Section I

10 marks

Attempt Questions 1 - 10.

Allow about 15 minutes for this section.

Use the multiple-choice answer sheet for Questions 1 - 10.

1. Which expression is a correct factorisation of $a^{3}-64$?
(A) $(a-4)\left(a^{2}+4 a+16\right)$
(B) $(a-4)\left(a^{2}-4 a+16\right)$
(C) $(a+4)\left(a^{2}+4 a+16\right)$
(D) $(a+4)\left(a^{2}-4 a+16\right)$
2. The interval $D E$ is divided internally in the ratio $3: 2$ by the point F.

Find the x-coordinate of F.

(A) $\quad-5$
(B) $-\frac{7}{2}$
(C) $\quad-2$
(D) $-\frac{3}{2}$
3. The graph of the curve $y=\tan \left(\frac{x}{3}+\frac{\pi}{4}\right)$ and the line $y=\sqrt{3}$ are as shown.

What are the coordinates of A?
(A) $\left(\frac{\pi}{3}, \sqrt{3}\right)$
(B) $\left(\frac{13 \pi}{4}, \sqrt{3}\right)$
(C) $\left(\frac{25 \pi}{4}, \sqrt{3}\right)$
(D) $\left(\frac{19 \pi}{3}, \sqrt{3}\right)$
4. Two chords AB and CD intersect at E as shown.

What is the value of x ?
(A) 7
(B) 6
(C) 5
(D) 4
5. Evaluate $\lim _{x \rightarrow 0} \frac{\sin 4 x}{3 x}$.
(A) 0
(B) $\frac{3}{4}$
(C) $\frac{4}{3}$
(D) $\quad \infty$
6. A particle is moving in a simple harmonic motion between $\mathrm{x}=-1$ and $\mathrm{x}=5$.

It covers the distance from $\mathrm{x}=-1$ to $\mathrm{x}=5$ in one second.
Which of the following could be the equation for the motion of this particle?
(A) $x=3+2 \sin \pi t$
(B) $\mathrm{x}=2+3 \sin 2 \pi \mathrm{t}$
(C) $x=2+3 \cos 2 \pi t$
(D) $\mathrm{x}=2+3 \sin \pi \mathrm{t}$
7. Find $\int \frac{1}{9+25 x^{2}} d x$.
(A) $\frac{1}{15} \tan ^{-1} \frac{5 x}{3}+C$
(B) $\frac{1}{25} \tan ^{-1} \frac{5 x}{3}+C$
(C) $\frac{1}{25} \tan ^{-1} \frac{3 x}{5}+C$
(D) $\frac{1}{15} \tan ^{-1} \frac{3 x}{5}+C$
8. Find the value of the constant term in the binomial expansion $\left(5 x-\frac{3}{x^{2}}\right)^{12}$
(A) ${ }^{12} \mathbf{C}_{6} 5^{6} 3^{6}$
(B) ${ }^{12} \mathbf{C}_{8} 5^{8} 3^{4}$
(C) $\quad-{ }^{12} \mathbf{C}_{4} 5^{8} 3^{4}$
(D) $\quad-{ }^{12} \mathbf{C}_{8} 5^{8} 3^{4}$
9. A particle moves in simple harmonic motion such that $v^{2}+9 x^{2}=k$. What is the period of the particle's motion?
(A) $\frac{2 \pi}{k}$
(B) 3π
(C) $\frac{3 k}{2 \pi}$
(D) $\frac{2 \pi}{3}$
10. What is the domain of $y=\cos ^{-1}\left(\frac{x}{3}\right)$?
(A) $-\pi \leq x \leq \pi$
(B) $-3 \leq x \leq 3$
(C) $-\pi \leq x \leq \pi$
(D) $-\frac{1}{3} \leq x \leq \frac{1}{3}$

Section II

60 marks

Attempt Questions 11-14.

Allow about 1 hour and 45 minutes for this section.

Answer each question in a new writing booklet. Extra writing booklets are available.
In Questions 11 - 14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a new writing booklet.
(a) A curve is represented by the parametric equations $x=7 t$ and $y=4 t^{2}$.

