CRESTWOOD HIGH SCHOOL

MATHEMATICS EXTENSION 1

2011

TRIAL HSC EXAMINATION

Assessor: X Chirgwin

General Instructions:

- Reading time - 5 minutes
- Working time -2 hours
- Write using black or blue pen
- Write your student number at the top of every page
- Board approved calculators may be used.
- Draw diagrams using pencil
- A table of Standard Integrals is provided at the back of this paper

Total marks - 84

- Attempt questions 1-7
- All questions are of equal value
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work

This paper MUST NOT be removed from the examination room
\qquad

[^0]
Question 1 (12 marks) Use a SEPARATE writing booklet.

a) \quad Solve for x : $\quad \frac{x+2}{x-4} \geq 3$
b) Evaluate $\lim _{x \rightarrow 0} \frac{10 x}{\sin \left(\frac{\pi}{6} x\right)}$
c) The point P divides the interval joining $A(4,3)$ and $B(-2,5)$ externally in the ratio 1:3. Find coordinates of P.
d) For what value of a is the expression $3 x^{3}+20 x^{2}+a$ divisible by $x+6$?
e) Expand $\left(x-\frac{1}{2}\right)^{7}$, express each term in its simplest form.
f) Find $\int x^{2}\left(7-2 x^{3}\right)^{4} d x$, using the substitution $u=7-2 x^{3}$

Marks

Question 2 (12 marks) Use a SEPARATE writing booklet.
a) For $f(x)=3 \cos ^{-1} \frac{x}{2}$
i) State the domain and the range $\mathbf{2}$
ii) Sketch $f(x) \quad 1$
b) Find $\frac{d}{d x}\left(e^{4 x} \cos 3 x\right) \quad \mathbf{2}$
c) Consider the parabola $x=6 t, y=3 t^{2}$.
i) Express this parabola in cartesian form $\mathbf{1}$
ii) Find the gradient of the parabola at the point where $t=-2$
iii) Find the equation of the normal to the parabola at $t=-2$
d) Find the size of the acute angle to the nearest minute between the graphs of

Question 3 (12 marks) Use a SEPARATE writing booklet.
a) Given $x y=2$, evaluate $\int_{1}^{8} x d y$ to 4 significant figures.
b) Let $f(x)=\sin x-\ln x$
i) Show that a root to $f(x)=0$ lies between 2 and 2.5
ii) Starting with a value of $x=2$, use 1 application of Newton's method to find a better approximation to this root of $f(x)=0$, correct your answer to 3 decimal places
c) How many 12 letter combinations can be made using the letters of the word SUBSTITUTION?
d) The polynomial $3 x^{3}+5 x^{2}-4 x-2=0$ has 3 roots, namely α, β and γ. Find the values of:
i) $\quad \alpha+\beta+\gamma$
ii) $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$
iii) $\quad \alpha^{2}+\beta^{2}+\gamma^{2}$

Question 4 (12 marks) Use a SEPARATE writing booklet.
a) $\quad C X$ is a tangent to the circle centre O. Let $\angle C A B=\alpha$

i) Find $\angle C O B$ with reasons 1
ii) Find $\angle O C B$ with reasons
iii) Show that $\angle B C X=\angle B A C$
b) i) \quad Find $\frac{d}{d x}\left(x \sin ^{-1} \frac{x}{4}+\sqrt{16-x^{2}}\right)$
ii) Hence, evaluate $\int_{0}^{4} \sin ^{-1} \frac{x}{4} d x$
c) Use the process of mathematical indunction to show that for all $n \geq 1$,

$$
1+15+65+\ldots \ldots \ldots \ldots+\left(4 n^{3}-6 n^{2}+4 n-1\right)=n^{4}
$$

a) The diagram below shows a container in the shape of a right circular cone.

