

Name:			

Teacher: _____

Class: _____

FORT STREET HIGH SCHOOL

2010

HIGHER SCHOOL CERTIFICATE COURSE

ASSESSMENT TASK 3: TRIAL HSC

Mathematics Extension 1

TIME ALLOWED: 2 HOURS (PLUS 5 MINUTES READING TIME)

Outcomes Assessed	Questions	Marks
Chooses and applies appropriate mathematical techniques in order to solve	1, 2	
problems effectively		
Manipulates algebraic expressions to solve problems from topic areas such as	3, 4, 5	
inverse functions, trigonometry and polynomials		
Uses a variety of methods from calculus to investigate mathematical models of real	6	
life situations, such as projectiles, kinematics and growth and decay		
Synthesises mathematical solutions to harder problems and communicates them in	7	
appropriate form		

Question	1	2	3	4	5	6	7	Total	%
Marks	/12	/12	/12	/12	/12	/12	/12	/84	

Directions to candidates:

- Attempt all questions
- The marks allocated for each question are indicated
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Board approved calculators may be used
- Each new question is to be started in a new booklet

STANDARD INTEGRALS

$\int x^n dx$	$=\frac{1}{n+1}x^{n+1}, \ n \neq -1; \ x \neq 0, \text{ if } n < 0$
$\int \frac{1}{x} dx$	$= \ln x, x > 0$
$\int e^{ax} dx$	$=\frac{1}{a}e^{ax}, a\neq 0$
$\int \cos ax dx$	$=\frac{1}{a}\sin ax, a\neq 0$
$\int \sin ax dx$	$=-\frac{1}{a}\cos ax, a \neq 0$
$\int \sec^2 ax dx$	$=\frac{1}{a}\tan ax, a\neq 0$
$\int \sec ax \tan ax dx$	$=\frac{1}{a}\sec ax, a \neq 0$
$\int \frac{1}{a^2 + x^2} dx$	$=\frac{1}{a}\tan^{-1}\frac{x}{a}, a\neq 0$
$\int \frac{1}{\sqrt{a^2 - x^2}} dx$	$=\sin^{-1}\frac{x}{a}, a > 0, -a < x < a$
$\int \frac{1}{\sqrt{x^2 - a^2}} dx$	$= \ln\left(x + \sqrt{x^2 - a^2}\right), x > a > 0$
$\int \frac{1}{\sqrt{x^2 + a^2}} dx$	$= \ln \left(x + \sqrt{x^2 + a^2} \right)$

NOTE : $\ln x = \log_e x$, x > 0

Question 1 (12 marks)

a) Differentiate
$$\cos^{-1}\left(\frac{3x}{2}\right)$$
 with respect to x. 2

- b) Find the acute angle between the lines 2x + y 3 = 0 and x = 1. 2 Correct your answer to the nearest degree.
- c) Find the coordinates of the point *P* which divides the interval *AB* with endpoints A(2,3) and B(7,-7) externally in the ratio 4:9.

3

d) Evaluate
$$\int_0^1 \frac{x+1}{x^2+1} dx$$
 3

e) Find all the real values of *a* for which $ax^3 - 8x^2 - 9$ is divisible by (x-a) 2

a) Solve the inequality
$$\frac{2x-3}{x+2} \ge 3$$

b) i) Show that a solution for $3\sin x - x = 0$ lies between x = 2.2 and x = 2.4.

ii) Taking x = 2.3 as an initial approximation for a solution to $3\sin x - x = 0$, 3 apply Newton's method once to find a better approximation correct to three decimal places.

c) Find the values for *a* for which $f(x) = e^{-ax}(x-a)$ has a stationary point at $x = \frac{5}{2}$.

d) Use the substitution
$$x = \log_e u$$
 to find $\int \frac{e^x}{\sqrt{1 - e^{2x}}} dx$ 3

a) Let $f(x) = 2x - x^2$ for $x \le 1$.

This function has an inverse $f^{-1}(x)$.

i) Sketch the graphs of
$$y = f(x)$$
 and $y = f^{-1}(x)$ on the same diagram. 2

ii) Find an expression for
$$f^{-1}(x)$$
 2

iii) Evaluate
$$f^{-1}\left(\frac{3}{4}\right)$$
.

b) i) Express
$$\sin x - \cos x$$
 in the form $A\sin(x-\alpha)$ where $0 < \alpha < \frac{\pi}{2}$ 1

ii) Determine
$$\lim_{x \to \frac{\pi}{4}} \left[\frac{\sin x - \cos x}{x - \frac{\pi}{4}} \right]$$
 2