What is the Cartesian equation of the curve?
(b) A vertical pole PB is held by two ropes PA due east and PC due south of it. Given that $\angle B A C=60^{\circ}$, find the height of the post, to 2 decimal places, if

$$
P A=10 \mathrm{~m} \text { and } P C=8 \mathrm{~m} .
$$

(c)

Use the substitution $u=2 x+1$ to evaluate $\int_{0}^{2} \frac{x}{(2 x+1)^{2}} d x$.

Question 11 continues on page 6.

Question 11 continued

(d) At 8:30 a.m. a sandwich which has an initial temperature $22^{\circ} \mathrm{C}$, is placed in a refrigerator that is set to a constant temperature of $3^{\circ} \mathrm{C}$.
The sandwich cools at a rate that is proportional to the difference between the temperature of the refrigerator and the temperature (T) of the sandwich.

The rate of temperature change can be expressed as:

$$
\frac{d T}{d t}=-\mathrm{k}(T-3)
$$

where t is the number of minutes after the sandwich is placed in the refrigerator.
(i) Show that $T=3+A e^{-\mathrm{k} t}$ satisfies this equation.
(ii) After 10 minutes in the refrigerator, the sandwich has a temperature of $12^{\circ} \mathrm{C}$.

To the nearest minute, at what time will the sandwich's temperature drop to $5^{\circ} \mathrm{C}$?
(e) The polynomial $P(x)=x^{3}-3 x^{2}+k x+33 \quad$ has roots α, β, γ.
(i) Find the value of $\alpha+\beta+\gamma$. $\quad 1$
(ii) Find the value of $\alpha \beta \gamma$.
(iii) It is known that two of the roots are equal in magnitude but opposite in sign. Find the third root and hence find the value of k.

End of Question 11.

Question 12 (15 marks) Use a new writing booklet.
(a) (i) Solve the inequality $\frac{4 x}{x-2} \leq 1$ by algebraic methods.
(ii) The graph below shows the functions $y=1$ and $y=\frac{4 x}{x-2}$.

Copy the graph into your answer booklet and explain how the graph could be used to illustrate the solution found in part (i).

(b)
(i) Show that the derivative of $y=\tan ^{-1}\left(\frac{x^{3}}{2}\right)$ is $\frac{6 x^{2}}{4+x^{6}}$.
(ii) Hence find $\int \frac{x^{2}}{4+x^{6}} d x$.

Question 12 continues on page 8.

Question 12 continued

(c) A particle is moving in simple harmonic motion with its acceleration given by

$$
\ddot{x}=-12 \sin 2 t .
$$

Initially, the particle is at the origin and has a positive velocity of $6 \mathrm{~m} / \mathrm{s}$.
(i) Show that the particle's velocity has equation $\dot{x}=-12 \sin ^{2} t+6$. $\quad \mathbf{2}$
(ii) Show that $\ddot{x}=-4 x$.
(iii) State its amplitude and period
(d) (i) Write down the coefficient of x^{n} in the binomial expansion $(1+x)^{2 n}$.
(ii) Show that $\left(1+x^{2}+2 x\right)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k}(x+2)^{n-k}$.

End of Question 12

Question 13 (15 marks) Use a new writing booklet
(a) Prove by mathematical induction that for all integers $n>1$,

$$
12^{n}>7^{n}+5^{n}
$$

(b) A particle is moving along the x-axis. Initially the particle is 1 metre to the right of the origin, travelling at a velocity of 3 metres per second and its acceleration is given by

$$
\ddot{x}=2 x^{3}+4 x
$$

where x is the displacement of the particle at time t.
(i) Show that $\dot{x}=x^{2}+2$.
(ii) Hence, or otherwise, find an expression for x in terms of t.
(c) Two circles with centres O_{1} and O_{2} intersect at points A and B as shown in the diagram.

$A C$ is the diameter in the circle with centre O_{1} and it intersects the other circle at A and P.
When the chord $C B$ is produced it intersects the second circle again at Q.
$\angle A C B=\theta$.
Copy or trace the diagram into your writing booklet.
(i) Prove that $A Q$ is a diameter of the circle with centre O_{2}.
(ii) Show that $\angle A B O_{1}=90-\theta$.