The semi-vertical angle $\theta=\tan ^{-1} \frac{1}{2}$
Water is poured in at the constant rate of $15 \mathrm{~cm}^{3}$ per minute.
Let the height of the water at time t seconds be $h \mathrm{~cm}$, let the radius of the water surface be $r \mathrm{~cm}$, and let the volume of water be $V \mathrm{~cm}^{3}$.
i) Show that $r=\frac{1}{2} h$
ii) Show that $V=\frac{1}{12} \pi h^{3}$
iii) Find the exact rate at which h is increasing when the height of the water in the cone is 35 cm . Leave your answer in exact value.
b) The point $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ lie on the parabola $x^{2}=4 a y$.
i) Show that the coordinates of the mid-point M, of the chord $P Q$ are

$$
\left[a(p+q), \frac{a}{2}\left(p^{2}+q^{2}\right)\right]
$$

ii) If the chord $P Q$ is a focal chord. Find the equation of the locus of M and describe the locus of M geometrically.

Question 5 Continued

c) An ice cube tray is filled with water at a temperature of $22^{\circ} \mathrm{C}$ and placed in a freezer that has a constant temperature of $-21^{\circ} \mathrm{C}$. The cooling rate of the water is proportional to the difference between the temperature of the freezer and the temperature of the water, T.
That is, T satisfies the equations

$$
\frac{d T}{d t}=-k(T+21) \quad \& \quad T=-21+A e^{-k t}
$$

i) Show that $A=43 \quad 1$
ii) After 8 minutes in the freezer the temperature of the water is $2^{\circ} \mathrm{C}$. $\mathbf{3}$ Find the time to the nearest minute for the water to reach $-20.9^{\circ} \mathrm{C}$.

Question 6 (12 marks) Use a SEPARATE writing booklet.
a) A particle is oscillating in simple harmonic motion such that its displacement x metres from the origin is given by the equation

$$
\frac{d^{2} x}{d t^{2}}=-25 x
$$

where t is time in seconds.
i) Show that $x=a \cos (5 t+\alpha)$ is a solution of motion for this partciple. (a and α are constants)
ii) When $t=0, v=5 \mathrm{~m} / \mathrm{s}$ and $x=6 \mathrm{~m}$. Show that the amplitude of the oscillation is $\sqrt{37}$.
iii) What is the maximum speed of the particle?
b) A particle moves along a straight line such that its distance from the origin at time t in seconds is x metres and its velocity is v.
i) Prove that $\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=\frac{d^{2} x}{d t^{2}}$
ii) If the acceleration satisfies $\frac{d^{2} x}{d t^{2}}=-9\left(x+\frac{81}{x^{3}}\right)$ and the particle is initially at rest when $x=3$, show that $v^{2}=9\left(\frac{81-x^{4}}{x^{2}}\right)$
c) Find the area under the curve $y=\frac{1}{\sqrt{9-4 x^{2}}}$ bounded by the x-axis on the domain $0 \leq x \leq \frac{3}{4}$.

Question 7 (12 marks) Use a SEPARATE writing booklet.
a) A boy throws a ball and projects it with a speed of $V \mathrm{~m} / \mathrm{s}$ from a point 1 metre above the ground. The ball lands on top of a flowerpot in a neighbour's yard.

The angle of projection is θ as indicated in the diagram.
The equations of motion of the ball are:

$$
\ddot{x}=0 \text { and } \ddot{y}=-10
$$

where x and y are shown on the axes on the diagram. The position of the ball t seconds after it is thrown by the boy is described by the co-ordinates (x, y).
It has been found that $y=V t \sin \theta-5 t^{2}+1$.
i) Show that $x=V t \cos \theta$
ii) When the ball is at its maximum height above the ground, it passes directly above a 1.5 metre high fence and clears the fence by 0.5 metres.
Find an expression for V in terms of θ.
iii) Find the value of V given that $\quad \theta=\tan ^{-1} \frac{9}{40}$

Give your answer in m / s, correct to 2 decimal places.

Question 7 Continued

b) Assume that tides rise and fall in Simple Harmonic Motion. A ship needs 11 metres of water to pass down a channel safely. At low tide, the channel is 8 metres deep and at high tide 12 metres deep. Low tide is at 9:00 am and high tide is at $3: 00 \mathrm{pm}$.

Find the first time period during which the ship can safely proceed through the channel.

