \quad \frac{x}{2}=\frac{\pi}{4} \quad \frac{x}{2}=1.107 \\
& 2 t^{2}-6 t+4=0 \quad x=\frac{\pi}{2} \quad x=2.21 \\
& \begin{array}{l}
t^{2}-3 t+2=0 \\
(t-1)(t-2)=0
\end{array} \\
& \therefore x=2.21, \frac{\pi}{2}(1.57) \\
& \text { simplified quadratic equation in } t \\
& 1 \text { mark for } x=\frac{\pi}{2}(1.57) \text {, } 1 \text { mark for } x=2.2
\end{aligned}
$$

Examination:
(e) $\mu=6 \Rightarrow n p=6 \quad$ (1)

$$
\epsilon^{2}=4 \Rightarrow n p q=4
$$

$$
\begin{aligned}
& (2) \div(1) \\
& q=\frac{2}{3} \\
& \therefore \quad p=\frac{1}{3} \text { and } n=18
\end{aligned}
$$

\qquad

\therefore The statement is tue for $n=1$

Step 2 =.........nsme........his.....tatement...........nue for $n=k$ ie. $3^{2 k+4}-2^{2 k}=5 M$ for some integer M.
R.IP the statement....................... for $n=k+1$

RTP $\quad 3^{2(k+1)+4}-2^{2(k+1)}$ is disable ban 5

$$
\begin{align*}
& =3^{2} \times 3^{2 k+4}-2^{2} \times 2^{2 k} \\
& =9 \times\left(5 M+2^{2 k}\right)-4 \times 2^{2 k} \\
& =45 M+9 \times 2^{2 k}-4 \times 2^{2 k} \\
& =45 M+5 \times 2^{2 k} \\
& =5 \times\left(9 M+2^{2 k}\right) \quad \text { here } 9 M+2^{2 k} \text { is in } 4 \text { enol } \tag{3}
\end{align*}
$$

Step 3. Hence if $n=k$ is true, then the rutement is true for $n=k+1$

Caringbah High School

Examination: \qquad

\qquad
(ii) Tromslatron.........ft.................... unf.

$$
\begin{array}{r}
x \rightarrow x+1 \Rightarrow \quad y=\tan ^{-1}\left(\frac{1}{2}(x+1)-2\right) . \\
y=\tan ^{-1} \frac{1}{2}(x-1)
\end{array}
$$

Then horizontal.....dration I. mark.......r.....myslation....lef......... by seale factor 2 . 1 mark for horizuntol dilationl

$$
\begin{array}{rl}
x \rightarrow \frac{1}{2} x & y \\
y & y
\end{array}+\operatorname{ton}^{-1} \frac{1}{2}\left(\frac{1}{2} x-1\right)
$$

Examination:
(b) For students in the sample, the number of students travelling. to oud from school by bus is a can random variable X with the Binamial.....distribution $B(100,0.64)$. Hence the sample proportion $\frac{x}{100}$ mas mean $\mu=0.64$ (Since $F\left(\frac{X}{n}\right)=\frac{n p}{n}=p$) and standard deviation $\sigma=\sqrt{\frac{0.64 \times(1-0.64)}{100}}$ 1 mark for correct explanation to find μ
$=0.048 \quad 1$ mark for applying the I mark for applying the (Since $\left.\operatorname{VAR}\left(\frac{x}{n}\right)=\frac{n p q}{n^{2}}=\frac{p q}{n}\right)$ find. σ
(iii)

$$
P\left(0.58 \leq \frac{x}{100} \leq 0.64\right)
$$

Z Sores for $0.64=\frac{0.64-0.64}{0.000}=0$
z scores for $0.58=\frac{0.58-0.64}{0.048}=-1.25$

$$
\begin{aligned}
& \therefore \approx P(-1.25 \leqslant z \leqslant 0) \quad \text { of the interval limits } \quad 1 \text { mats some } \\
& =P(z \leqslant 1.25)-0.5 \\
& \text { of the interval limits } \\
& =0.8944-0.5 \\
& =0.3944 \\
& 2 \text { marks for Using the nomul apprexi... }
\end{aligned}
$$ tote distribution of the simple proportion to estimate the required probability form the table

