

CRANBROOK studentumber
 SCHOOL

HSC Trial Examination

Extension 1 Mathematics

Reading time	5 minutes
Writing time	2 hours
Total Marks	70
Task weighting	40%

General Instructions

- Write using a black pen
- A Board-approved calculator may be used
- A BOSTES formula sheet is provided
- Use the Multiple-Choice Answer Sheet provided
- All relevant working should be shown for each question 11-14

Additional Materials Needed

- BOSTES Formula Sheet
- Multiple Choice Answer Sheet
- 4 writing booklets

Structure \& Suggested Time Spent

Section I

Multiple Choice Questions

- Answer Q1 - 10 on the multiple choice answer sheet
- Allow about 17 minutes for this section

Section II
 Extended response Questions

- Attempt all questions in this section in a separate writing booklet
- Allow about 103 minutes for this section

This paper must not be removed from the examination room
Disclaimer
The content and format of this paper does not necessarily reflect the content and format of the HSC examination paper.

Section I

10 Marks
Allow about 17 minutes for this section
Use the multiple choice answer sheet for Questions 1-10.

Question 1

If $N=65$ when $t=0$, then the solution to $\frac{d N}{d t}=0.3(N-20)$ is:
(A) $\quad N=20+45 e^{0.3 t}$
(B) $\quad N=20+45 e^{-0.3 t}$
(C) $\quad N=20-45 e^{0.3 t}$
(D) $\quad N=20-45 e^{-0.3 t}$

Question 2

In how many ways can the letters of the word SUCCESS be arranged?
(A) $\quad{ }^{7} C_{7}$
(B) $7!$
(C) 420
(D) $\quad{ }^{7} P_{7}$

Question 3

A general solution to $2 \sin ^{2} x-1=0$
(A) $\quad x=2 \pi n \pm \frac{\pi}{4}$
(B)

$$
x=\pi n \pm \frac{\pi}{4}
$$

(C)

$$
x=\pi n+(-1)^{n} \frac{\pi}{4}
$$

(D) $\quad x=\frac{\pi}{4}, \frac{3 \pi}{4}$

Question 4

When $P(x)=5-3 x^{2}-x^{3}$ is divided by $(x+2)$, the remainder is:
(A) 5
(B) $\quad-15$
(C) 25
(D) 1

Question 5

Select the statement which is true for the given diagram:

(A) $A B \times B C=E D \times D C$
(B) $\quad A C \times B C=\mathrm{EC}^{2}$
(C) $A C \times B C=E C \times D C$
(D) $A B \times E D=B C \times D C$

Question 6

Diagram not to scale
In the diagram above, $\angle R P T=28^{\circ}$ and $\angle T S V=37^{\circ}$.
Find the value of $\angle P T R$
(A) $\quad 143^{\circ}$
(B) 115°
(C) $\quad 74^{\circ}$
(D) 37°

Question 7

In terms of t, where $\tan \theta=\frac{2 t}{1-t^{2}}, \quad \frac{\cot \frac{\theta}{2}+\tan \frac{\theta}{2}}{\cot \frac{\theta}{2}-\tan \frac{\theta}{2}}$ can be expressed as:
(A) $\frac{1+t^{2}}{1-t}$
(B) $\frac{1+t^{2}}{1-t^{2}}$
(C) 1
(D) $\frac{1-t^{2}}{1+t^{2}}$

Question 8

A particle is moving in Simple Harmonic Motion. Given $v^{2}=6+4 x-2 x^{2}$, where v is the velocity of the particle and x is the displacement of the particle from the origin, the centre of motion is:
(A) $\quad x=-1$
(B) $\quad x=2$
(C) $x=1$
(D)

$$
x=\sqrt{2}
$$

Question 9

What is the range of $f(x)=5 \cos ^{-1} x$
(A) $0 \leq f(x) \leq \pi$
(B) $-5 \leq f(x) \leq 5$
(C) $0 \leq f(x) \leq \frac{1}{5}$
(D) $0 \leq f(x) \leq 5 \pi$

