\qquad

Teacher: \qquad

Class: \qquad

FORT STREET HIGH SCHOOL

2010

HIGHER SCHOOL CERTIFICATE COURSE
ASSESSMENT TASK 3: TRIAL HSC

Mathematics Extension 1

TIME ALLOWED: 2 HOURS
(PLUS 5 MINUTES READING TIME)

Outcomes Assessed	Questions	Marks
Chooses and applies appropriate mathematical techniques in order to solve problems effectively	1,2	
Manipulates algebraic expressions to solve problems from topic areas such as inverse functions, trigonometry and polynomials	$3,4,5$	
Uses a variety of methods from calculus to investigate mathematical models of real life situations, such as projectiles, kinematics and growth and decay	6	
Synthesises mathematical solutions to harder problems and communicates them in appropriate form	7	

Question	1	2	3	4	5	6	7	Total	$\%$
Marks	$/ 12$	$/ 12$	$/ 12$	$/ 12$	$/ 12$	$/ 12$	$/ 12$	$/ 84$	

Directions to candidates:

- Attempt all questions
- The marks allocated for each question are indicated
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Board - approved calculators may be used
- Each new question is to be started in a new booklet

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0 \text {, if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

Question 1 (12 marks)

a) Differentiate $\cos ^{-1}\left(\frac{3 x}{2}\right)$ with respect to x.
b) Find the acute angle between the lines $2 x+y-3=0$ and $x=1$.

Correct your answer to the nearest degree.
c) Find the coordinates of the point P which divides the interval $A B$ with endpoints
$A(2,3)$ and $B(7,-7)$ externally in the ratio 4:9.
d) Evaluate $\quad \int_{0}^{1} \frac{x+1}{x^{2}+1} d x$
e) Find all the real values of a for which $a x^{3}-8 x^{2}-9$ is divisible by $(x-a)$

Question 2 ($\mathbf{1 2}$ marks) Start a separate booklet
a) Solve the inequality $\frac{2 x-3}{x+2} \geq 3$
b) i) Show that a solution for $3 \sin x-x=0$ lies between $x=2 \cdot 2$ and $x=2 \cdot 4$.
ii) Taking $x=2 \cdot 3$ as an initial approximation for a solution to $3 \sin x-x=0$,
apply Newton's method once to find a better approximation correct to three decimal places.
c) Find the values for a for which $f(x)=e^{-a x}(x-a)$ has a stationary point at $x=\frac{5}{2}$.
d) Use the substitution $x=\log _{e} u$ to find $\int \frac{e^{x}}{\sqrt{1-e^{2 x}}} d x$

Question 3 (12 marks) Start a separate booklet
a) Let $f(x)=2 x-x^{2}$ for $x \leq 1$.

This function has an inverse $f^{-1}(x)$.
i) Sketch the graphs of $y=f(x)$ and $y=f^{-1}(x)$ on the same diagram.
ii) Find an expression for $f^{-1}(x)$
iii) Evaluate $f^{-1}\left(\frac{3}{4}\right)$.
b) \quad i) Express $\sin x-\cos x$ in the form $A \sin (x-\alpha)$ where $0<\alpha<\frac{\pi}{2}$
ii) Determine $\lim _{x \rightarrow \frac{\pi}{4}}\left[\frac{\sin x-\cos x}{x-\frac{\pi}{4}}\right]$
c) Use the method of mathematical induction to prove that if $y=x e^{x}$ then

$$
\frac{d^{n} y}{d x^{n}}=e^{x}(x+n), \text { for all positive integers } n .
$$

Question 4 ($\mathbf{1 2}$ marks) Start a separate booklet
a) i) A particle moves from the origin with initial velocity $\mathrm{u} \mathrm{ms}^{-1}$ and experiences a retardation of magnitude $v+2 v^{2}$, where v is the velocity of the particle at time t. Show that when it is at position $x, \frac{d v}{d x}=-(1+2 v)$
ii) Find its distance from the origin when it comes to rest.
b) $\quad \mathrm{O}$ is the centre of the circle and $T Q$ bisects $\angle O T P$.
$T B, A P$ and $B P$ are straight lines and $T P$ is a tangent to the circle at P.

