Mathematics Extension 1

Reading time	5 minutes
Writing time	2 hours
Total Marks	70
Task weighting	40%

General Instructions

- Write using black pen
- Diagrams drawn using pencil
- A Board-approved calculator may be used
- The Reference sheet is on the last page of this booklet
- Use the Multiple-Choice Answer Sheet provided
- All relevant working should be shown for each question

Additional Materials Needed

- Multiple Choice Answer Sheet
- 4 writing booklets

Structure \& Suggested Time Spent

Section I

Multiple Choice Questions

- Answer Q1 - 10 on the multiple choice answer sheet
- Allow about 20 minutes for this section

Section II

Extended response Questions

- Attempt all questions in this section in a separate writing booklet
- Allow about 100 minutes for this section

This paper must not be removed from the examination room

Disclaimer

The content and format of this paper does not necessarily reflect the content and format of the HSC examination paper.

Section I

10 Marks

Allow about $\mathbf{2 0}$ minutes for this section

Use the multiple choice answer sheet for Questions 1-10.

1 The polynomial $P(x)=2 x^{3}-k x^{2}-5 x-1$ leaves a remainder of 5 when divided by $x+3$. Find the value of k.
(A) $\quad-5$
(B) 5
(C) $-\frac{1}{5}$
(D) $\quad-3$

2 The function $f(x)=e^{\sin x}-1$ has a root between $x=3$ and $x=4$. In which of the following intervals does the root lie?
(A) $3 \leq x \leq 3.25$
(B) $\quad 3.25 \leq x \leq 3.5$
(C) $3.5 \leq x \leq 3.75$
(D) $3.75 \leq x \leq 4$

3 Consider the following graph.

Which of the following best represents the graph above?
(A) $y=\frac{1}{2} \cos ^{-1}(x-1)$
(B) $\quad y=2 \cos ^{-1}(x-1)$
(C) $y=\frac{1}{2} \sin ^{-1}(x-1)$
(D) $\quad y=2 \sin ^{-1}(x-1)$

4 Consider the circle below with centre, O.

Given $\angle B C A=x$ and $O A D$ is straight line, find $\angle B A D$ in terms of x.
(A) $\frac{\pi}{2}-x$
(B) $\frac{\pi}{2}+x$
(C) $2 x$
(D) x

5 A particle with displacement x metres and velocity v metres/second, moves such that $v^{2}=-9(x-3)(x+1)$. Find the maximum speed of the particle.
(A) $6 \mathrm{~m} / \mathrm{s}$
(B) $3 \mathrm{~m} / \mathrm{s}$
(C) $\pm 6 \mathrm{~m} / \mathrm{s}$
(D) $2 \mathrm{~m} / \mathrm{s}$

6 Which of the following is identically equal to $\sin x-2 \cos x$?
(A) $\sqrt{5} \cos \left(x+\tan ^{-1} 2\right)$
(B) $\sqrt{5} \sin \left(x-\tan ^{-1} \frac{1}{2}\right)$
(C) $\sqrt{5} \cos \left(x+\tan ^{-1} \frac{1}{2}\right)$
(D) $\sqrt{5} \sin \left(x-\tan ^{-1} 2\right)$

7 Which of the following is equal to $\tan \left[2 \sin ^{-1} \frac{x}{\sqrt{1+x^{2}}}\right]$?
(A) x
(B) $\quad 2 \sin x \cos x$
(C) $\frac{2 x}{1-x^{2}}$
(D) $\frac{2 x}{\sqrt{1+x^{2}}}$

8 Which of the following is equal to $\int \frac{3}{25+4 x^{2}} d x$?
(A) $\frac{3}{10} \tan ^{-1}\left(\frac{2 x}{5}\right)+c$
(B) $3 \tan ^{-1}\left(\frac{2 x}{5}\right)+c$
(C) $\frac{15}{8} \tan ^{-1}\left(\frac{5 x}{2}\right)+c$
(D) $3 \tan ^{-1}\left(\frac{5 x}{2}\right)+c$

9 A cylinder, radius x and height $2 x$, is increasing in volume at the rate of $0.1 \mathrm{~cm}^{3} / \mathrm{s}$. Given the following information:

- The volume, V, is $V=2 \pi x^{3}$
- The surface area, S, is $S=6 \pi x^{2}$,
find the rate of change of the surface area when the radius is 5 centimetres.
(A) $\quad 0.1 \mathrm{~cm}^{2} / \mathrm{s}$
(B) $\quad 0.06 \mathrm{~cm}^{2} / \mathrm{s}$
(C) $\quad 0.01 \mathrm{~cm}^{2} / \mathrm{s}$
(D) $\quad 0.04 \mathrm{~cm}^{2} / \mathrm{s}$