Question 10

What is the value of $\lim _{x \rightarrow 0} \frac{5 \sin 3 x}{3 \sin 4 x}$
(A) $\frac{5}{3}$
(B) $\frac{3}{4}$
(C) $\frac{5}{4}$
(D) 1

END OF SECTION I

Section II

60 Marks
Allow about 103 minutes for this section
Answer questions 11-14 in separate booklets.

Question 11

a) Find $\int 3 \cos ^{2} 3 x d x$.
b) Solve $\frac{2 x+1}{x-3} \leq 3$.
c) Two lines make an angle of 45° with one another. If one line has a gradient of 2, what are the possible gradients of the other line?
d) Use the substitution $u=2 x+6$ to find $\int x \sqrt{2 x+6} d x$.
e) Given $A(2,3)$ and $P(11,18)$, find the coordinates of B, given P divides $A B$ externally in the ratio $3: 2$.
f) Given the polynomial $P(x)=x^{5}-7 x^{3}-6 x^{2}$:
i. Explain why $P(x)$ is monic. $\mathbf{1}$
ii. Find all zeros of $P(x)$. 2
iii. Sketch $P(x)$. 1

End of Question 11

a) In the diagram below, the points P, Q, R, S, lie on the circumference of the circle with centre $O . P Q \| R S$

Prove:
i. $R T=T S$.
ii. $P R=Q S$.
iii. OPTS is a cyclic quadrilateral.
b) The equation of $e^{x}=x+2$ has a root close to $x=1 \cdot 2$
i. Using Newton's method, find a closer approximation to this, giving your answer correct to 2 decimal places.
ii. If Newton's Method was used with an initial approximation $x=0$, the method would fail to provide a closer approximation of the root. Explain why it fails. Show all working

Question 12 continues on next page

c) Eight people attend a restaurant for dinner. They are provided with 2 circular tables, one of which seats 5 and the other 3 .
i. How many different seating arrangements are there?
ii. If the seating is arranged at random, what is the probability that a couple find themselves on different tables?
d) A filter paper is in the form of a cone, base radius 5 centimetres and perpendicular height of 7.5 centimetres.

The filter paper is inverted and filled with water. The water flows out at a constant rate of 1.5 centimetres cubed per second. At any given time, the depth of the water from the apex is x centimetres and the radius is r.

i. Using similar triangles, show $V=\frac{4}{27} \pi x^{3}$.
(Use the volume of a cone $=\frac{1}{3}$ Base Area \times Height)
ii. Find the rate at which the level of liquid is falling when the depth, x, is 5 cm . Give your answer correct to 2 decimal places.

End of Question 12

a) Prove that $\tan 2 x+\cot 2 x=2 \operatorname{cosec} 4 x$.
b)
i. Express $2 \cos 2 \theta+3 \sin 2 \theta$ in terms of one trigonometric ratio.
ii. Hence or otherwise solve: $2 \cos 2 \theta=1-3 \sin 2 \theta$, for $0 \leq \theta \leq 180^{\circ}$.

Answer to the nearest minute.
c) Prove by mathematical induction that $9^{n+2}-4^{n}$ is divisible by 5 for integers $n \geq 1$.
d) Prove $\frac{d}{d x} \tan ^{-1} x=\frac{d}{d x}\left[-\tan ^{-1}\left(\frac{1}{x}\right)\right]$.
e) Tim is lost in the forest and Michael is searching for him. They are in contact via mobile phone. Tim and Michael can both see the top of Mt Saviour. From Michael's position, the mountain has a bearing of 323°, and the angle of elevation to the top of the mountain is 18°. From Tim's position the mountain has a bearing of 271° and an angle of elevation to the top of the mountain of 27°. The top of Mt Saviour is 3200 m above sea level. Both Tim and Michael are at sea level.

i. Show that the distance d, from Michael to Tim, can be found using:

$$
\begin{equation*}
d=\sqrt{3200^{2}\left(\tan ^{2} 63^{\circ}+\tan ^{2} 72^{\circ}-2 \tan 63^{\circ} \tan 72^{\circ} \cos 52^{\circ}\right)} \tag{2}
\end{equation*}
$$

ii. Find d to the nearest metre.
iii. At what bearing (to the nearest degree) must Michael walk to find Tim?