Question 13 continues on page 10.

Question 13 continued

(d) A patient was administered with a drug.

The concentration of the drug in the patient's blood followed the rule:

$$
C(t)=1.3 t e^{-0.3 t}
$$

where time, t, is measured in hours and $C(t)$ is measured in mg / L.
This rule is graphed below.

The doctor left instructions that the patient must not receive another dose of the medicine until the concentration of the drug had dropped to below $0.1 \mathrm{mg} / \mathrm{L}$.
(i) Using $t=15$ as a first approximation, use one application of Newton's method to find approximately when the concentration of the drug in the blood of the patient reaches $0.1 \mathrm{mg} / \mathrm{L}$.
(ii) Would it be appropriate to use your answer in (i) as the time when the drug would next be administered? Explain your answer.

End of Question 13.

Question 14 (15 marks) Use a new writing booklet
(a) (i) Sketch neatly on the same set of axes the graphs $y=x^{2}$ and $y=\cos (\pi x)$ for $0 \leq$ $x \leq 1.5$. (your diagram should be at least half a page)
(ii) On the same diagram, sketch the graph of $y=x^{2}+\cos (\pi x)$. Label the three curves on your diagram.
(iii) Using the graph, determine the number of positive real roots of the equation $x^{2}+$ $\cos (\pi x)=0$.
(b) Sam served a tennis ball to his opponent. The racquet hit the ball when the ball was 2.6 metres above the ground. The initial speed of the ball as $234 \mathrm{~km} / \mathrm{h}$ at an angle of 9° below the horizontal.

Let the origin be a point on the ground, directly below where the racquet hit the ball. Let gravity equal $10 \mathrm{~m} / \mathrm{s}^{2}$.
(i) Show that the motion of the ball (in metres) can be expressed by the equations

$$
\begin{aligned}
& x=65 t \cos 9^{\circ} \\
\text { and } \quad y & =2.6-5 t^{2}-65 t \sin 9^{\circ} .
\end{aligned}
$$

(ii) The net at the centre of the court is 11.9 metres from the origin. The net is 91 cm tall. Show that the ball will not make it over the net.
(iii) What will the velocity of the ball be when it hits the net?

Question 14 continues on page 12.

Question 14 continued

(c) The point $P\left(2 a p, a p^{2}\right)$ lies on the parabola $x^{2}=4 a y$.

The point Q is a point on the x-axis such that $P Q$ is parallel to the y -axis.
The point R is a point on the line $x=-a$ such that $R P$ is parallel to the x-axis.
M is the midpoint of interval $R Q$.

(i) Show that M has coordinates $\left(\frac{a(2 p-1)}{2}, \frac{a p^{2}}{2}\right)$.
(ii) Show that the locus of the point M is a parabola with equation $y=\frac{x^{2}}{2 a}+\frac{x}{2}+\frac{a}{8}$.
(iii) Find the equation for the axis of symmetry for the parabola which forms the locus of M (in part (ii)).

End of Exam.

CTHS Trial AP4 2016

Mathematics Extension 1 Course

Name \qquad Teacher \qquad

Section I - Multiple Choice Answer Sheet

Allow about 15 minutes for this section

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.
Sample:
$2+4=$
(A) 2
(B) 6
(C) 8
(D) 9
A \bigcirc
B
$\mathrm{c} \bigcirc$
D \bigcirc

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.
A
B
$\mathrm{c} \bigcirc$
D \bigcirc

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word correct and drawing an arrow as follows.
A
0
correct
$\mathrm{c} \bigcirc$
D \bigcirc

1.	A \bigcirc	B \bigcirc	C	\bigcirc	D \bigcirc
2.	A \bigcirc	B \bigcirc	C	\bigcirc	D \bigcirc
3.	A \bigcirc	B \bigcirc	C	\bigcirc	D \bigcirc
4.	A \bigcirc	B \bigcirc	C	\bigcirc	D \bigcirc
5.	A \bigcirc	B \bigcirc	C	\bigcirc	D \bigcirc
6.	A \bigcirc	B \bigcirc	C	\bigcirc	D \bigcirc
7.	A \bigcirc	B \bigcirc	C	\bigcirc	D \bigcirc
8.	A \bigcirc	B \bigcirc	C	\bigcirc	D \bigcirc
9.	A \bigcirc	B \bigcirc	C	\bigcirc	D \bigcirc
10.	A \bigcirc	B \bigcirc	C	\bigcirc	D \bigcirc