10 Using the substitution $u=1-2 x$, the integral $\int_{0}^{1} \frac{x}{\sqrt{1-2 x}} d x$ can be expressed as:
(A) $\frac{1}{4} \int_{-1}^{1} \frac{1-u}{\sqrt{u}} d u$
(B) $\frac{1}{4} \int_{1}^{-1} \frac{1-u}{\sqrt{u}} d u$
(C) $\frac{1}{2} \int_{-1}^{1} \frac{1-u}{\sqrt{u}} d u$
(D) $\frac{1}{2} \int_{1}^{-1} \frac{1-u}{\sqrt{u}} d u$

END OF SECTION I

Section II

60 Marks
Allow about $\mathbf{1 0 0}$ minutes for this section
Answer questions 11-14 in separate booklets.

Question 11

Start a new booklet

15 Marks
(a) Solve for $x: \frac{3}{2-x} \leq 1$
(b) Nine balls, each labelled 1 to 9 , are to be lined up in a row.
(i) In how many ways can this be done?
(ii) In how many ways can they be arranged if numbers 1 and 3 must be next to each other?
(iii) In how many different ways can the balls be arranged so that that they alternate between even and odd numbers?

For a number to be divisible by 4 the final two digits must form a multiple of 4 .
(iv) If the balls are arranged randomly what is the probability that the number they form is divisible by 4 ?
(c) The mass, W kilograms, of an African elephant can be approximated through the formula $W=6000-A e^{-k t}$, where k is a constant and t is the elephant's age in years.

An elephant's mass at birth is 91 kilograms and at 5 years old is 2300 kilograms.
(i) Find the values A and k. 2
(ii) At what rate is the mass of the elephant increasing when it is 20 years old?
(iii) Draw a graph of the mass of the elephant against time.
(d) The region bounded by the curve $y=3-\sin x$ and the x axis for $0 \leq x \leq \frac{\pi}{3}$ is shaded below.

Find the volume of the solid formed if the shaded area is rotated around the x axis.

END OF QUESTION 11

(a) Consider the function $f(\theta)=\sin \theta-\cos \theta$ over the domain $0 \leq \theta \leq 2 \pi$.
(i) Use $t=\tan \frac{\theta}{2}$ to solve the equation $f(\theta)=1$
(ii) Hence find θ such that $f(\theta)<1$
(b) The curves $y=\sin 2 x$ and $y=\cos x$ are shown below. In the domain $0<x<\frac{\pi}{2}$ they intersect at point A.

Find the angle between the two curves at the point A.
(c) $\quad P\left(2 a p, a p^{2}\right)$ is a point on the parabola $x^{2}=4 a y$. The equation of the normal to the curve of the parabola at the point, P, is $x+p y=2 a p+a p^{3}$ (You do not need to show this).
(i) Find the co-ordinates of the point Q where the normal at P meets the y axis. 1
(ii) Show that the co-ordinates of the point R which divides $P Q$ externally in the ratio 2:1 are $R\left(-2 a p, 4 a+a p^{2}\right)$.
(iii) Find the Cartesian equation of the locus of R and describe the locus in geometrical terms.
(d) Newton's Method uses the tangent at a point near a root to give a better approximation for that root.
(i) Describe a situation in which Newton's method would NOT give a better approximation for a root.
(ii) The curve $y=\sin ^{2} x+\ln (x-1)$ has a root near $x=2.1$.

Use Newton's approximation to determine the next approximation.

END OF QUESTION 12

(a) Hayley is a baseball coach. Each week she must pick a team of 9 players from her roster of 12 . However, when picking a team she must pick a pitcher, a catcher, four infielders and 3 outfielders.
(i) How many different teams can she pick?
(ii) Two of her players, Raul and Petra, don't work well together. How many different teams can Hayley pick if Raul and Petra can't be in the infield together or in the outfield together?
(b) A particle moves according to the equation: $v=(16-x)$, where v is the velocity in metres per second, and x is the displacement in metres from the origin. The particle is initially at $x=15$.
(i) Find the displacement, x as a function of time, t. 2
(ii) Hence describe the motion of the particle as time goes on indefinitely.
(c) Two cars, M and N start moving from a point O at an angle of 60° to each other. Car N travels at three times the speed of car M. Let the distance travelled by car M be x metres.

$$
\text { Car } N
$$

(i) Show that the area, A, of $\triangle O M N$ is $A=\frac{3 \sqrt{3} x^{2}}{4}$.
(ii) If car M is travelling at a speed of $15 \mathrm{~m} / \mathrm{s}$ when $x=100$, what is the rate of change of the area A at this time? Leave your answer in exact form.
(d) The circle centred at O has diameter $A B$. A point P on $A B$ produced is chosen so that $P C$ is a tangent to the circle at C and $B P=B C$. The tangents to the circle at A and C meet at Q.