End of Question 13

a) $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ are two variable points on the parabola $x^{2}=4 a y$.

i. If the variable chord $P Q$ is always parallel to the line $y=x$ show that $p+q=2$.
ii. The equation of the normal at P is $x+p y=2 a p+a p^{3}$ (You do not need to prove this). The normals at P and Q meet at N. Prove that the locus of N is a straight line.
b) A projectile is fired with an initial speed of $56 \mathrm{~m} / \mathrm{s}$ and just clears a 15 m high wall which is 70 m from the point of projection. Let $\mathrm{g}=-9.8 \mathrm{~m} / \mathrm{s}$.
i. Show that:

$$
\begin{aligned}
& x=56 t \cos \theta \\
& y=-4.9 t^{2}+56 t \sin \theta
\end{aligned}
$$

ii. At what possible angles could the projectile have been fired? 3
iii. Explain why there are 2 answers.
c) The rise and fall of the tide at the mouth of a river is in simple harmonic motion. The depth of water at low tide on a particular day is 0.7 m and the depth of water at high tide is 3.7 m .

Low tide occurs at 8:55am and high tide is at $3: 05 \mathrm{pm}$.
i. Show that $n=\frac{\pi}{370}$.
ii. Find the earliest time at which a boat could enter if it requires the water to be at least 2 metres deep.

End of Question 14

END OF SECTION II

END OF EXAM
1.)

$$
\begin{align*}
N & =20+45 e^{0.3 t} \\
\frac{d N}{d t} & =0.3 \times 45 e^{0.3 t} \\
& =0.3(N-20) \tag{8}
\end{align*}
$$

5) (c)
6) 180-6s

$$
=115^{\circ}
$$

(A)
7) $\frac{\frac{1}{t}+t}{\frac{1}{t}-t}$
$\frac{1+t^{2}}{1-t^{2}}$
(B)
(C)
8)

$$
\begin{aligned}
v^{2} & =-2\left(x^{2}-2 x+3\right) \\
& =-2(x-3)(x+1)
\end{aligned}
$$

centre $=12$
(B)
a) $f(x)=s \cos ^{-1} x$
4)

$$
\begin{aligned}
P(x) & =5-3 x^{2}-x^{3} \\
P(-2) & =5-3(4)+8 \\
& =-7+8 \\
& =4 \$ 1
\end{aligned}
$$

$$
0 \leqslant f(2) \leqslant 5 \pi
$$

10.)

$$
\frac{5}{3} \lim _{x \rightarrow 0} \frac{\sin 3 x}{\sin 4 x}
$$

$$
\begin{aligned}
& \frac{5}{3} \lim _{x \rightarrow 0} \frac{\sin 3 x}{3 x} \times \frac{4 x}{\sin 4 x} \times \frac{3}{4} \\
= & \frac{5}{4} \quad C
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\substack{0<x \\
\Sigma>x}}{\sim} \\
& (01-x)\left(\sum-x\right)=0 \\
& {[(1+x \varepsilon)-(\varepsilon-x) \varepsilon](\varepsilon-2) \frac{5}{4}>} \\
& (\varepsilon-k)(1+x)-{ }_{2}(\varepsilon-x) \varepsilon>0 \\
& 2(\Sigma-x) \Sigma>(\varepsilon-x)(1+x z) \\
& \Sigma \neq x \quad \sum>\frac{\Sigma-\pi}{1+-\varepsilon 2} \\
& \partial+\left(\operatorname{rgvis} \frac{9}{T}+r\right) \frac{2}{\Sigma}= \\
& x p \operatorname{reg} \omega+1 \int \frac{2}{\varepsilon} \\
& \operatorname{mp}(\sec +1)^{2} * \varepsilon \int \\
& (r 9 s m+1)^{\frac{2}{1}}=\cdots \varepsilon_{2} \operatorname{sen} \\
& (02 \cos +1)^{\frac{2}{1}}=\theta_{2} \operatorname{sen} \\
& 1-\theta_{2} \operatorname{sen} Z=\theta 2500 \\
& \text { nop }=\varepsilon_{2} 00 \varepsilon \int \text { (110 }
\end{aligned}
$$