4

c) Use the method of mathematical induction to prove that if $y = xe^x$ then

$$\frac{d^n y}{dx^n} = e^x (x+n), \text{ for all positive integers } n.$$

A particle moves from the origin with initial velocity $u ms^{-1}$ and experiences a i) a) retardation of magnitude $v + 2v^2$, where v is the velocity of the particle at time t. Show that when it is at position x, $\frac{dv}{dx} = -(1+2v)$

Find its distance from the origin when it comes to rest. ii)

O is the centre of the circle and TQ bisects $\angle OTP$. b)

TB, AP and BP are straight lines and TP is a tangent to the circle at P.


```
Show \angle TQP = 45^{\circ}
```

 $P(2at, at^2)$ is a variable point on the parabola $x^2 = 4ay$ whose focus is S. c)

Q(x, y) divides the interval from *P* to *S* in the ratio $t^2:1$.

1) Find the coordinates of Q in terms of a and t.
ii) Verify that
$$\frac{y}{x} = t$$

iii) Prove that as P moves on the parabola, Q moves on a circle and state its centre and radius. 2

1

4

a) Solve the equation $x^3 - 3x + 2 = 0$, given it has a double root. 2

b) i) Show that
$$\cos 3x = 4\cos^3 x - 3\cos x$$

ii) Show that the solution of
$$\cos 3x - \sin 2x = 0$$
, for $0 < x < \frac{\pi}{2}$ is given by

2

3

3

$$\sin x = \frac{\sqrt{5} - 1}{4}$$

iii) Verify that
$$x = \frac{\pi}{10}$$
 is a solution to $\cos 3x = \sin 2x$.

iv) Using the results obtained in parts (ii) and (iii) prove

$$\sin\frac{\pi}{5}\cos\frac{\pi}{10} = \frac{\sqrt{5}}{4}$$

a) On a certain day the depth of water in a bay at high tide is 11 metres. At low tide,

6.25 hours later, the depth of the water is 7 metres. If high tide is due at 3:20 pm,what is the earliest time at which a ship needing a depth of 10 metres of water can enter the bay?(It may be assumed that the rise and fall of the water level is in simple harmonic motion).

4

4

Water is poured into a conical vessel at a constant rate of $24 \text{ cm}^3 \text{ per second.}$

The depth of the water is h cm at time t seconds.

What is the rate of increase of the area of the surface of the liquid when the depth is 16 cm?

c) A particle is projected in a straight line from an origin with velocity 2 ms^{-1} . When x metres from the origin, its acceleration is $\left(2 - e^{-\frac{x}{2}}\right) ms^{-2}$.

Show that, when x metres from the origin, its velocity,
$$v ms^{-1}$$
, is given by
 $v^2 = 4x + 4e^{-\frac{x}{2}}$

ii)Explain why, for large positive values of x,
$$v \approx 2\sqrt{x}$$
.1iii)Prove that the particle will move from $x = 100$ to $x = 121$ in approximately 1 second.1

a) *APB* is a horizontal semicircle, diameter d metres. At A and B are vertical posts of height a m and b m. From P, the angle of elevation of the tops of both posts is θ

i) Prove that
$$d^2 = \frac{a^2}{\tan^2 \theta} + \frac{b^2}{\tan^2 \theta}$$
. 2

ii) From *B*, the angle of elevation of *A'* is
$$\alpha$$
 and from *A*, the angle of elevation of *B'* is β . 2
Prove that $\tan^2 \alpha + \tan^2 \beta = \tan^2 \theta$.

b) Two particles are projected at different times from the same point with speed V. The angles of projection of the two particles are α° and $(90 - \alpha)^{\circ}$ respectively. The greatest heights they reach above the horizontal plane through the point of projection are h_1 and h_2 respectively.

i) Show that for any angle
$$\alpha$$
, $h_1 + h_2 = \frac{R}{2}$, where *R* is the maximum range. 4

ii) If $\tan \alpha = \frac{3}{4}$ and $v = 196 \ m/s$, what time must elapse between the instants of projection if the particles collide as they hit the horizontal plane? (Take $g = 9.8 \ ms^{-2}$).