(i) Prove $\angle B P C=30^{\circ}$
(ii) Prove $\triangle P O C \equiv \triangle Q O C$
(a) Consider the curve $y=\frac{9 x^{2}-1}{x^{4}}$.
(i) Prove that the function is even. 1
(ii) Find any stationary points and determine their nature. 2
(iii) Find the points of inflexion. 2
(iv) State any vertical asymptotes and the limit as x approaches infinity. 2
(v) Sketch the curve showing all critical values. 2
(b) A cannon ball is fired at a velocity of $v=30 \mathrm{~m} / \mathrm{s}$ from a clifftop towards an enemy ship, 160 metres from the base of the cliff. The cannon is 120 metres above sea level. You may assume the acceleration due to gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$.

(i) Show that the equations of motion are:

$$
x=30 t \cos \theta \quad \text { and } \quad y=-4.9 t^{2}+30 t \sin \theta+120
$$

(ii) In order to damage the ship, the cannon ball must hit the ship's mast, which is 17 metres above sea level and located at the centre of the ship (i.e. at 160 metres from the base of the cliff as indicated in the diagram).

Between what angles must the ball be fired in order to hit the ship's mast?

END OF QUESTION 14

END OF EXAM

Year 12 Extension I Mathematics In al Exam
Solvions
Q|

$$
\begin{align*}
P(-3) & =5 \\
P(-3) & =2(-3)^{3}-k(-3)^{2}-5 \times(-3)-1 \\
5 & =-54-9 k+15-1 \\
45 & =-9 k \\
k & =-5
\end{align*}
$$

02

$$
\begin{array}{ll}
f(3)>0, & f(4)<0 \\
f(3.5)<0, & \therefore \text { Answer (A) } \\
f(3.25)<0 &
\end{array}
$$

Q3 When $x=0, y=2 \pi$
When $x=0$
(A) $=\frac{\pi}{2}$
$(B)=2 \pi$
\therefore Answer
(C) $=-\pi / 4$
(D) $=-\pi$

QU

$\angle B O A=2 x$ (\angle subbuded at the conte is twice the angle at crivampena)

$$
\begin{aligned}
& \angle B A O=\frac{\pi-2 x}{2}(\angle \text { som of issiseles } \\
& \left.\angle B A D=\pi-\left(\frac{\pi-2 x}{2}\right) \quad \triangle \text { Ans }\right) \\
& \\
& =
\end{aligned}
$$

Q5 $\quad v^{2}=-9(x-3)(x+1)$
$V=0$ at the end points.

$$
x=3 \&-1
$$

centre of motion@ $x=1$
Max velocity occurs e centre of motion

$$
\begin{align*}
v^{2} & =-9(-2)(2) \\
& =36 \\
r & = \pm 6 \mathrm{~ms}^{-1} \quad \operatorname{Max} V=6 \mathrm{~ms} \tag{A}
\end{align*}
$$

Q6 let $\sin x-2 \cos x=R \sin (x-\alpha)$

$$
=R \sin x \cos \alpha-R \cos \alpha \sin \alpha
$$

$$
\begin{array}{rr}
R \cos \alpha=1 \quad R \sin \alpha=2 \\
\therefore \quad 2=\sqrt{5} \quad \tan \alpha=2
\end{array} \quad \text { Answer (D) }
$$