c)

$$
\begin{aligned}
\tan \theta & =\left|\frac{m_{2}-m_{2}}{1+m_{1} m_{2}}\right| \\
\tan 45^{\circ} & =\left|\frac{m_{1}-2}{1+2 m_{1}}\right| \\
1 & =\left|\frac{m_{s}-2}{1+2 m^{2}}\right|
\end{aligned}
$$

(1)

$$
\begin{aligned}
& 1+2 m=m-2 \\
& m=-3 \\
& \hline
\end{aligned}
$$

(2)

$$
\begin{aligned}
-(1+2 m) & =m-2 \\
-1-2 m & =m-2 \\
1 & =3 m \\
m & =\frac{1}{3}
\end{aligned}
$$

d) $\int x \sqrt{2 x+0} d x$

$$
\begin{aligned}
u & =2 x+6 \Rightarrow \frac{u-6}{2} \\
\frac{d u}{d x} & =2
\end{aligned}
$$

$$
\begin{aligned}
& \int \frac{u-6}{2} \times \sqrt{u} \times \frac{d u}{2} \\
& \frac{1}{4} \int u^{3 / 2}-6 u^{1 / 2} d u \\
& \frac{1}{4}\left[\frac{2 u^{5 / 2}}{3}-\frac{2}{3} k^{6} u^{3 / 2}\right]+c \\
& \frac{2 u^{5 / 2}}{20}-u^{3 / 2}+C \\
& \frac{u^{5 / 2}}{10}-u^{3 / 2}+C=\frac{(2 x+6)^{5 / 2}}{10}-(22+6)^{3 / 2}+c
\end{aligned}
$$

$$
\begin{aligned}
\text { e) } \begin{aligned}
A(2,3) & P(11,18) \\
A(2,3) & B(x, y) \\
3:-2 & \\
\left(\frac{3 x-4}{1}\right. & \left., \frac{3 y-6}{1}\right) \\
3 x-4 & =11 \\
3 x & =15 \\
x & =5
\end{aligned} \quad \begin{aligned}
& 3 y-6=18 \\
& 3 y=24 \\
& y
\end{aligned}
\end{aligned}
$$

f) $P(x)=x^{5}-7 x^{3}-6 x^{2}$

Coefficient of leading term is 1 .
ii)

$$
\begin{aligned}
P(x) & =x^{2}\left(x^{3}-7 x-6\right) \\
P(-1) & =x^{2} 1(-1+7-6) \\
& =0 \\
P(x) & =x^{2}(x+1)\left(x^{2}-x-6\right) \quad \text { (had } \\
& =x^{2}(x+1)\left(x^{2}-x-6\right) \\
P(x) & =x^{2}(x+1)(x-3)(x+2) \\
& \\
x & =0,-1,-2,3
\end{aligned}
$$

12.) a) let $\angle P Q S=0$
$\angle P R S=180-0 \quad$ (Opp. angles of cyclic quad)
$\angle S R T=0 \quad$ (Angles on straight line)
$\angle R S T=0 \quad$ (Corresponding angles on parallel(liner)
$\therefore R T=$ ST RST isosceles Δ.

$$
\begin{aligned}
P T \times R T & =Q T \times S T \\
R T & =S T \\
\therefore P T & =Q T \\
(P R+R T) & =Q S+S T \\
P R & =Q S
\end{aligned}
$$