4

$$\begin{array}{c} \text{-Question 1} & \text{Solutions} & \text{Comments} \\ \text{-Question 3} & \text{Comments} & \text{Comments} \\ \text{-Question 3} & \text{Solutions} & \text{Comments} \\ \text{-Question 3} & \text{Solutions} & \text{Comments} \\ \text{-Question 3} & \text{Solutions} & \text{Comments} \\ \text{-Question 3} & \text{-Question 3} & \text{Comments} \\ \text{-Question 3} & \text{-Question 3} & \text{-Question 3} \\ \text{-Question 3} & \text{-Question 3} & \text{-Question 3} \\ \text{-Question 3} & \text{-Question 3} & \text{-Question 3} \\ \text{-Question 3} & \text{-Question 3} & \text{-Question 3} \\ \text{-Question 3} & \text{-Question 3} & \text{-Question 3} \\ \text{-Question 3} & \text{-Question 3} & \text{-Question 3} \\ \text{-Question 3} & \text{-Question 3} & \text{-Question 3} \\ \text{-Question 3} & \text{-Question 3} & \text{-Question 3} & \text{-Question 3} \\ \text{-Question 3} & \text{-Question 3} & \text{-Question 3} & \text{-Question 3} \\ \text{-Question 3} & \text{-Question 3} \\ \text{-Question 3} & \text{-Question$$

TRIAL HSC 2010 : EXTENSION I TRIAL HSC 2010 : EXTENSION I SOLUTIONS SOLUTIONS Question 3. COMMENTS Question 2 (contd) COMMENTS $f'(\frac{5}{2}) = e^{-\frac{53}{2}} \left(1 - \frac{5a}{2} + a^2\right)$ * Should use a) (1) product rule (1,1)to differentiate. $= e^{\frac{59}{2}} \left(2a^2 - 5a + 2 \right) \quad (1)$ 1+f-160) * realise that $\binom{2}{2}$ e == = = ? marks = 0 4 e-52 > 0) not deducted if this was $= e^{\frac{-59}{2}} (2a-1)(a-2)$ y=f0c) not written $= 0 i f a = \frac{1}{2} o z . 0$ (11) For $y = 2x - 2L^2$ d) DC = logen inverse is $zc = 2y - y^2$ $\frac{dx}{du} = \frac{1}{u}$ $y^{2} - (y^{2} - 2y + 1) + 1$ $D(+1) = 1 - (y - 1)^{2}$ $\int \frac{e^{\chi}}{\sqrt{1-e^{2\chi}}} dx = \int \frac{u \times \frac{du}{u}}{\sqrt{1-u^2}} \mathbf{1}$ $(y-1)^{2} = 1-x$ Try to make y subject O $y = 1 \pm \sqrt{1-2c}$ $= \int \frac{du}{\sqrt{1-u^2}} \qquad (1)$ From graph we see $y = 1 - \sqrt{1 - x}$ = pin u + c. = pen⁻¹(e²) + c 0 + Answer Should be $(11) f^{-1}\left(\frac{3}{4}\right) = 1 - \sqrt{1 - 3/4}$ (1) should be given in isc' $A = \sqrt{1^2 H^2} = \sqrt{2}$ OR. Lost I mark b) (1) $\beta (\alpha - \alpha - \alpha \beta \alpha = \sqrt{2} \sin(\alpha - \frac{\pi}{4})$ X = fan⁻¹ (-1) $x = \ln u \rightarrow u = e^{x}$, $du = e^{x} du$ if integration (II) $\lim_{x \to T_{4}} \left(\sqrt{2} \frac{s(x)(x - T_{4})}{s(-T_{4})} = \sqrt{2} \right)$ x= -11/4 constant was $\int \frac{e^{2c} doc}{\sqrt{1-e^{2x}}} = \int \frac{du}{\sqrt{1-u^2}}$ forgotten. =sin u+C $= \sin^{-1}(e^x) + c$

Question 3 (and) Solutions.CommentsQuestion 4SolutionsCommentsc)
$$y = xe^{k}$$
The number of the second state of the second stat

KIAL HSC 2010 : EXTENSION I TRIAL HSC 2010 : EXTENSION I SOLUTIONS SOLUTIONS Question 4 (contd) Question4(conta) COMMENTS COMMENTS @ angle in alt. segment P I was extremely $I = \frac{2ay}{y^2 + x^2}.$ Dangle in semi liberal, but ion circle will not be so lucky withe Sta given 4- some stide HSC $\chi^2 + \gamma^2 - 2\alpha\gamma = 0$. act to here 0 given but did not $x^{2} + (y^{2} - 2ay + a^{2}) = a^{2}$ complete the square to $x^{2} + (y - a)^{2} = q^{2}$ find the the $c)(1) P = (Qat, at^{2}) \qquad S = (0, a)$ $c = \frac{k_{X,2} + J_{X_{1}}}{k_{HL}} \qquad y = \frac{k_{H2} + J_{Y_{1}}}{k_{HL}}$ $c = \left(\frac{Qat}{t_{H1}}, \frac{Qat^{2}}{t_{H1}^{2}}\right)$ k: l centre y radi. 4 learn Q lies on circle whose centre t2: 1 formula is (0, a) and radius is a units \bigcirc E many used $(11) \quad y = \frac{2at^2}{t^2 + 1}$ 2 and Jahowed it was t must use $=\left(\frac{2at}{t^2+1}\right)t$ L.H.S. /RHS setting aut = xt. : y = tA+ Q $\binom{H+Q}{X} = \frac{Qat}{t^2+1}$ poorly done. $= 2a \left(\frac{y}{x}\right)$ $\left(\frac{4}{3c}\right)^2 + 1$ = zay y2+ 22 $= \frac{2\alpha y}{2\alpha} \frac{3\alpha}{y^2 + x}$ = <u>2ays</u> 1-7