Let $\angle P T Q=\alpha$ and $\angle T B Q=\beta$
Show $\angle T Q P=45^{\circ}$
c) $\quad P\left(2 a t, a t^{2}\right)$ is a variable point on the parabola $x^{2}=4 a y$ whose focus is S.
$Q(x, y)$ divides the interval from P to S in the ratio $t^{2}: 1$.
i) Find the coordinates of Q in terms of a and t.
ii) Verify that $\frac{y}{x}=t$
iii) Prove that as P moves on the parabola, Q moves on a circle and state its centre and radius.

Question 5 (12 marks) Start a separate booklet
a) Solve the equation $x^{3}-3 x+2=0$, given it has a double root.
b) i) Show that $\cos 3 x=4 \cos ^{3} x-3 \cos x$
ii) Show that the solution of $\cos 3 x-\sin 2 x=0$, for $0<x<\frac{\pi}{2}$ is given by

$$
\sin x=\frac{\sqrt{5}-1}{4}
$$

iii) Verify that $x=\frac{\pi}{10}$ is a solution to $\cos 3 x=\sin 2 x$.
iv) Using the results obtained in parts (ii) and (iii) prove

$$
\sin \frac{\pi}{5} \cos \frac{\pi}{10}=\frac{\sqrt{5}}{4}
$$

Question 6 (12 marks) Start a separate booklet
a) On a certain day the depth of water in a bay at high tide is 11 metres. At low tide,

Water is poured into a conical vessel at a constant rate of $24 \mathrm{~cm}^{3}$ per second.
The depth of the water is $h \mathrm{~cm}$ at time t seconds.
What is the rate of increase of the area of the surface of the liquid when the depth is 16 cm ?
c) A particle is projected in a straight line from an origin with velocity $2 \mathrm{~ms}^{-1}$.

When x metres from the origin, its acceleration is $\left(2-e^{-\frac{x}{2}}\right) \mathrm{ms}^{-2}$.
i) Show that, when x metres from the origin, its velocity, $v \mathrm{~ms}^{-1}$, is given by

$$
v^{2}=4 x+4 e^{-\frac{x}{2}}
$$

ii) Explain why, for large positive values of $x, v \approx 2 \sqrt{x}$.
iii) Prove that the particle will move from $x=100$ to $x=121$ in approximately 1 second.

Question 7 (12 marks) Start a separate booklet
a) $\quad A P B$ is a horizontal semicircle, diameter d metres. At A and B are vertical posts of height $a \mathrm{~m}$ and $b \mathrm{~m}$. From P, the angle of elevation of the tops of both posts is θ

i) Prove that $d^{2}=\frac{a^{2}}{\tan ^{2} \theta}+\frac{b^{2}}{\tan ^{2} \theta}$.
ii) From B, the angle of elevation of A^{\prime} is α and from A, the angle of elevation of B^{\prime} is β.

Prove that $\tan ^{2} \alpha+\tan ^{2} \beta=\tan ^{2} \theta$.
b) Two particles are projected at different times from the same point with speed V. The angles of projection of the two particles are α° and $(90-\alpha)^{\circ}$ respectively. The greatest heights they reach above the horizontal plane through the point of projection are h_{1} and h_{2} respectively.
i) Show that for any angle $\alpha, h_{1}+h_{2}=\frac{R}{2}$, where R is the maximum range.
ii) If $\tan \alpha=\frac{3}{4}$ and $v=196 \mathrm{~m} / \mathrm{s}$, what time must elapse between the instants
of projection if the particles collide as they hit the horizontal plane? (Take $g=9.8 \mathrm{~ms}^{-2}$).