$\angle P O S=20$ Angle at centre, twice the at circumference.
$\angle S T R=180-20$ Angles in a Δ
$\therefore A S \angle P O S+\angle S T R=180^{\circ}$ POST is a cyclic quad
(Opp angles supplementary).
6) $e^{x}=x+2$ let $f(x)=e^{x}-x-2 \quad f(1.2)=0.135 \ldots$

$$
\text { fol } \begin{aligned}
a_{1} & =a_{0}-\frac{f(a)}{f^{\prime}(a)} \quad f^{\prime}(2)=e^{2}-1 \\
& =1.2-0.058 \ldots
\end{aligned}
$$

$$
=1.14
$$

$$
\begin{aligned}
& \frac{82}{51}= \\
& \text { es92 } \\
& \text { 人われ1 = } \\
& \overline{\overline{\text { ดわ力 }}=} \\
& \text { •s jo } \\
& \text { ๆワット人时 n } \\
& \text { - } 8 p^{\sim} \forall \\
& \text {-ny sog -ot ptims } \downarrow \\
& \frac{\downarrow}{2} \times i 2 i \lim ^{+\infty} \\
& \text { ayto roons } \\
& \text { s roa's jo ク甲ost ~o } \forall \text { smid }
\end{aligned}
$$

$$
\begin{aligned}
& \overline{8892}=
\end{aligned}
$$

$$
\begin{aligned}
& 5 \text { rinoyl } \\
& \downarrow
\end{aligned}
$$

d)

$$
\begin{aligned}
& \frac{d v}{d t}=1.5 \mathrm{~cm} / \mathrm{s} \\
& V=\frac{\pi r^{2} h}{3} \\
& =\frac{\pi \times \frac{4 \pi^{2}}{9} \times 2}{3} \\
& \frac{x}{7 \cdot 5}=\frac{r}{s} \\
& r=\frac{z x}{3} \\
& U=\frac{4 \pi x^{3}}{27} \text { as required. } \\
& \frac{d v}{d x}=\frac{4 \pi}{27} \times 3 x^{2} \\
& \frac{d v}{d x}=\frac{4}{9} \pi x^{2} \quad \text { let } x=5 \quad \frac{d v}{d x}=\frac{4 x \pi \times 25}{9} \\
& \frac{d x}{d t}=\frac{d x}{d u} \times \frac{d u}{d t} \\
& =\frac{9}{100 \pi} \times 1.5 \\
& =0.042 \ldots \\
& \frac{d x}{d t}=0.04 \mathrm{~cm} / \mathrm{sec}
\end{aligned}
$$

13a)

$$
\begin{aligned}
\tan 2 x+\cot 2 x & =2 \operatorname{cosec} 4 x \\
R H S & =\frac{2}{\sin 4 x} \\
\text { RHS } & =\frac{x 1}{2 \sin 2 x \cos 2 x} \text { (H) } \\
\text { LHS } & =\tan 2 x+\frac{1}{\tan 2 n} \\
& =\frac{\sin 2 x}{\cos 2 x}+\frac{\cos 2 x}{\sin 2 n} \\
& =\frac{\sin ^{2} 2 x+\cos ^{2} 2 x}{\sin 2 x \cos 2 x} \\
& =\frac{1}{\sin 2 \pi \cos 2 x} \\
& =2 \operatorname{cosec} 4 x \text { from } \#
\end{aligned}
$$

b)

$$
\begin{aligned}
& 2 \cos 2 \theta+3 \sin 2 \theta \\
& R \cos (2 \theta-\alpha)=R \cos 2 \theta \cos \alpha+R \sin 2 \theta \sin \alpha \\
& R \cos \alpha=2 \quad R \sin \alpha=3 \\
& \cos \alpha=\frac{2}{R} \quad \sin \alpha=\frac{3}{R} \\
& \frac{\tan \alpha=\frac{3}{2}}{2} \quad \begin{array}{l}
R=\sqrt{13} \\
3
\end{array} \quad \begin{array}{l}
2 \cos 20+3 \sin 2 \theta \\
\end{array} \quad=\sqrt{13} \cos \left(2 \theta-56^{\circ} 19^{\circ}\right.
\end{aligned}
$$