$07 \quad \tan \left[2 \sin ^{-1} \frac{x}{\sqrt{1+x^{2}}}\right]$
$\tan 2 \alpha \quad$ where $\alpha=\sin ^{-1}\left(\frac{x}{\sqrt{1+x^{2}}}\right)$
$=\frac{2 \tan \alpha}{1-\tan ^{2} \alpha}$

$$
\therefore \tan \alpha=x
$$

$$
=\frac{2 x}{1-x^{2}}
$$

Answer is (C)

$$
\begin{align*}
& \text { Q8 } 3 \int \frac{1}{5^{2}+(2 x)^{2}} d x \quad \begin{array}{ll}
a=5 \\
\frac{d}{d x} 2 x=2
\end{array} \\
& =3\left[\frac{1}{5} \tan ^{-1}\left(\frac{2 x}{5}\right) \div 2\right]+C \\
& =\frac{3}{10} \tan ^{-1}\left(\frac{2 x}{5}\right)+c \tag{A}\\
& \text { Q9 } \frac{d S A}{d t}=\frac{d V}{d t} \times \frac{d S A}{d r} \quad \frac{d S A}{d r}=\frac{d S A}{d x} \times \frac{d x}{d r} \\
& \frac{d S A}{d x}=12 \pi x \quad \frac{d V}{d x}=6 \pi x^{2} \\
& \therefore \frac{d S A}{d V}=\frac{2}{x} \\
& \therefore \quad \frac{d S A}{d t}=0.1 \times \frac{2}{x} \\
& =\frac{1}{5 x} \\
& \text { When } x=5 \\
& \frac{d S A}{d t}=\frac{1}{25} \\
& =0.04 \mathrm{~cm}^{2} / \mathrm{s} \tag{D}
\end{align*}
$$

Q10

$$
\begin{aligned}
& u=1-2 x \quad \text { when } x=1 \quad u=-1 \\
& \frac{d u}{d x}=-2 \quad x=0 \quad u=1 \\
& \int_{0}^{1} \frac{x}{\sqrt{1-7 x}} d x=\int_{1}^{-1} \frac{\frac{1-u}{2}}{\sqrt{u}} \times-\frac{d u}{2} \\
& =-\frac{1}{4} \int_{1}^{-1} \frac{1-u}{\sqrt{u}} d u \\
& \text { We can flip } \text { the limits }=\frac{1}{4} \int_{-1}^{1} \frac{1-u}{\sqrt{u}} d u \quad \text { Answer }
\end{aligned}
$$

Answers to $M C$

$$
\begin{array}{llllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
A & A & B & B & A & D & C & A & D & A
\end{array}
$$

Question 11, Page 1
Wednesday, 21 June 2017 9:01 AM
(a)

$$
\begin{aligned}
& \frac{3}{2-x} \leq 1 \\
& 3(2-x) \leq(2-x)^{2} \quad 1 \times \text { denominator squared } \\
& 3(2-x)-(2-x)^{2} \leq 0 \\
& (2-x)[3-(2-x)] \leq 0 \\
& (2-x)(x+1) \leq 0
\end{aligned}
$$

(1) Justification

$$
x \leq-1, \quad x>2
$$

(1) Correct answer
(b) (i) 9! (1)
(ii)

$$
\begin{aligned}
& \frac{\frac{\sqrt{13}}{2 \text { objects }}}{\frac{8 \text { objects }}{}} \cdots \cdots \cdots \\
& \therefore \quad 2!\times 8!(1)
\end{aligned}
$$

Question 11, Page 2
Tuesday, 11 July 2017 3:31 PM
5 add
(iii)

(iv) Multiples of 4 that can be formed

$$
(24,08, \quad 12,16,2024,28,32,36,40 \ldots
$$

No ball labelled zero \& n no 44 wo 88

$$
\begin{aligned}
\therefore \quad & 2+4+4+4+2 \\
= & 16
\end{aligned}
$$

Number of arrangements that end with a multiple of 4 is $7!\times 16$ (1) All other digits.

$$
\begin{align*}
P(\text { Divisible by 4) } & =\frac{7!\times 16}{9!} \\
& =\frac{16}{9 \times 8} \\
& =\frac{2}{9} \tag{1}
\end{align*}
$$

(c)

$$
\begin{array}{ll}
W=6000-A e^{-k t} \quad \text { When } \quad t=0, W=91 \\
\therefore 91 & =6000-A \\
A & =5909 \tag{1}
\end{array}
$$

Question 11, Page 3

$$
\begin{aligned}
2300 & =6000-5909 e^{-5 k} \\
5909 e^{-5 k} & =3700 \\
e^{-5 k} & =\frac{3700}{5909} \\
-5 k & =\ln \left(\frac{3700}{5909}\right) \\
k & =\frac{\ln \left(\frac{3700}{5909}\right)}{-5} \\
& \doteqdot 0.0936 \ldots
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& W=6000-A e^{-k t} \\
& \frac{d W}{d t}=k A e^{-k t}
\end{aligned}
$$