Examination:
(c) $\quad 4 x^{3}-12 x^{2}+5 x+6=0$

Let $\alpha \beta$ and γ be the roots of this equation.

$$
\begin{aligned}
& \alpha+\beta+r=3 \quad \alpha \quad \alpha=\beta+r \\
& \alpha \beta+\alpha r+\beta r=\frac{5}{4} \\
& \alpha \beta r=-\frac{3}{2}(3)
\end{aligned}
$$

Sub (4) in +0 0
1 mark for correct $\alpha+\beta+r=3$

$$
\cdots \beta+\alpha c+\beta r=\frac{5}{4} \text { and } \alpha \beta r=-\frac{3}{2}
$$

$$
\begin{aligned}
2 \alpha & =3 \\
\alpha & =\frac{3}{2}
\end{aligned}
$$

2 mark for correct working out as $\alpha=\beta+r$ and correct answers.
$\operatorname{arb} \alpha=\frac{3}{2} \quad$ in no $\quad 3$

$$
\begin{aligned}
& \frac{3}{2} \beta r=-\frac{2}{3} \\
& \beta r=-1 \text { (5) and } \quad \beta+r=\frac{3}{2} \quad(6)
\end{aligned}
$$

From (6) $\quad \beta=\frac{3}{2}-r$
sub. β into (5)

$$
\begin{array}{ll}
\left(\frac{3}{2}-r\right) r=-1 \\
\frac{3}{2} r-r^{2}=-1 \\
r^{2}-\frac{3}{2} r-1=0 & \alpha=\frac{3}{2} \\
2 r^{2}-3 r-2=0 & \beta=2 \\
(r-2)(2 r+1)=0 & r=-\frac{1}{2} \\
r=2 \quad r=\frac{-1}{2} &
\end{array}
$$

Examination: \qquad
d) $\quad(1+x)^{11}=(1+x)^{3}(1+x)^{8}$

General Term of $(1+x)^{\prime \prime}$

$$
T_{k}={ }^{1 \prime} C_{k} 1^{11-k} x^{k}
$$

$\therefore{ }^{11}{ }^{1} 5,15$ the coefficient of x^{5}

$$
\begin{aligned}
& (1+x)^{3}={ }^{3} C_{0}+{ }^{3} C_{1} x+{ }^{3} C_{2} x^{2}+{ }^{3} C_{3} x^{3} \\
& (1+x)^{8}={ }^{8} C_{0}+{ }^{8} C_{1} x+{ }^{8} C_{2} x^{2}+{ }^{8}{ }_{3} x^{3}+{ }^{8} C_{4} x^{4}+{ }^{8} C_{5} x^{5}+\cdots
\end{aligned}
$$

\therefore cOefficient of x^{5} in $(1+x)^{2}(1+x)^{2}$

$$
\begin{aligned}
& ={ }^{3} C_{0} \times{ }^{8} C_{5}+{ }^{3} C_{1} \times{ }^{8} C_{4}+{ }^{3} C_{2} \times{ }^{8} C_{3}+{ }^{8} C_{3} \times{ }^{8} C_{2} \\
& ={ }^{8} C_{5}+{ }_{5} C_{1} \times{ }^{8} C_{4}+{ }^{3} C_{2} \times{ }^{8} C_{3}+{ }^{8} C_{2}
\end{aligned}
$$

Equating coefficients.

$$
\binom{11}{5}=\binom{8}{5}+\binom{3}{1}\binom{8}{4}+\binom{3}{2}\binom{8}{3}+\binom{8}{2}
$$