$\varepsilon \tau{ }^{28}{ }_{\mathrm{d}}$

$\stackrel{\stackrel{\circ}{\circ}}{\circ}$

$\begin{array}{llllllll}\infty & \infty \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{lll}0 & n & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \text { (3) (4) }\end{array}$

$$
\mathrm{V}
$$

indicate the correct answer by writing the word correct and drawing an arrow as follows. If you change your mind and have crossed out what you consider to be the correct answer, then
If you think you have made a mistake, put a cross through the incorrect answer and fill in the new
answer.
$=ゅ+$: aldures
Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely. Allow about 15 minutes for this section
Section I - Multiple Choice Answer Sheet
 CTHS Trial AP4 2016

	-	!
13 bircort $f=1 \tan ^{-1} x-1 \tan ^{-1} 1$)	$13 d . \quad C(t)=1.3 t e^{-8 \cdot 3 t}$.
$\sqrt{2} \quad \sqrt{2} \sqrt{2}$ 析		Bd $\quad \begin{aligned} c(t) & =0 . y\end{aligned}$
		for nurt doee $f(t)=1.31 e^{-0.3 x^{2}}-0.1$
$\tan ^{-1} x=\sqrt{2} t+\tan ^{-1} 1$		
$\sqrt{2} \sqrt{2}$		$f(15)=1.3 \times 15 e^{-0.3 \times 15}-0.1$
$x=\sqrt{2} \tan \left(\sqrt{2} x+\tan ^{-1} 1\right)$ (1)		f(s) $1 \times$ -
or $(\sqrt{2} t+\sqrt{2})(\sqrt{2} t)+1$		$\div 0.1166254325$
$-4=\sqrt{2}\left(\tan (\sqrt{2} t)+\frac{1}{\sqrt{2}}\right)$		t
$\text { (BC) } 1-\tan (\sqrt{2})\left(\frac{1}{\sqrt{2}}\right)$		
(or) 0 - $2 \tan (\sqrt{2} t)+\sqrt{2}$)	$\begin{aligned} & =1.3 t \times-0.3 e+e \\ & =1.3 e^{-0.3 t}(1-0.3 t)\end{aligned}$
$c(2)=\frac{2}{\tan (v C t)+\sqrt{2}}$		$1 j^{\prime}(15)=1.3 \times 15 \times 0.3 e^{-0.364}+e^{-0.3875} \times 1.3$
		±-0.05054593425
Join A to B, A to Q, O_{1} to B		
	$)$	$t_{2}=t_{1}-y^{(t)}$
$\angle A B C=90^{\circ}$ (CA diamefer, ()		$1 f^{\prime}(t)$
angle in temicjide $=90^{\circ}$)		$=15+0.116625 \cdots$
		-0.050545..
$\angle A B C+\angle A B Q=180^{\circ}$ (Alugplementay ${ }^{\circ}{ }^{\circ}$		$=17.307$
1 an ar ofraght line))	Fexact
$\therefore 80+\angle 180=180$		-17hrs \& 18 mins exact
$\angle A B Q=90^{\circ}$		
		if $C(t)=1.3 t 1 e^{-0.3 t}$
Since $\angle A B Q=90$. Then $\triangle A B Q$ is druangl		
ii semiciarde		ester $t=17.307$ (t)
$\therefore A Q$ nupt pas		$C(t) \doteq 0.125$ po more appleations
through O_{2}		of newtone method required as concem fratoi
ii) $\ln \triangle A B C \quad B \hat{C} A=0$		A still to high
$A \hat{B C}=90$)	
$\therefore B \overrightarrow{A C}=80-0$)	
$C O_{1}=O_{L} A=0, B$-all radic		
$\therefore \cap A \cap A,<n \hat{A} B=\langle A, \hat{B} A \quad$,		