ii)

$$
\begin{aligned}
& 2 \cos 2 \theta+3 \sin 2 \theta=1 \\
& \sqrt{13} \cos \left(2 \theta-56^{\circ} 19^{\prime}\right)=1 \\
& \cos \left(20-56^{\circ}, 9^{\prime}\right)=\frac{1}{\sqrt{13}} \\
& 2 \theta-56^{\circ} 19=73^{\circ} 54^{\prime}, 286^{\circ} 6^{\prime} \\
& 2 \theta=130^{\circ} 12^{\prime}, 342^{\circ} 25^{\prime} \\
& \mu^{\prime}, 13^{\prime} \\
& \theta=65^{\circ} 6^{\prime}, 171^{\circ}, 2^{\prime}
\end{aligned}
$$

C) $9^{n+2}-4^{n}$ dis by s
let $n=1$

$$
\begin{aligned}
& 9^{3}-4 \\
= & 725
\end{aligned}
$$

Io div. by S.
Assure true for $n=k$

$$
q^{k+2}-4^{k}=5 p \quad p \in \mathbb{Z}
$$

Let $n=k+1$

$$
9^{k+3}-4^{k+1}
$$

$$
\left\{\begin{array}{l}
9^{k+3}-4 \times 4^{k} \\
q^{k+3}-4\left(q^{k+2}-5 p\right) \\
q^{k+3}-4+q^{k+2}+20 p \\
q^{k+2}(9-4)+20 p \\
5_{x} q^{k+2}+20 p \\
5\left(q^{k+2}+4 p\right) \\
\therefore \text { Dis by } s .
\end{array}\right.
$$

$n=k$ it is \therefore France If it is true for $n=k$, it is if also $n=1$ true for $n=k+1$ is A, $n=$ it in

$$
\text { d) } \begin{aligned}
& \frac{d}{d x}\left(\tan ^{-1} x\right) \\
&= \frac{1}{1+x^{2}} \\
& \frac{d}{d x}\left[-\tan ^{-1} \frac{1}{x}\right] \\
&= \frac{-x\left[\frac{1}{x}-x^{-2}\right]}{1+\left(\frac{1}{x}\right)^{2}} \\
&= \frac{1}{1+\left(\frac{1}{x}\right)^{2}} \\
&= \frac{1}{x^{2}+1} \\
&= \frac{1}{1+x^{2}} \\
&= \frac{d}{d x \tan ^{-1} x}
\end{aligned}
$$

Michael: OM =3200 $\cot 18^{\circ}$

$$
\begin{array}{r}
d^{2}=k^{2} 3200^{2} \cot ^{2} 27+3200^{2} h^{2} \cot ^{2} 18-2 \times 3200 \% \cot 27 x \\
3200 \cot 18 \cos 52^{\circ}
\end{array}
$$

$$
\begin{aligned}
&) d=\sqrt{3200^{2}\left(\cot ^{2} 27+\cot ^{2} 18-\cot 27 \cot 18 \cos 52^{\circ}\right)} \\
& \text { i) }=\sqrt{\$ 200^{2}\left(\tan ^{2} 63^{\circ}+\tan ^{2} 72^{\circ}-\tan 63 \tan 72 \cos 52\right)} \\
& d=7764 \mathrm{~m} \\
& \text { i) } \frac{\sin 52}{7764}=\frac{\sin \theta}{3200 \tan 63} \\
& \Rightarrow \theta=39^{\circ} 36^{\prime} \\
& \therefore \text { Bearing from } M \text { to } \\
& T \text { is } 323+39^{\circ} 36^{\prime} \\
& =003^{\circ} \mathrm{T} \text {. }
\end{aligned}
$$