TRIAL HSC $2010:$ EXTENSION I

$$
\begin{align*}
& \text { Question } 2(\text { contd }) \\
& f^{\prime}\left(\frac{5}{2}\right)=e^{-\frac{5 a}{2}}\left(1-\frac{5 a}{2}+a^{2}\right) \tag{1}\\
&=\frac{e^{-\frac{5 a}{2}}}{2}\left(2 a^{2}-5 a+2\right) \\
&=0 \text { if } \\
&=\frac{e^{-\frac{5 a}{2}}}{2}(2 a-1)(a-2) \tag{1}\\
&=0 \text { if } a=1 / 2 \text { or } 2 .
\end{align*}
$$

d)

$$
\begin{align*}
& x=\log _{e} \mu \\
& \begin{aligned}
& \frac{d x}{d u}=\frac{1}{\mu} \\
& \int \frac{e^{x} d x}{\sqrt{1-e^{2 x}}}=\int \frac{\mu \times \frac{d u}{\mu}}{\sqrt{1-\mu^{2}}} \\
&=\int \frac{d u}{\sqrt{1-\mu^{2}}} \\
&=\sin ^{-1} \mu+c \\
&=\operatorname{sen}^{-1}\left(e^{x}\right)+c(1)
\end{aligned}
\end{align*}
$$

OR.

$$
\begin{aligned}
x=\ln u \rightarrow u & =e^{x} \quad \therefore d u=e^{x} d x \\
\therefore \int \frac{e^{x} d x}{\sqrt{1-e^{2 x}}} & =\int \frac{d u}{\sqrt{1-u^{2}}} \\
& =\sin ^{-1} u+c \\
& =\sin ^{-1}\left(e^{x}\right)+c
\end{aligned}
$$

\& Answer Should be given in ' x '. Lost 1 mark if integration constant was forgotten.

TRIAL HSC $2010:$ EXTENSION I Question 3.
a) (17 product rule to differentiate.

* realise that

(ii) For $y=2 x-x^{2}$
inverse is $x=2 y-y^{2}$

$$
\begin{align*}
x+1 & =-\left(y^{2}-2 y+1\right)+1 \\
x+1 & =1-(y-1)^{2} \\
(y-1)^{2} & =1-x \tag{1}\\
y & =1 \pm \sqrt{1-x}
\end{align*}
$$

From graph we see

$$
\begin{equation*}
y=1-\sqrt{1-x} \tag{1}
\end{equation*}
$$

(III)

$$
\begin{align*}
f^{-1}\left(\frac{3}{4}\right) & =1-\sqrt{1-3 / 4} \tag{1}\\
& =1 / 2 \tag{1}
\end{align*}
$$

b) (1) $\sin x-\cos x=\sqrt{2} \sin \left(x-\frac{\pi}{4}\right)$
(ii) $\lim _{x \rightarrow \frac{\pi}{4}}\left(\frac{\sqrt{2} \sin \left(x-\frac{\pi}{4}\right)}{x-\frac{\pi}{4}}=\sqrt{2}\right.$

Try to make y subject (1).

$$
\begin{aligned}
& A=\sqrt{1^{2} 1^{2}}=\sqrt{2} \\
& \alpha=\tan ^{-1}(-1) \\
& \alpha=-\frac{\pi}{4}
\end{aligned}
$$

Question 3 (contd) solutions.
c) $y=x e^{x}$

Test $n=1$

$$
\begin{align*}
\frac{d y}{d x} & =x e^{x}+e^{x} \quad \text { (1) } \tag{1}\\
& =e^{x}(x+1) \quad \therefore \text { true for } n=1
\end{align*}
$$

Assume true for $n=k$

$$
\begin{equation*}
\frac{d^{k} y}{d x^{k}}=e^{x}(x+k) \tag{1}
\end{equation*}
$$

Consider $n=k+1$

$$
\begin{align*}
\frac{d^{k+1} y}{d x^{k+1}} & =e^{x}+(x+k) e^{x} \\
& =e^{x}(1+x+k) \\
& =e^{x}(x+(k+1)) \tag{1}
\end{align*}
$$

This is of the same form as for $n=k$, therefore if true for $n=k$ it is also true for $n=k+1$. Since It is true for $n=1$, it is true cor $n=2$ and hence all following (1) positive integers.