Question 5. Solutions	COMMENTS	Question 5 (contal) SOLUTIONS	COMMENTS
a) Roots of $x^3 - 3x + 2 = 0$ are d, d and β . $\therefore 2d + \beta = 0$. $\Rightarrow \beta = -2d$ $d^2 + 2k\beta = -3$	Mony Ext 1 students used factor theorem	$sun \alpha = -\sqrt{5} - 1$ is also outside 4 required range $\cdot \cdot \cdot sun \alpha = \sqrt{5} - 1$ -1 -4	
$\alpha \beta = -2$ $\lambda^{2} - \lambda \alpha = -2$ $\lambda^{3} = 1$ $\lambda = 1 \text{ and } \beta = -2$	8 polynomial div. Maxy Ext 2 students used f(3t) = 0 f'(3t) = 0	$ (111) \text{If } x = \frac{11}{10}, \cos 3x = \cos \frac{311}{10} \\ = \sin \left(\frac{11}{2} - \frac{311}{10}\right) \\ = \sin 211, (1). $	Many stodents used colcolotor approximations rother than
b) (1) $\cos 32x = \cos (22x + 2x)$	for double rout. well done	(iv) sin $\frac{\pi}{5}$ cos $\frac{\pi}{10}$ = sin $\frac{2\pi}{10}$ cos $\frac{\pi}{10}$.	this simple trig result, and last q mark
$= \cos^{3} 25 \cos^{3} 4$ $= (2\cos^{3} 52 - 1)\cos 24 - 25\sin^{3} 24\cos^{2} 4$ $= 2\cos^{3} 24 - \cos^{3} 24 - 2\cos^{3} 24 (1 - \cos^{3} 5)$ $= 2\cos^{3} 24 - 3\cos^{3} 25 - 3\cos^{3} 24 - 3\cos^{3} 24 - 3\cos^{3} 25 - 3\cos^{3} 24 - 3\cos^{3} 25 - 3\cos^{3} 24 - 3\cos^{3} 25 - 3\cos^{3}$	© .)	$= 2 \sin \frac{\pi}{10} \cos \frac{\pi}{10} \cos \frac{\pi}{10}$ $= 2 \sin \frac{\pi}{10} \cos^{2} \frac{\pi}{10} = 0$ $= 2 \sin \frac{\pi}{10} \left(1 - \frac{\sin^{2} \pi}{10}\right)$	Part (iv) not oftempted by many stodents, only
(11) $\cos 3x - \sin 2x = 0$ $0 < x < \frac{\pi}{2}$ $4 \cos^3 x - 3\cos x - 2\sin x \cos x = 0.$ $\cos x (4 \cos^3 x - 3 - 2\sin x) = 0.$	A good number of students ignored the soln to cosx = 0	$= 2 \times \left(\frac{\sqrt{5} - 1}{4}\right) \left(1 - \left(\frac{\sqrt{5} - 1}{4}\right)^{2}\right)$ $= \frac{\sqrt{5} - 1}{2} \left(\frac{16 - (5 + 1 - 2\sqrt{5})}{16}\right)$	Corpleted by Omost oble
$\cos x \left(4 \left(1 - \sin^2 \alpha x \right) - 3 = 23 \sin^2 x \right) = 0. $ $\cos x \left(4 \sin^2 \alpha x + 2 \sin x - 1 \right) = 0. $ $\cos x = 0 \text{when } x = \frac{1}{2} \text{which is not}$ $\sin^2 d \alpha m \sin^2 \alpha$	and lost a maik.	$= \frac{\sqrt{5} - 1}{2} \times \frac{10 + 2\sqrt{5}}{16}$ $= \frac{\sqrt{5} - 1}{2} \times \frac{5 + \sqrt{5}}{8}$	
$4 \sin^{2} 2\ell + 2 \sin 2\ell - 1 = 0 ie$ $\sin 2\ell = -2 \pm \sqrt{4 + 16}$ $= \pm \sqrt{5} - 1$		$= \frac{5\sqrt{5} + 5 - 5 - \sqrt{5}}{16}$ $= \frac{\sqrt{5}}{16}$ (1).	