When $t=20 \quad \frac{d \omega}{d t}=k A e^{-k \times 20}$

$$
\doteq 85 \mathrm{~kg} / \text { year }
$$

(iii)

(1) Shape \& Asymptote

Question 11, Page 4
Wednesday, 21 June 2017 9:42 AM
(d)

$$
\begin{aligned}
& V=\pi \int_{0}^{\frac{\pi}{3}}(3-\sin x)^{2} d x \\
&=\pi \int_{0}^{\frac{\pi}{3}} 9-6 \sin x+\sin ^{2} x d x \quad \cos 2 x=1-2 \sin ^{2} x \\
& \sin ^{2} x=\frac{1-\cos 2 x}{2} \\
& V=\pi \int_{0}^{\frac{\pi}{3}} 9-6 \sin x+\frac{1}{2}-\frac{\cos 2 x}{2} d x
\end{aligned}
$$

Question 11, Page 5

$$
\begin{align*}
\therefore V & =\pi \int_{0}^{\frac{1}{3}}-6 \sin x+\frac{19}{2}-\frac{\cos 2 x}{2} d x \\
& =\pi\left[\frac{19 x}{2}+6 \cos x-\frac{\sin 2 x}{4}\right]_{0}^{\frac{\pi}{3}} \\
& =\pi\left[\left(\frac{19 \pi}{6}+3-\frac{\sqrt{3}}{8}\right)-(0+6-0)\right] \\
& =\pi\left[\frac{19 \pi}{6}-\frac{\sqrt{3}}{8}-3\right] \text { units }^{3} \tag{1}
\end{align*}
$$

Question 12, Page 1
Wednesday, 12 July 2017 9:05 AM
(a) $f(\theta)=\sin \theta-\cos \theta \quad 0 \leqslant \theta \leqslant 2 \pi$
(i)

$$
\begin{aligned}
& \text { (i) } \quad \begin{array}{l}
\quad \sin \theta=\frac{2 t}{\frac{\theta}{2}} \\
\quad \cos \theta=\frac{1-t^{2}}{1+t^{2}} \\
\therefore \quad \\
\therefore \quad \frac{2 t-1+t^{2}}{1+t^{2}}=1
\end{array}, l
\end{aligned}
$$

$$
0 \leq \frac{\theta}{2} \leq \pi
$$

$$
\begin{align*}
\therefore \quad \frac{2 t-1+t^{2}}{1+t^{2}} & =1 \\
2 t-1+t^{2} & =1+t^{2} \\
2 t & =2 \\
t & =1 \\
\therefore \quad \tan \frac{\theta}{2} & =1 \\
\frac{\theta}{2} & =\frac{\pi}{4} \\
\theta & =\frac{\pi}{2}(1 \tag{1}
\end{align*}
$$

$$
\therefore \quad \theta=\frac{\pi}{2} \& \pi(1)
$$

TEST $\quad \theta=\pi \quad$ As $\tan \frac{\pi}{2}$ is undefined

$$
\sin \pi-\cos \pi=1
$$

$$
\therefore \quad \theta=\pi \text { is also }
$$ a solution

(ii) There are two options

$$
\theta<\frac{\pi}{2}, \quad \theta>\pi \quad \text { or } \quad \frac{\pi}{2}<\theta<\pi
$$

TEST $\quad \theta=0$

$$
\sin 0-\cos 0=-1
$$

Which is <1

$$
\therefore \quad \theta<\frac{\pi}{2} \quad, \theta>\pi
$$

(b) Need the x coordinate of A

$$
\begin{aligned}
& \sin 2 x=\cos x \\
& \sin 2 x-\cos x=0 \\
& 2 \sin x \cos x-\cos x=0 \\
& \cos x(2 \sin x-1)=0 \\
& \therefore \quad x=\frac{\pi}{2} \quad x=\frac{\pi}{6}
\end{aligned}
$$

$\therefore x$ wordinate of A is $\frac{\pi}{6}$ (1)

$$
\begin{array}{rlrl}
y & =\sin 2 x & y & =\cos x \\
\frac{d y}{d x} & =2 \cos 2 x & \frac{d y}{d x} & =-\sin x \\
\therefore m_{1} & =2 \cos \frac{\pi}{3} & m_{2} & =-\frac{1}{2} \\
& =1 \text { (1) } &
\end{array}
$$

let α be the angle between the tangents

$$
\begin{aligned}
\tan \alpha & =\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right| \\
& =\left|\frac{\frac{3}{2}}{\frac{1}{2}}\right| \\
\alpha & =\tan ^{-1} 3^{(1)}=71^{\circ} 34^{\prime} \quad \text { Nearest minute }
\end{aligned}
$$