. 1 mark for comment expansion of of the Lats and knowing..... "Gs............. the coefficient of of x^{5}
2 mask for cosiest expansion of the Res and equating co...oefficients. of x^{5} correctly

Caringbah High School

Examination: \qquad

Examination: \qquad
(b) A_{T} tine $T_{1}, r_{A}(T)=r_{B}(T)$

Hence $V \operatorname{Tios} \alpha=U T \cos \beta$

$$
\begin{align*}
& -\frac{1}{2} g T^{2}+V T \sin \alpha=h-\frac{1}{2} g T^{2}+U T \sin \beta \\
& \therefore(1) \Rightarrow V \cos \alpha=U \cos \beta
\end{align*}
$$ 1 mark for V cos $\alpha=U_{\text {uos }} \beta$. 11 mark or or $V \sin 2=h+U T \sin \beta^{2}$

$(2) \Rightarrow V T \sin \alpha=h+U T \sin \beta$
(3)

$$
\times \operatorname{Tsin} \alpha
$$ pair of s.imultaneaus e...spationo to madel equal. position vecters

$$
V \operatorname{rrin} \alpha \cos \alpha=U \operatorname{tcos} \beta \sin \alpha
$$ and solve for T T.

(4) $\times \cos \alpha$

$$
V[\sin \alpha \cos \alpha=h \cos \alpha+U T \sin \beta \cos \alpha
$$

(6) - (5)

$$
\begin{gathered}
h \cos \alpha+U T \sin \beta \cos \alpha-U T \cos \beta \sin \alpha=0 \\
U I(\sin \beta \cos \alpha-\cos \beta \sin \alpha)=-h \cos \alpha \\
U T([\sin \alpha \cos \beta-\sin \beta \cos \alpha)=h \cos \alpha \\
U T \neq \sin (\alpha-\beta))=h \cos \alpha \\
\therefore T=\frac{h \cos \alpha}{u \sin (\alpha-\beta)}
\end{gathered}
$$

Caringbah High School

Examination: \qquad

Caringbah High School

Examination: \qquad
(iii) $\frac{3 x-x^{3}}{1-3 x^{2}}=\sqrt{3}$

$$
\begin{aligned}
& \sqrt{3}-3 \sqrt{3} x^{2}=3 x-x^{3} \\
& x^{3}-3 \sqrt{3} x^{2}-3 x+\sqrt{3}=0
\end{aligned}
$$

$\sin 1$ e ton $\frac{\pi}{9}$, tan $\frac{4 \pi}{9}$ and \quad and $\frac{7 \pi}{9}$ are the rats of this equation

$$
\therefore \quad \tan \frac{\pi}{9} \times \tan \frac{4 \pi}{9} \times \tan \frac{7 \pi}{9}=-\frac{d}{a}=-\sqrt{3}
$$

 equation to de deduce the result.

Caringbah High School

Examination: \qquad

Question 14
a) (i) $x=\cos 2 \theta$

$$
d x=-2 \sin 2 \theta d \theta
$$

$$
\begin{aligned}
& =\int_{0}^{1} \sqrt{\frac{1 x}{1+x} d x} \\
& =\int_{\frac{\pi}{4}}^{4} \sqrt{\frac{1-\cos 2 \theta}{1+\cos 2 \theta}} \times 2 \sin 2 \theta d \theta \\
& =\int_{0}^{\frac{\pi}{4}} \sqrt{\frac{2 \sin ^{2} \theta}{2 \cos ^{2} \theta}} \times \sin \theta \cos \theta d \theta \\
& =\int_{0}^{\frac{\pi}{4}} \frac{\sin \theta}{\cos \theta} \times 4 \sin \theta \cos \theta d \theta \\
& =\int_{0}^{\frac{\pi}{4}} \sin ^{2} \theta d \theta
\end{aligned}
$$

$$
x=1 \quad \theta \Rightarrow \frac{\pi}{4} \cdot \frac{\pi}{4} \quad \int_{4}^{\pi} \sqrt{\frac{1-\cos 2 \theta}{1+\cos 2 \theta}} \times 2 \sin 2 \theta d \theta
$$

$$
\text { IL mall for using appropriate } 1 \text { vo }=\int_{0}^{\frac{\pi}{4}} \frac{\sin \theta}{\cos \theta} \times 4 \sin \theta \cos \theta d \theta
$$