Comments Question 4
a) (1)

$$
\begin{aligned}
& \left.v \frac{d v}{d x}=-\left(v+2 v^{2}\right)^{2}\right) \\
& \therefore \frac{d v}{d x}=-(1+2 v)
\end{aligned}
$$

(11)

$$
\begin{aligned}
\frac{d x}{d v} & =\frac{-1}{1+2 v} \\
x & =-\int \frac{1}{1+\ln ^{2}} d v \\
x & =-\frac{1}{2} \ln (1+2 v)+C
\end{aligned}
$$

when $x=0 ; v=u$

$$
\begin{aligned}
0 & =-\frac{1}{2} \ln (1+2 u)+c \\
\therefore \quad c & =\frac{1}{2} \ln (1+2 u) \\
x & =\frac{1}{2} \ln (1+2 u)-\frac{1}{2} \ln (1+2 v) \\
& =\frac{1}{2} \ln \left(\frac{1+2 u}{1+2 v}\right)
\end{aligned}
$$

When comes to rest $V=0$
b)

$$
\angle P T Q=\angle Q T B=\alpha \text { (giver })
$$

$$
\begin{aligned}
& \angle P T Q=\angle Q T B=\alpha \text { (given } \\
& \angle A P B=90^{\circ} \text { (angle in a semi-circle) } 1 \\
& \angle P B T=B \text { give. }
\end{aligned}
$$

$$
\begin{align*}
& L P B T=\beta \quad \text { given. } \tag{1}\\
& \text { (angle between chord and } \\
& \text { tangent equal angle in }
\end{align*}
$$ tangent equals angle in alternate segment).

$$
\therefore P_{R} Q=\alpha+\beta \quad(\text { exterior angle to } \triangle T P R)
$$

$$
\hat{P Q R}=\alpha^{\prime}+\beta
$$

In $\triangle P R Q$ both base angles are $(\alpha+\beta)$
so each must be 45°.

- So each must be ts er 45° as req
$\frac{\text { Comments }}{\text { This needed te }}$ be ctemonstrate - notjust write colour.
-many stwantis dion ${ }^{4} C^{\prime} 4$. dial not uso. mend times to eraviole ' c '
* Some sha wisweted a def....te - Meres armed was f.
- 50 me - Some gram

Sean
poor lm dome.
money \quad ole unecesecull lengthy of comveluled
Note stuplent MUST GEMMA proper geometric stale then stale then

