Name: _____

Teacher: _____

Class: _____

FORT STREET HIGH SCHOOL

2011 HIGHER SCHOOL CERTIFICATE COURSE ASSESSMENT TASK 3: TRIAL HSC

Mathematics Extension 1

Time allowed: 2 hours

(plus 5 minutes reading time)

Outcomes Assessed	Questions	Marks
Chooses and applies appropriate mathematical techniques in order to solve problems effectively.	1, 2	
Manipulates algebraic expressions to solve problems from topic areas such as inverse functions, trigonometry and polynomials.	3, 4	
Uses a variety of methods from calculus to investigate mathematical models of real life situations, such as rates, kinematics and growth and decay.	5,6	
Synthesises mathematical solutions to harder problems such as projectiles and 3D trigonometry and communicates them in appropriate form.	7	

Question	1	2	3	4	5	6	7	Total	%
Marks	/12	/12	/12	/12	/12	/12	/12	/84	

Directions to candidates:

- Attempt all questions
- The marks allocated for each question are indicated
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Board approved calculators may be used
- Each new question is to be started in a new booklet

STANDARD INTEGRALS

$\int x^n dx$	$=\frac{1}{n+1}x^{n+1}, n \neq -1; x \neq 0, \text{ if } n < 0$
$\int \frac{1}{x} dx$	$=\ln x, x>0$
$\int e^{ax} dx$	$=\frac{1}{a}e^{ax}, a\neq 0$
$\int \cos ax dx$	$=\frac{1}{a}\sin ax, a \neq 0$
$\int \sin ax dx$	$=-\frac{1}{a}\cos ax, a \neq 0$
$\int \sec^2 ax dx$	$=\frac{1}{a}\tan ax, a\neq 0$
$\int \sec ax \tan ax dx$	$=\frac{1}{a}\sec ax, a \neq 0$
$\int \frac{1}{a^2 + x^2} dx$	$=\frac{1}{a}\tan^{-1}\frac{x}{a}, a\neq 0$
$\int \frac{1}{\sqrt{a^2 - x^2}} dx$	$=\sin^{-1}\frac{x}{a}, a > 0, -a < x < a$
$\int \frac{1}{\sqrt{x^2 - a^2}} dx$	$=\ln\left(x+\sqrt{x^2-a^2}\right), x>a>0$
$\int \frac{1}{\sqrt{x^2 + a^2}} dx$	$=\ln\left(x+\sqrt{x^2+a^2}\right)$
NOT	$E: \ln x = \log_e x, x > 0$

<u>Question 1</u> (12 marks) Use a SEPARATE writing booklet

a) If A(2,-2) and B(4,2), find the co-ordinates of the point C (x, y), as shown in the diagram below, given that AC : CB = 7 : 5

b) Find the perpendicular distance from the point (1,2)

to the line y = 3x - 5

(Express the answer in exact rationalised form)

c) Solve
$$\frac{x+2}{x+1} \ge 3$$
 3

d) Differentiate
$$e^x \tan^{-1} \frac{x}{2}$$

e) Evaluate
$$\lim_{x \to 0} \frac{2 \sin 2x}{x}$$
 2

2

2

a) T (2*t*,*t*²) is a point on the parabola $x^2 = 4y$ with focus F. The tangent to the parabola at T makes an acute angle θ with the line FT.

- i) Show that the tangent to the parabola at T has gradient t.
- ii) Find $\tan \theta$ in simplest form in terms of *t*.

b) Evaluate
$$2\int_0^{\frac{\pi}{4}}\cos^2 4x \, dx$$
 3

c) Without using calculus, sketch
$$f(x) = \frac{x^2}{x^2 - 4}$$
 3

Showing all the important features.

d) Consider the function $f(x) = x - e^{-2x}$.

Use one application of Newton's Method with an initial approximation of x = 0.5 to find the value of the x intercept on the graph of y = f(x), giving the answer correct to two decimal places.