(ii) $\int_{0}^{\frac{\pi}{9}} 4 \sin ^{2} \theta d \theta$

$$
\begin{aligned}
& =2 \int_{0}^{\frac{\pi}{4}}(1-\cos 2 \theta) d \theta \\
& =2\left[\theta-\frac{1}{2} \sin 2 \theta\right]^{\frac{\pi}{4}} \\
& =2\left[\left(\frac{\pi}{4}-\frac{1}{2} \sin \frac{\pi}{2}\right)-(0)\right] \\
& =\frac{\pi}{2}-1
\end{aligned}
$$

Examination:
(b) $2 x^{3}-x^{2}+x-1=0$

Let $\alpha, \beta, \quad \gamma$ be the rows

$$
\begin{aligned}
& \alpha+\beta+r=\frac{1}{2} \\
& \alpha \beta+\alpha r+\beta r=\frac{1}{2} \\
& \alpha \beta r=\frac{1}{2}
\end{aligned}
$$

1 mark for convect rooms and coeffiwens relations \qquad 1 mask for culoriect process to show.
(i)

$$
\begin{aligned}
& \alpha^{2}+\beta^{2}+r^{2} \\
= & (\alpha+\beta+r)^{2}-2(\alpha \beta+\alpha r+\beta r) \\
= & \left(\frac{1}{2}\right)^{2}-2 \times \frac{1}{2} \\
= & \frac{1}{4}-1 \\
= & -\frac{3}{4}
\end{aligned}
$$

ii) $S u b, \beta$ and \uparrow into $P(x)=2 x^{3}-x^{2}+x-1=0$

$$
\begin{gather*}
2 \alpha^{3}-\alpha^{2}+\alpha-1=0 \\
2 \beta^{3}-\beta^{2}+\beta-1=0 \\
2 \gamma^{3}-\gamma^{2}+r-1=0 \tag{3}\\
2\left(\alpha^{3}+\beta^{3}+\gamma^{3}\right)-\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)+(\alpha+\beta+r)-3=0 \\
2\left(\alpha^{3}+\beta^{3}+r^{3}\right)+\frac{3}{4}+\frac{1}{2}-3=0 \\
2\left(\alpha^{3}+\beta^{3}+r^{3}\right)=\frac{7}{4} \\
\alpha^{3}+\beta^{3}+\gamma^{3}=\frac{7}{8} \tag{13}
\end{gather*}
$$

Examination: \qquad
(c)
$x \cos \frac{d}{d x}(x \ln x)$

$$
\begin{aligned}
& =1 \times \ln x+x \times \frac{1}{x} \quad 1 \text { mark for using product mule } \\
& =\ln x+1
\end{aligned}
$$

(ii)

$A=$ Area of the trinughe $O A B$ - Area under the curve $y=f(x)$

$$
=\frac{1}{2} \times 1 \times 1-\int_{e^{-1}}^{1}(1+\ln x) d x
$$

$$
=\frac{1}{2}-[x \ln x]_{e^{+}}
$$

$$
=\frac{1}{2}-\left[|\ln |-e^{-1} \ln e^{-1}\right]^{-}
$$

$$
=\frac{1}{2}-\left[0+e^{-1}\right]
$$

$$
=\frac{1}{2}-\frac{1}{e}
$$

$$
\begin{aligned}
\therefore \text { Area of total shaded part } & =2 \times\left(\frac{1}{2}-\frac{1}{e}\right) \\
& =1-\frac{2}{e}
\end{aligned}
$$

Examination: \qquad