- Question	COMMENTS	estion $5($ contd) Solutions	COMMENTS
a) Roots of $x^{3}-3 x+2=0$ are α, α and β $\begin{align*} \therefore 2 \alpha+\beta & =0 \quad \Rightarrow \beta=-2 \alpha \tag{1}\\ \alpha^{2}+2 \alpha \beta & =-3 \tag{1}\\ \alpha^{2} \beta & =-2 \\ \alpha^{2} \times-2 \alpha & =-2 \\ \alpha^{3} & =1 \tag{1}\\ \therefore \alpha & =1 \text { and } \beta=-2 \tag{1} \end{align*}$ \therefore Roots are 1,1 and -2 b) (1) $\begin{align*} \cos 3 x & =\cos (2 x+x) \\ & =\cos 2 x \cos x+\sin 2 x \sin x \\ & =\left(2 \cos ^{2} x-1\right) \cos x-2 \sin ^{2} x \cos x \\ & =2 \cos ^{3} x-\cos x-2 \cos x\left(1-\cos ^{2} x\right. \tag{1}\\ & =4 \cos ^{3} x-3 \cos x . \text { (1) } \tag{1} \end{align*}$ (ii) $\cos 3 x-\sin 2 x=0 \quad 0<x<\frac{\pi}{2}$ $\begin{aligned} & 4 \cos ^{3} x-3 \cos x-2 \sin x \cos x=0 \\ & \cos x\left(4 \cos ^{2} x-3-2 \sin x\right)=0 \\ & \cos x\left[4\left(1-\sin ^{2} x\right)-3-2 \sin x\right]=0 \\ & \cos x\left(4 \sin ^{2} x+2 \sin x-1\right)=0 \end{aligned}$ $\cos x=0$ when $x=\frac{\pi}{2}$ which is not in: domain $\begin{align*} & \therefore \quad 4 \sin ^{2} x+2 \sin x-1=0 \\ & \sin x=\frac{-2 \pm \sqrt{4+16}}{8} \tag{1}\\ &=\frac{ \pm \sqrt{5}-1}{4} \end{align*}$	Many Ext 1 stadents used factor theorem \& polynomiol div. Mant Ext 1 stade, is used $f(x)=0 \quad f^{\prime}(x)=0$ for double root. well done (1) A gaod number of studints ignound the soln to $\cos x=0$. and lost a moik.	$\sin x=\frac{-\sqrt{5}-1}{4}$ is also outside $\therefore \sin x=\frac{\sqrt{5}-1}{4}$ $\text { If } x=\frac{\pi}{10}$ $\begin{aligned} \cos 3 x & =\cos \frac{3 \pi}{10} \\ & =\sin \left(\frac{\pi}{2}-\frac{3 \pi}{10}\right)(1) \\ & =\sin \frac{2 \pi}{10} \end{aligned}$ $\therefore x=\frac{\pi}{10}$ is a solution. $\begin{aligned} \sin \frac{\pi}{5} \cos \frac{\pi}{10} & =\sin \frac{2 \pi}{10} \cdot \cos \frac{\pi}{10} \\ & =2 \sin \frac{\pi}{10} \cos \frac{\pi}{10} \cos \frac{\pi}{10} \\ & =2 \sin \frac{\pi}{10} \cos ^{2} \frac{\pi}{10} \cdot(1) \\ & =2 \sin \frac{\pi}{10}\left(1-\frac{\sin ^{2} \pi}{10}\right) \\ & =2 \times\left(\frac{\sqrt{5}-1}{4}\right)\left(1-\left(\frac{\sqrt{5}-1}{4}\right)\right) \\ & =\frac{\sqrt{5}-1}{2}\left(\frac{16-(5+1-2 \sqrt{5})}{16}\right) \\ & =\frac{\sqrt{5}-1}{2} \times \frac{10+2 \sqrt{5}}{16} \\ & =\frac{\sqrt{5}-1}{2} \times \frac{5+\sqrt{5}}{8} \\ & =\frac{5 \sqrt{5}}{2}+5-5-\sqrt{5} \\ & =\frac{4 \sqrt{5}}{16} \\ & =\frac{\sqrt{5}}{16} \end{aligned}$	Many staden is used colcoloter approximotions rother than properly shouing this simple trig result, and last a moik Part (iv) not of tempted by many stodets, only corpleted by (1) most oble.

$24=\pi h^{2} \frac{d h}{d t}$.

$$
\frac{d h}{d t}=\frac{24}{\pi h^{2}}
$$

$A+h=16 \quad \frac{d h}{d t}=\frac{24}{\pi \times 16^{2}}$ $\frac{d h}{d t}=\frac{3}{32 \pi} \mathrm{~cm} / \mathrm{s}$.

$$
\begin{aligned}
S & =\pi h^{2} \\
\frac{d S}{d h} & =2 \pi h
\end{aligned}
$$

$$
\begin{align*}
& \frac{d S}{d t}=\frac{d S}{d h} \frac{d h}{d t} \\
& \frac{d S}{d t}=2 \pi h \times \frac{d h}{d t} \tag{1}
\end{align*}
$$

(2) Students found the surface area of a cone. They shouk hove concentrates
owe concentrate
on the surface of
the area the area

At $h=16$

$$
\frac{\frac{d s}{d t}=2 \pi \times 16 \times \frac{3}{32 \pi}}{\frac{d s}{d t}}=3 \mathrm{~cm}^{2} / \mathrm{s}
$$ an assurer $\frac{d s}{d t}=4.5$.

Question 6
a) If high tide is at 3.20 pm .