Question 12, Page 3
(c) (i)

$$
x+p y=2 a p+a p^{3}
$$

Meets the y axis when $x=0$

$$
\begin{align*}
\therefore \quad y_{Q} & =2 a+a p^{2} \\
& =a\left(2+p^{2}\right) \tag{1}
\end{align*}
$$

$$
\begin{aligned}
& \text { (ii) } p\left(2 a p, a p^{2}\right) \quad Q\left(0, a\left(2+p^{2}\right)\right) \\
& R\left(x_{R}, y_{R}\right)
\end{aligned}
$$

$$
\begin{aligned}
x_{R} & =\frac{2 a p}{-1} \quad y_{R}
\end{aligned}=\frac{a p^{2}-2 a\left(2+p^{2}\right)}{-1}
$$

$$
\therefore 2\left(-2 a p, 4 a+a p^{2}\right)
$$

(iii)

$$
\begin{aligned}
x & =-2 a p \quad y=4 a+a p^{2} \\
p & =\frac{-x}{2 a} \\
\therefore y & =4 a+a\left(\frac{x^{2}}{4 a^{2}}\right) \\
& =4 a+\frac{x^{2}}{4 a}
\end{aligned}
$$

Question 12, Page 4

$$
\begin{aligned}
& \frac{x^{2}}{4 a}=y-4 a \\
& x^{2}=4 a(y-4 a)
\end{aligned}
$$

This is a parabola with vertex $(0,4 a)$
\& focal length a
(d) (i) When the first approximation is near a turning point.
(ii) $y=\sin ^{2} x+\ln (x-1)$

$$
\begin{aligned}
& x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)} \\
& f(x)=\sin ^{2} x+\ln (x-1) \\
& f^{\prime}(x)=2 \cos x \sin x+\frac{1}{x-1}
\end{aligned}
$$

$\therefore x_{2}=-20.3027 \ldots$ (A much worse approximation)

Question 13, Page 1
Wednesday, 12 July 2017 9:36 AM
(a) (i) ${ }^{12} C_{1} \times{ }^{11} C_{1} \times{ }^{10} C_{4} \times{ }^{6} C_{3}$

Poacher (other infield Outfield

$$
=554400 \text { (1) }
$$

(ii) Total ways of NOT picking Raul \& Petra in the outfield or in feed
$=$ Total teams (Part (i))

- Both in infield (BI)
- Both in outfield $\left(B_{0}\right)$]
B_{I} Put both in the infield \therefore only 10

$$
\begin{aligned}
& ={ }^{10} C_{1} \times{ }^{9} C_{1} \times{ }^{8} C_{2} \times{ }^{6} C_{3} \\
& \text { Pitcher Catcher } 2 \text { more outfield } \\
& =50400
\end{aligned}
$$

Bo Put both in the outfield.: only 10

$$
\begin{aligned}
& ={ }^{10} C_{1} \times{ }^{9} C_{1} \times{ }^{8} C_{4} \times{ }^{4} C_{1} \\
& \text { Catcher } \\
& =25200
\end{aligned}
$$

\therefore Total ways not in infield or culfield together $=478800$

Question 13, Page 2
Wednesday, 12 July 2017 9:36 AM
(b) $\quad v=(16-x) \quad$ When $t=0 \quad x=15$

$$
\begin{align*}
\frac{d x}{d t} & =16-x \\
\frac{d t}{d x} & =\frac{1}{16-x} \\
\therefore t & =-\ln (16-x)+C \tag{1}
\end{align*}
$$

When $t=0, x=15$

$$
\begin{gather*}
0=-\ln (1)+c \\
\therefore \quad t=-\ln (16-x) \\
e^{-t}=16-x \\
x=16-e^{-t} \tag{1}
\end{gather*}
$$

(ii) As \quad t $\rightarrow \infty \quad e^{-t} \rightarrow 0$

$$
\therefore x \rightarrow 16
$$

Question 13, Page 3
Wednesday, 12 July 2017 9:36 AM
(c) If M travels x metres then N travels $3 x$ metres as if is going 3 times as fast.

$$
\begin{aligned}
A & =\frac{1}{2} a b \sin C \\
& =\frac{1}{2} \times x \times 3 x \times \sin 60^{\circ} \\
& =\frac{3 x^{2}}{2} \times \frac{\sqrt{3}}{2} \\
& =\frac{3 \sqrt{3} x^{2}}{4} \text { As required }
\end{aligned}
$$