2011 Trials Mathematics Extension 1 Solution

Q1.
a)
$\frac{x+2}{x-4} \geq 3$
$(x+2)(x-4) \geq 3(x-4)^{2} \quad x \neq 4$
$x^{2}-2 x-8 \geq 3\left(x^{2}-8 x+16\right)$
$x^{2}-2 x-8-3 x^{2}+24 x-48 \geq 0$
$-2 x^{2}+22 x-56 \geq 0$
$x^{2}-11 x+28 \leq 0$
$(x-4)(x-7) \leq 0$
$\therefore 4<x \leq 7$
b)

$$
\lim _{x \rightarrow 0} \frac{10 x}{\sin \left(\frac{\pi}{6} x\right)}=\frac{10}{\frac{\pi}{6}}=\frac{60}{\pi}
$$

e)
$\left(x-\frac{1}{2}\right)^{7}$
$=x^{7}+7 x^{6} \times\left(-\frac{1}{2}\right)+21 x^{5} \times\left(-\frac{1}{2}\right)^{2}$
$+35 x^{4} \times\left(-\frac{1}{2}\right)^{3}+35 x^{3} \times\left(-\frac{1}{2}\right)^{4}$
$+21 x^{2} \times\left(-\frac{1}{2}\right)^{5}+7 x \times\left(-\frac{1}{2}\right)^{6}$
$+\left(-\frac{1}{2}\right)^{7}$
$=x^{7}-\frac{7}{2} x^{6}+\frac{21}{4} x^{5}-\frac{35}{8} x^{4}+\frac{35}{16} x^{3}$
$-\frac{21}{32} x^{2}+\frac{7}{64} x-\frac{1}{128}$
c)
$A(4,3)$ and $B(-2,5)$
divides externally $-m: n$ or $m:-n$
$-1: 3$ or $1:-3$
$x=\frac{-2 \times(-1)+4 \times 3}{-1+3}$
$x=7$
$y=\frac{5 \times(-1)+3 \times 3}{-1+3}$
$y=2$
$\therefore P(7,2)$
f)
$u=7-2 x^{3} \quad d u=-6 x^{2} d x$
$\int x^{2}\left(7-2 x^{3}\right)^{4} d x$
$=-\frac{1}{6} \int-6 x^{2}\left(7-2 x^{3}\right)^{4} d x$
$=-\frac{1}{6} \int u^{4} d u$
$=-\frac{1}{6}\left[\frac{u^{5}}{5}\right]+C$
$=-\frac{\left(7-2 x^{3}\right)^{5}}{30}+C$
d)

Let $P(x)=3 x^{3}+20 x^{2}+a$
If $P(x)$ is divisible by $x+6$
$P(-6)=3(-6)^{3}+20 \times(-6)^{2}+a=0$
$\therefore a=-72$

Q2.
a) i)
$f(x)=3 \cos ^{-1} \frac{x}{2}$
Domain: $-2 \leq x \leq 2$
Range: $0 \leq y \leq 3 \pi$
ii)

b)

$$
\begin{aligned}
& \frac{d}{d x}\left(e^{4 x} \cos 3 x\right) \\
& =4 e^{4 x} \times \cos 3 x-e^{4 x} \times 3 \sin 3 x \\
& =e^{4 x}(4 \cos 3 x-3 \sin 3 x)
\end{aligned}
$$

iii)
$m_{T}=-2, \quad m_{N}=\frac{1}{2}$
$t=-2, x=-12, \quad y=12$
$y-12=\frac{1}{2}(x+12)$
$2 y-24=x+12$
$x-2 y+36=0 \quad$ (Equation of Normal)
d)
$y=3 x-2 \quad \frac{d y}{d x}=m_{1}=3$
$y=x^{3}-4$
$\frac{d y}{d x}=3 x^{2}$
at $x=2 \quad \frac{d y}{d x}=m_{2}=12$
$\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|$
$\tan \theta=\left|\frac{3-12}{1+3 \times 12}\right|$
$\tan \theta=\frac{9}{37}$
$\theta=13^{\circ} 40^{\prime}$ (nearest minute)
c) i)
$x=6 t, \quad t=\frac{x}{6}$
$y=3 t^{2}=3 \times\left(\frac{x}{6}\right)^{2}$
$y=\frac{x^{2}}{12}$
$x^{2}=12 y$
ii)
$\frac{d y}{d x}=\frac{2 x}{12}=\frac{12 t}{12}=t$
$\frac{d y}{d x}=-2 \quad(t=-2)$