Low tide would occur at 9.05 am

$$
\text { (} 6 \frac{1}{4} \text { hours earlier) }
$$

$$
\frac{2 \pi}{n}=\frac{25}{2}
$$

$$
28 n=4 \pi
$$

$\cos \frac{4 \pi t}{25}=\frac{-1}{2}$

$$
\begin{aligned}
t & =\frac{25}{6} \\
& =4 \text { hours } 10 \text { mini }
\end{aligned}
$$

- Ship can safely enter at HWULSpm

Question $6($ con +d)
c)
(i)

$$
\begin{aligned}
& \frac{d}{d x} \frac{1}{2} v^{2}=2-e^{-x / 2} \\
& x=0 \quad \frac{1}{2} v^{2}=2 x+2 e^{-x / 2}+ \\
& 2=2+c \quad \therefore \quad c=0 \\
& 2=2 \\
& v^{2}=4 x+4 e^{-x / 2}
\end{aligned}
$$

$$
\frac{1}{2} v^{2}=2 c+2 e^{-x / 2}+c \text { (1) forgot to write } \text { the constant a }
$$

(II)

$$
\text { As } x \rightarrow \infty \quad e^{-x / 2} \rightarrow 0
$$

$$
\begin{aligned}
& \therefore v^{2} \rightarrow 4 x \\
& v=2 \sqrt{x}
\end{aligned}
$$

(III) When $x=100$
$v=20$

$$
\begin{aligned}
& x=121 \\
& t=\frac{d}{s} \\
& t=\frac{21}{21.5}
\end{aligned}
$$

$$
\therefore t=\frac{d}{s}
$$

$$
\% \div 1
$$

Question 7.
solutions.
a) (1) Since $\angle B P A=90^{\circ}$ (angle in a semi-crole)

$$
\begin{align*}
d^{2} & =B P^{2}+A P^{2} \tag{1}\\
\tan \theta & =\frac{b}{P B} \quad \tan \theta=\frac{a}{P A} \\
\therefore d^{2} & =\frac{b^{2}}{\tan ^{2} \theta}+\frac{a^{2}}{\tan ^{2} \theta}
\end{align*}
$$ host I mark.

Well done
(iI)
some students seeive. completely stomped. and dud rot even. attempt thin question.
(1) For the coves that dist, ft was mostly well dine.

TRIAL HS 2010 Extension 1 solutions
Question 7 (cont d)
comments: TRIAL HSS woIU Extension i solutions. Question 7 (contd)
m ax value of $\sin 2 \alpha=1$.

$$
\begin{align*}
\therefore \max R & =\frac{v^{2}}{g} \\
\frac{R}{2} & =\frac{v^{2}}{2 g} \tag{1}\\
& =h_{1}+h_{2} \tag{1}
\end{align*}
$$

Similarly

$$
h_{2}=v^{2} \frac{\sin ^{2}(90-\alpha)}{2 g}
$$

$$
\begin{align*}
h_{1}+h_{2} & =\frac{v^{2} \sin ^{2} \alpha}{2 g}+\frac{v^{2} \cos ^{2} \alpha}{2 g} \tag{1}\\
& =\frac{v^{2}}{2 g}
\end{align*}
$$

maximum range is when $y=0$.

$$
\text { ie } \begin{align*}
0 & =v t \sin \alpha-\frac{g t^{2}}{2} \\
& =t\left(v \sin \alpha-\frac{g t}{2}\right) \\
\therefore t & =\frac{2 v \sin \alpha}{g} \tag{1}\\
x & =v \cdot \frac{2 v \sin \alpha \cdot \cos \theta}{g} \\
& =\frac{v^{2} \sin 2 \alpha}{a} \tag{1}
\end{align*}
$$

Many failing to recognise $8 \sin (90-\alpha)$ $=\cos \alpha$.
(11) Particle 1 - hits horizontal plane when $y=0$. Since $\tan \alpha=3 / 4, \cos \alpha=\frac{4}{5}$.

$$
\text { ie } \begin{align*}
0 & =196 t \times \frac{3}{5}-9.8 \times \frac{t^{2}}{2} \tag{1}\\
& =t\left(196 \frac{33}{5}-4.9 t\right)
\end{align*}
$$

Particle 2 - hits horizontal plane when $y=0$

$$
\text { ie } y=196 t \times \frac{4}{5}-\frac{9.8 t^{2}}{2}
$$

Need to derive these outcomes

$$
\therefore t=0 \propto 32 \mathrm{~s}
$$

$$
\begin{aligned}
\text { Time lapse } & =32-24 \\
& =8 \mathrm{~s}
\end{aligned}
$$

many making this more complicated than really is