(ii) $\frac{d x}{d t}=15 \quad$ when $x=100$

$$
\begin{equation*}
\frac{d A}{d t}=\frac{d x}{d t} \times \frac{d A}{d x} \tag{1}
\end{equation*}
$$

Question 13, Page 4
Wednesday, 12 July 2017 9:36 AM

$$
\frac{d A}{d x}=\frac{6 \sqrt{3} x}{4}
$$

When $x=100$

$$
\begin{align*}
\frac{d A}{d x} & =150 \sqrt{3} \\
\frac{d A}{d t} & =15 \times 150 \sqrt{3} \\
& =2250 \sqrt{3} \mathrm{~m}^{2} / \mathrm{s} \tag{1}
\end{align*}
$$

(d)

(i) let $\angle B P C=\alpha$
$\angle B C P=\alpha$ (Base \angle is in an isosceles \triangle are
$\angle B C A=\alpha \quad(\triangle$ between a tangent it a chord is equal to the $\&$ subtended in the opposite segment) (1)
$\angle B C A=90^{\circ} \quad\left(\angle\right.$ subtended by a diameter is $\left.90^{\circ}\right)$
$\angle A B C=2 \alpha$ (external $\&$ in $\triangle B P C$ is equal to the sum of the interior opposites)

$$
\therefore \alpha+90^{\circ}+2 \alpha=180^{\circ}(\angle \text { sum of } \triangle A B C)
$$

$\therefore \alpha=30^{\circ}$ (1) correct show with reasons.
(ii)

$$
\angle O C A=\alpha
$$

(Base L's of bascules $\triangle A O C$ are equal)

$$
\angle A O C=180-2 \alpha
$$

(\angle sum of $\triangle A O C$ is 180°)
$O A=O C$ (radii of the sane circle)
$Q C=Q A$ (tangents drawn form the sane external point are equal)
$\therefore O C Q A$ is a kite
$\angle O C Q=\angle O A Q=90^{\circ}$ (radii meet tangents at 90° at the pant of contact)
$\therefore \angle A Q C=2 \alpha$ ($\angle \mathrm{sum}$ of quedillateral OAQC)
$\angle O Q C=\alpha\left(\begin{array}{c}\text { Diagonal of } \\ \angle A Q C)\end{array}\right.$

$$
\begin{aligned}
& \triangle P O C \equiv \triangle Q O C \\
& \angle O P C=\angle O Q C \text { (see above) }
\end{aligned}
$$

$\angle O C P=\angle O C Q$ (radii meet tangents at 90° at the $O C$ is common

$$
\therefore \triangle P O C \equiv \triangle Q O C \quad(A A S)
$$

(1) awarded for these statements.
(1) progress towards $3^{\text {rd }}$ component of proof.
(1) Complete cong. proof with reasons.

Question 14, Page 1
Wednesday, 12 July 2017 10:18 AM
(a)
(i)

$$
\begin{aligned}
f(x) & =\frac{9 x^{2}-1}{x^{4}} \\
f(-x) & =\frac{9(-x)^{2}-1}{(-x)^{4}} \\
& =\frac{9 x^{2}-1}{x^{4}}
\end{aligned}
$$

$$
=f(x) \quad \therefore \quad \text { even }
$$

(ii)

$$
\begin{array}{rlrl}
y & =\frac{9}{x^{2}}-\frac{1}{x^{4}} \\
\frac{d y}{d x} & =\frac{-18}{x^{3}}+\frac{4}{x^{5}} & \frac{d^{2} y}{d x^{2}} & =\frac{54}{x^{4}}-\frac{20}{x^{6}} \\
& =\frac{-18 x^{2}+4}{x^{5}} & =\frac{54 x^{2}-20}{x^{6}} \\
& =\frac{-2\left(9 x^{2}-2\right)}{x^{5}}
\end{array}
$$

Stationary points ocuor when $\frac{d y}{d x}=0$

$$
\begin{aligned}
& 9 x^{2}-2=0 \\
& x= \pm \frac{\sqrt{2}}{3}
\end{aligned}
$$

When

$$
\begin{array}{lll}
x=\frac{\sqrt{2}}{3} & y=\frac{891}{4} & \frac{d^{2} y}{d x^{2}}=-729 \tag{1}\\
x=-\frac{\sqrt{2}}{3} & y=\frac{891}{4} & \frac{d^{2} y}{d x^{2}}=-729!\text { Max }
\end{array}
$$