14a)

$$
z=p+q
$$

Intersectoon: (-apq(prq), $2+p^{2}+c q+$

$$
\begin{aligned}
x & =-a p q(p+q) \\
x & =-2 a p q \\
y & =2+p^{2}+p q+q^{2} \\
y & =p q+2+q^{2}+p^{2} \\
& =\frac{p z}{2 a}+2+\varepsilon^{2}+p^{2}
\end{aligned}
$$

$$
\begin{aligned}
y & =\frac{-x}{2 a}+2+p^{2}+q^{2} \\
& =\frac{-x}{2 a}+(p+q)^{2}-2 p q+2 \\
& =-\frac{x}{2 a}+4+2+\frac{x}{a} \\
y & =\frac{x}{2 a}+6
\end{aligned}
$$

\therefore Straight line, gradient $\frac{1}{2 a}$
b)

Show: $x=56 t \cos \theta \quad y=-4 \cdot 9 t^{2}+56 t \sin \theta$
Horizontal

$$
\begin{aligned}
\ddot{x} & =0 \\
\dot{x} & =56 \cos \theta \quad(c=56 \cos \theta) \\
x & =56 t \cos \theta+c \\
t & =0 \quad x=0 \\
\therefore c & =0 \\
x & =56 t \cos 0
\end{aligned}
$$

ii) let $x=70, y=15$

$$
\begin{aligned}
& 70=s 6 t \cos \theta \\
& t=\frac{70}{s 6 \cos \theta}
\end{aligned}
$$

$$
\begin{aligned}
& \ddot{y}=-4.8 \\
& \dot{y}=-9.8 t+c \\
& t=0 \quad \dot{y}=56 \sin \theta \\
& \dot{y}=-9.8 t+56 \sin \theta \\
& y=-4.9 t^{2}+56 t \sin \theta
\end{aligned}
$$

$$
t=0 \quad y=0 \quad c=0
$$

$$
y=-4 \cdot 9 t^{2}+56 t \sin 6
$$

$$
\begin{aligned}
15 & =-4.9 t^{2}+56 t \sin \theta \\
1 s & =-4.9\left(\frac{70}{56 \cos \theta}\right)^{2}+56 \times \frac{70}{56 \cos \theta}(\sin \theta) \\
& =\frac{-4.9-70}{56} \times\left(1+\tan ^{2} \theta\right)+70 \tan \theta
\end{aligned}
$$

$$
\begin{aligned}
1 s & =125 \frac{-49}{8}-\frac{49}{8} \tan ^{2} \theta+70 \tan \theta \\
120 & =-49-49 \tan ^{2} \theta+50 \tan \theta \\
0 & =49 \tan 20-560 \tan \theta+169 \\
\tan \theta & =\frac{560 \pm \sqrt{560^{2}-4 \times 49 \times 169}}{2 \times 49} \\
\tan \theta & =11.12,0.31 \\
\theta & =84.52!17^{\circ} 14
\end{aligned}
$$

iii) 45° will give max rouge

Anything other then the angle, for there will always be 2 answers.
ie

Period 6 hows laming.
370 min s for half period
$\therefore 740$ for whole

$$
\begin{aligned}
\text { Period } & =\frac{2 \pi}{n}<\text { Must state } \\
n & =\frac{2 \pi}{3402} \\
& =\frac{\pi 40}{370}
\end{aligned}
$$

$$
\begin{aligned}
& x=-a \cos n t+2.2 \\
& x=-1 \cdot \sin \cos \frac{\pi t}{370}+2.2 \\
& z=-1.5 \cos \frac{\pi t}{37}+2.2
\end{aligned}
$$

$$
\frac{-0.2}{-1.5}=\cos \frac{\pi t}{370}
$$

$$
\begin{aligned}
t & =169 \text { vitamins }^{t} 15^{\prime} \\
t & =8: 55+169 \mathrm{mins} \\
& =11: 5 \mathrm{~s}-11 \mathrm{mins}
\end{aligned}
$$