Q3.
a)
$x y=2, \quad x=\frac{2}{y}$
$\int_{1}^{8} x d y=\int_{1}^{8} \frac{2}{y} d y$
$=2[\ln y]_{1}^{8}$
$=2(\ln 8-\ln 1)$
$=4.159$ (4 sig fig)
b) i) (remember to calculate in radian)
$f(x)=\sin x-\ln x$
$f(2)=\sin 2-\ln 2=0.216 \ldots$
$f(2.5)=\sin 2.5-\ln 2.5=-0.317 \ldots$
Since there is a sign change between $f(2)$
and $f(2.5)$, and the function is continuous between these two points, therefore
there is a root lies between 2 and 2.5.
ii)
$x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}$
$x_{1}=2-\frac{f(2)}{f^{\prime}(2)}$
$f^{\prime}(x)=\cos x-\frac{1}{x}$
$f^{\prime}(2)=\cos 2-\frac{1}{2}$
$x_{1}=2-\frac{\sin 2-\ln 2}{\cos 2-\frac{1}{2}}$
$x_{1}=2.236$ (3 d.p.)
c) SUBSTITUTION

2 S's, 2 U's, 3 T's, 2 I's
$\frac{12!}{2!2!3!2!}=9979200$
d)
i) $3 x^{3}+5 x^{2}-4 x-2=0$
$\alpha+\beta+\gamma=-\frac{5}{3}$
ii)
$\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}=\frac{\alpha \beta+\beta \gamma+\alpha \gamma}{\alpha \beta \gamma}$
$=\frac{-\frac{4}{3}}{\frac{2}{3}}=-2$
iii)

$$
\begin{aligned}
& \alpha^{2}+\beta^{2}+\gamma^{2} \\
& =(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\beta \gamma+\gamma \alpha) \\
& =\left(-\frac{5}{3}\right)^{2}-2\left(-\frac{4}{3}\right) \\
& =\frac{49}{9}
\end{aligned}
$$

Q4.
a) i) $\angle C O B=2 \alpha$ (angle at the centre is twice the angle at the circumference)
ii) $\angle O C B=\frac{(180-2 \alpha)}{2}=90-\alpha$ (angle sum of a triangle)
iii) $\angle O C X=90^{\circ}$ (radius meets tangent)
$\angle B C X=90^{\circ}-\angle O C B=90^{\circ}-\left(90^{\circ}-\alpha\right)$
$\therefore \angle B C X=\alpha=\angle B A C$
b) i)
$\frac{d}{d x}\left(x \sin ^{-1} \frac{x}{4}+\sqrt{16-x^{2}}\right)$
$=\frac{x}{\sqrt{16-x^{2}}}+\sin ^{-1}\left(\frac{x}{4}\right)$
$+\frac{1}{2}\left(16-x^{2}\right)^{-\frac{1}{2}} \times(-2 x)$
$=\frac{x}{\sqrt{16-x^{2}}}+\sin ^{-1}\left(\frac{x}{4}\right)-\frac{x}{\sqrt{16-x^{2}}}$
$=\sin ^{-1}\left(\frac{x}{4}\right)$
ii)
$\int_{0}^{4} \sin ^{-1}\left(\frac{x}{4}\right)$
$=\left[x \sin ^{-1} \frac{x}{4}+\sqrt{16-x^{2}}\right]_{0}^{4}$
$=\left(4 \sin ^{-1} 1+\sqrt{16-16}\right)-(0+\sqrt{16})$
$=2 \pi-4$
c)

Step1: Prove statement is true for $n=1$

$$
\begin{gathered}
L H S=\left(4 \times 1^{3}-6 \times 1^{2}+4 \times 1-1\right) \\
=1
\end{gathered}
$$

$$
R H S=1^{4}=1
$$

$$
L H S=R H S
$$

\therefore Statement is true for $n=1$
Step2: Assume statement is true for $n=k$

$$
\begin{aligned}
& 1+15+65+\ldots \ldots+\left(4 k^{3}-6 k^{2}+4 k\right. \\
& =k^{4}
\end{aligned}
$$