COMMENTS SOLUTIONS SOLUTIONS COMMENTS Question 6 Question 6. a) If high tide is at 3.20pm. b) Using similar triangles () students did not T=13hrs Low tide would occur at 9.05 am radius of water surface = h. change $\frac{1}{3}\pi r^{2}h$ $\frac{1}{3}\pi h^{3}$ 6.25+6.25 = 12.5 (64 hours earlier) Instead they used. (volofcone 7 $\frac{dV}{dt} = \frac{dV}{dh} \frac{dh}{dt} \begin{bmatrix} =\frac{1}{3}\pi r^{2}h \end{bmatrix}$ $=\frac{1}{3}\pi h^{3}$ (2) students did $\frac{dV}{dr} = \frac{d(\frac{1}{3}\pi r^{2}h)}{dr}$ $\frac{n}{2\pi} = \frac{3}{5c}$ not calculate the eventually this gove first time that 2=10 but the second time $24 = TTh^2 dh$ () 25n = 417an answer ds = 4.5. (2) students ninde $\frac{dh}{dt} = \frac{24}{\pi h^2}$ (2) students found T= 6.25 the surface area of a=2 (D a done. They should At h = 16 $\frac{dh}{dt} = \frac{24}{\pi \times 16}$ have concentrated $\therefore DC = -2\cos\frac{4\pi}{DC} t$ on the surface of $\frac{dh}{dt} = \frac{3}{30TT} \text{ cm/s.}$ the area when x = 1 $10 = 9 - 2\cos\frac{41}{25}t$ $S = Th^2$ the start and th $\frac{dS}{dh} = 2\pi h$. $\cos \frac{4\pi t}{35} = -\frac{1}{2}$ ds _ ds dh $\frac{ds}{dt} = \pi h \times \frac{dh}{dt}$ t = 25 Ath = 1b= 4 hours 10 mins $\frac{dS}{dt} = 2\Pi \times 16 \times \frac{3}{2}$ 3211 $\frac{ds}{dt} = 3 \text{ cm}/s.$ U DIS pm

Question 6 (and)SOLUTIONSCOMMENTSQuestion 7:SOLUTIONSComments
$$2)$$
 (1) $\frac{d}{dx} \pm v^2 = 2 - e^{-\frac{1}{2}}$ (1) $\frac{d}{dx} \pm \frac{1}{dx}$ (1) $\frac{d}{dx} = \frac{$

Restion 7 (contd)	COMMENTS!	Publich 7 (contd)	COMMENTS,
$y = V \cdot \frac{V \sin d}{g} - \frac{1}{2}g \cdot \frac{v^2 \sin^2 d}{g^2}$ $= \frac{v^2 \sin^2 d}{\frac{2g}{g}}$ $h_1 = \frac{v^2 \sin^2 d}{\frac{2g}{g}}$		Max value of sin $\partial d = 1$. Max $R = \frac{V^2}{\frac{R}{2}} = \frac{3V^2}{\frac{2}{3g}}$ (1) $= h_1 + h_2$ (1) Particle 1 - hits horizontal plane when $y = 0$. Since $\tan d = \frac{34}{5}$, $\cos d = \frac{4}{5}$.	Many making this more
Similarly $h_{2} = v^{2} \frac{\sin^{2}(90-2)}{2g}$ $h_{1} + h_{2} = \frac{v^{2} \sin^{2} d}{2g} + \frac{v^{2} \cos^{2} d}{2g}$	Many failing to recognise Bin (90-2) = cost.	$i \in 0 = 196t \times \frac{3}{5} - 9.8 \times \frac{t^2}{2}$ $= t \left(\frac{196 \times 3}{5} - 4.9 t \right)$ $\therefore t = 0 \text{ or } 24 \text{ seconds.}$ Particle 2 - hits horizontal plane	complicated than really is
$= \frac{v^2}{2g}$ Maximum range is when $y = 0$. i.e. $0 = Vt sind = qt^2$ = t (Vaid - qt)	Need to derive these outcomes	when $y = 0$ $x = y = 196t + \frac{4}{5} - \frac{9 \cdot 8t^2}{2}$ $= t (196 + \frac{4}{5} - 4 \cdot 9t)$ = t = 0 = 328.	
$t = \frac{2V \sin d}{g}$ $pc = V \cdot \frac{2V \sin d}{g} \cdot \cos \theta$ $= \frac{V^2 \sin 2d}{g}$		Time lapse = $32 - 24$ D = $8 s$.	