Question 14, Page 2
Wednesday, 12 July 2017 10:18 AM
(iii) Pants of inflexion occurs when $\frac{d^{2} y}{d x}=0$

$$
\begin{align*}
\therefore \quad 27 x^{2}-10 & =0 \\
x & = \pm \sqrt{\frac{10}{27}} \tag{1}
\end{align*}
$$

x	-0.61	$-\sqrt{\frac{0}{27}}$	-0.6
$\frac{d^{2} y}{d x^{2}}$	$-1.81 \ldots$	0	$12.00 .$.

x	0.6	$\sqrt{\frac{10}{27}}$	0.61
$\frac{d^{2} y}{d x^{2}}$	$12.00 .$.	0	$-1.81 \ldots$

Change in concavity
(1) Test
\therefore Points of inflection e

$$
\left(\sqrt{\frac{10}{27}}, 17.01\right) \text { and }\left(-\sqrt{\frac{10}{27}}, 17.01\right)
$$

(iv) Vertical asymptote (e) $x=0$ (1) As $x \rightarrow \infty \quad y \rightarrow 0$ (1)
(v)

Question 14, Page 3
Wednesday, 12 July 2017

(i)

$$
\begin{array}{ll}
\ddot{x}=0 & \ddot{y}=-g \\
\dot{x}=+c_{1} & \dot{y}=-g t+c_{2}
\end{array}
$$

(1)

$$
\begin{array}{rlrl}
\therefore \dot{x} & =30 \cos \theta & \dot{y} & =-g t+30 \sin \theta \\
x & =30 t \cos \theta+c_{3} & y & =\frac{-g t^{2}}{2}+30 t \sin \theta+c_{4}
\end{array}
$$

When $t=0 \quad x=0, y=120$

$$
x=30 t \cos \theta \quad y=-4.9 t^{2}+30 t \sin \theta+120
$$

Question 14, Page 4
Wednesday, 12 July 2017 10:18 AM
(ii)

$$
\begin{aligned}
& \text { If } x=30 t \cos \theta \quad y=-4.9 t^{2}+30 t \sin \theta+120 \\
& t=\frac{x}{30 \cos \theta} \\
& y=-4.9\left(\frac{x^{2}}{30^{2} \cos ^{2} \theta}\right)+30 \sin \theta \times \frac{x}{30 \cos \theta}+120 \\
& y=\frac{-4.9}{30^{2}} x^{2}\left(\sec ^{2} \theta\right)+(\tan \theta) x+120 \\
& y=-\frac{4.9}{30^{2}} x^{2}\left(1+\tan ^{2} \theta\right)-1(\tan \theta) x+120 \\
& y=\frac{-4.9 x^{2}}{30^{2}}-\frac{4.9 x^{2}}{30^{2}} \tan ^{2} \theta+x \tan \theta+120 \\
& \text { let } A=\tan \theta \\
& y=\frac{-4.9 x^{2}}{30^{2}}-\frac{4.9 x^{2}}{30^{2}} A^{2}+x A+120 \\
& \frac{4 \cdot 9 x^{2}}{30^{2}} A^{2}-x A+y+\frac{4 \cdot 9 x^{2}}{30^{2}}-120=0 \\
& A=\frac{x \pm \sqrt{x^{2}-4 \times \frac{4 \cdot 9 x^{2}}{30^{2}} \times\left(y+\frac{4.9 x^{2}}{30^{2}}-120\right)}}{2 \times \frac{4 \cdot 9 x^{2}}{30^{2}}}
\end{aligned}
$$

Need 10 solve for 2 positions

$$
M(160,0) \nLeftarrow \quad N(160,17)
$$

$@ \quad A=1.01 \ldots \& 0.137 \ldots$

$$
45^{\circ} 18^{\prime} \quad \& \quad 7^{\circ} 50^{\prime}
$$

ON $\quad A=0.835 \ldots \notin 0.312 \ldots$
(1) All rearrest minute

$$
39^{\circ} 53^{\prime} \nRightarrow 17^{\circ} 21^{\prime}
$$

2 options

At a launch angle of 0° it dos not reach the ship

$$
7^{\circ} 50^{\prime} \leq \theta \leq 17^{\circ} 21^{\prime} \notin 39^{\circ} 53^{\prime} \leq \theta \leq 45^{\circ} 18^{\prime}
$$