Step3: Prove statement is true for $n=k+1$

$$
\begin{gathered}
1+15+65+\ldots \ldots+\left(4 k^{3}-6 k^{2}+4 k\right. \\
-1)
\end{gathered}
$$

$$
+\left(4(k+1)^{3}-6(k+1)^{2}+4(k+1)\right.
$$

$$
-1)
$$

$$
=(k+1)^{4}
$$

$$
L H S=k^{4}+\left(4(k+1)^{3}-6(k+1)^{2}\right.
$$

$$
+4(k+1)-1)
$$

$$
L H S=k^{4}+4 k^{3}+12 k^{2}+12 k+4
$$

$$
-6 k^{2}-12 k-6+4 k+4-1
$$

$$
L H S=k^{4}+4 k^{3}+6 k^{2}+4 k+1
$$

$$
L H S=(k+1)^{4}
$$

$$
L H S=R H S
$$

\therefore Statement is true for all $n \geq 1$ by mathematical induction.

Q5.
a) i)

b) i) $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$
$M=\left(\frac{2 a p+2 a q}{2}, \frac{a p^{2}+a q^{2}}{2}\right)$
$M=\left(a(p+q), \frac{a}{2}\left(p^{2}+q^{2}\right)\right)$
$\tan \theta=\frac{r}{h}$
$\frac{1}{2}=\frac{r}{h}$
$r=\frac{1}{2} h$
ii)
$V=\frac{1}{3} \pi r^{2} h$
$V=\frac{1}{3} \pi \times\left(\frac{1}{2} h\right)^{2} \times h$
$V=\frac{1}{12} \pi h^{3}$
iii)
$\frac{d V}{d t}=15 \mathrm{~cm}^{3} / \min$
$\frac{d h}{d t}=\frac{d h}{d V} \times \frac{d V}{d t}$
$\frac{d V}{d h}=\frac{\pi h^{2}}{4} \quad \frac{d h}{d V}=\frac{4}{\pi h^{2}}$
$\frac{d h}{d t}=\frac{4}{\pi h^{2}} \times 15$
When $h=35 \mathrm{~cm}$
$\frac{d h}{d t}=\frac{4}{\pi \times 35^{2}} \times 15$
$\frac{d h}{d t}=\frac{12}{245 \pi} \mathrm{~cm} / \mathrm{min}$
ii) $P Q$ is a focal chord, so $p q=-1$
$x=a(p+q)$
$p+q=\frac{x}{a}$
$y=\frac{a}{2}\left(p^{2}+q^{2}\right)$
$y=\frac{a}{2}\left((p+q)^{2}-2 p q\right)$
$y=\frac{a}{2}\left(\left(\frac{x}{a}\right)^{2}+2\right)$
$y=\frac{a}{2}\left(\frac{x^{2}}{a^{2}}+2\right)$
$y=\frac{x^{2}}{2 a}+a$
$x^{2}=2 a(y-a)$
This is a prabola with vertex $(0, a)$ and focal length $\frac{1}{2} a$
c) i) $t=0, T=22$
$22=-21+A e^{0}$
$A=43$
ii) $t=8, T=2$
$2=-21+43 e^{-8 k}$
$e^{-8 k}=\frac{23}{43}$
$k=-\frac{1}{8} \ln \frac{23}{43}$
when $T=-20.9$
$-20.9=-21+43 e^{-k t}$
$t=\frac{\ln \frac{1}{430}}{-k}$
$t=78$ minutes

Q6.
a) i) $x=a \cos (5 t+\alpha)$
b) i)
$\dot{x}=-5 a \sin (5 t+\alpha)$
$\ddot{x}=-25 a \cos (5 t+\alpha)$
$\frac{d}{d v}\left(\frac{1}{2} v^{2}\right)=\frac{1}{2} \times 2 \times v \times \frac{d v}{d x}$
$\ddot{x}=-25 x$
$\therefore x=a \cos (5 t+\alpha)$ is a solution
ii) Method 1
when $t=0, v=5$
$\dot{x}=-5 a \sin (5 t+\alpha)$
$5=-5 a \sin (\alpha)$
$a \sin \alpha=-1$
when $t=0, x=6$
$6=a \cos (\alpha)$
$a \cos \alpha=6$.
(1) ${ }^{2}+(2)^{2}$
$\frac{d}{d v}\left(\frac{1}{2} v^{2}\right)=v \frac{d v}{d x}$
$\frac{d}{d v}\left(\frac{1}{2} v^{2}\right)=\frac{d x}{d t} \times \frac{d v}{d x}$
$\frac{d}{d v}\left(\frac{1}{2} v^{2}\right)=\frac{d v}{d t}$
$\therefore \frac{d}{d v}\left(\frac{1}{2} v^{2}\right)=\frac{d^{2} x}{d t^{2}}$
ii)
$\frac{d^{2} x}{d t^{2}}=\frac{d}{d v}\left(\frac{1}{2} v^{2}\right)=-9\left(x+\frac{81}{x^{3}}\right)$
$\frac{1}{2} v^{2}=\int-9\left(x+\frac{81}{x^{3}}\right) d x$
$a^{2} \sin ^{2} \alpha+a^{2} \cos ^{2} \alpha=(-1)^{2}+6^{2}$
$a^{2}\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right)=37$
$a^{2}=37$
$a=\sqrt{37}$

Method 2

$v^{2}=n^{2}\left(a^{2}-x^{2}\right)$
$25=25\left(a^{2}-36\right)$
$a^{2}=37$
$a=\sqrt{37}$
iii) Method 1

Maximum speed occurs when
$\sin (5 t+\alpha)=1$
$\dot{x}=-5 a \sin (5 t+\alpha)$
$\dot{x}=-5 \times \sqrt{37} \sin (5 t+\alpha)$
$\dot{x}=-5 \sqrt{37}$
Speed is always positive
\therefore Maximum speed is $5 \sqrt{37}$
Method 2 maximum velocity when $x=0$
$v^{2}=25(37-0)$
$v= \pm 5 \sqrt{37}$
\therefore Maximum speed is $5 \sqrt{37}$

Q7.
a) i)
$\ddot{x}=0$
$\dot{x}=\int 0 d t$
$\dot{x}=C$
when $t=0, \dot{x}=V \cos \theta$
$C=V \cos \theta$
$\therefore \dot{x}=V \cos \theta$
$x=\int V \cos \theta d t$
$x=V t \cos \theta+C$
when $t=0, x=0$
$C=0$
$\therefore x=V t \cos \theta$
ii) From the question, the maximum
height reached by the ball is 2 metres. The maximum height occurs when $\dot{y}=0$
$y=V t \sin \theta-5 t^{2}+1$
$\dot{y}=V \sin \theta-10 t$
$V \sin \theta-10 t=0$
$t=\frac{V \sin \theta}{10}$
Height of the ball given by
$y=V t \sin \theta-5 t^{2}+1$
$2=\frac{V^{2} \sin ^{2} \theta}{10}-\frac{5 V^{2} \sin ^{2} \theta}{100}+1$
$\frac{V^{2} \sin ^{2} \theta}{20}=1$
$V^{2}=\frac{20}{\sin ^{2} \theta}$
$V=\frac{\sqrt{20}}{\sin \theta} \quad(V>0)$

iii)

$$
\theta=\tan ^{-1} \frac{9}{40}
$$

$$
\sin \theta=\frac{9}{41}
$$

$$
V=\frac{\sqrt{20}}{\sin \theta}
$$

$$
V=\frac{2 \sqrt{5} \times 41}{9}
$$

$$
V=20.37 \mathrm{~m} / \mathrm{s}(2 \mathrm{~d} . \mathrm{p})
$$

b)

Centre of the motion is 10
Amplitute is 2 m
Between 9am to 3 pm , there are 6 hours.
So a full period is 12 hours.
$12=\frac{2 \pi}{n}$
$n=\frac{\pi}{6}$
$x=-2 \cos \left(\frac{\pi}{6} t\right)+10$
when $x=11 \mathrm{~m}$
$11=-2 \cos \left(\frac{\pi}{6} t\right)+10$
$-\frac{1}{2}=\cos \left(\frac{\pi}{6} t\right)$
$\frac{\pi}{6} t=\frac{2 \pi}{3}, \frac{4 \pi}{3}$
$t=4$ hours , 8 hours
$9: 00+4$ hours $=13: 00=1 \mathrm{pm}$
$9: 00+8$ hours $=17: 00=5 \mathrm{pm}$

The first time period the ship can safely pass through would be between 1 pm and 5 pm .

[^0]: Students are advised that this is a trial examination only and cannot in any way guarantee the content or format of the 2011 Higher School Certificate Examination.