2

1

a)	AB p	C and D are points on the circumference of a circle. roduced intersects DC produced at point P. AB =12cm, BP = 3cm D = 4cm.	
	i)	Draw a clear sketch showing the above information.	1
	ii)	Find the length of CP.	1
b)	The e	equation $8x^3 - 36x^2 + 22x + 21 = 0$	2 5
	has ro	pots which form an arithmetic progression. Find the roots.	
c)	Find t	the area enclosed between the curves $y = \sin 2x$ and $y = 2sin^2 x$. $0 \le x \le \frac{\pi}{4}$. (Answer correct to 2 decimal places).	4
		4	
Quest	tion 4	(12 marks) Use a SEPARATE writing booklet	
	a) i)	Express $\sqrt{3} \cos x - \sin x$ in the form of $R \cos (x + a)$ where $0 < a < \frac{\pi}{2}$, and $R > 0$	2
	ii)	Hence, solve $\sqrt{3} \cos x - \sin x = \sqrt{2}$ for $0 \le x \le \pi$	0
		(Answer in terms of π).	2
		how that $\frac{d}{dx}(\sin^{-1}x + \sqrt{1-x^2}) = \sqrt{\frac{1-x}{1+x}}$,	
	he	ence evaluate $\int_{0}^{\frac{1}{2}} \sqrt{\frac{1-x}{1+x}} dx$ (Answer in exact form)	4
	c) Us	se Mathematical Induction to prove the following result for positive integral	
	va	lues of n:	4
		$\sum_{r=1}^{n} \frac{1}{(2r-1)(2r+1)} = \frac{1}{1.3} + \frac{1}{3.5} + \dots \dots + \frac{1}{(2n-1)(2n+1)} = \frac{n}{2n+1}$	

a) A particle P, initially at rest at x = 2 metres from the origin is moving along a straight line with an acceleration given by:

$$\frac{\mathrm{d}^2 x}{\mathrm{d} t^2} = -4 \left(x + \frac{16}{x^3} \right).$$

i) Show that if the velocity is v m/s at any given time, then

$$v^2 = \frac{64}{x^2} - 4x^2$$

ii) Hence, calculate the velocity when P is **halfway to** the origin.

1

1

3

iii) Calculate the **time** taken for the particle to reach the origin, given that

$$\frac{d}{dx}\left(\frac{1}{2}\cos^{-1}\left(\frac{x}{2}\right)^2\right) = \frac{-x}{\sqrt{16-x^4}}$$
 (Answer in terms of π). 4

b) Laura placed a cup of noodle soup with a temperature $95^{\circ}C$ in her room which has a temperature of $20^{\circ}C$. In 5 minutes the cup of noodle soup cools to $60^{\circ}C$. Assuming the rate of heat loss is proportional to the excess of its temperature above room temperature, that is:

$$\frac{dT}{dt} = -k(T-20),$$

i) Show that $T = 20 + Ae^{-kt}$ is a solution of

$$\frac{dT}{dt} = -k(T-20),$$

ii) If Laura likes to drink her noodle soup at $50 \,$ °C. Calculate the **extra** minutes she has to leave it to cool down.

(Answer to 1 decimal place). 3

Question 6 (12 marks) Use a SEPARATE writing booklet

- a) The displacement, x cm, of an object from the origin is given by x = 2sint 3cost, $t \ge 0$, where time *t*, is measured in seconds.
 - i) Show that the object is moving in Simple Harmonic Motion.
 - ii) At what time does the object **first** reach its maximum velocity?

(Answer correct to 2 decimal places).

b) The diagram below shows a water trough 150cm long that has a cross section of a right angled isosceles triangle. Water is poured in at a constant rate of 3 litres per minute.

- i) Show that when the depth of water is h cm, the volume of water in the tank is $150h^2 \text{ cm}^3$.
- ii) Find the rate at which the water is rising when the depth is 5 cm.

2

1

2

- 3
- c) In the diagram, AB is a diameter of the circle, centre **0**, and BC is a tangent to the circle at B. The line AED intersects the circle at E and BC at D. The tangent to the circle at E intersects BC at F, Let $< EBF = \alpha$.

i) Copy the diagram into your Writing Booklet with all the relevant information.

ii) Prove that
$$\langle FED = \frac{\pi}{2} - \alpha$$
.

Question 7 (12 marks) Use a SEPARATE writing booklet

a) Andrew whose height is 2 metres throws a ball from area A to the roof of the Cohen building which is 15metres high. He throws the ball at an initial velocity of 25m/s, and he is 20 metres from the base of the building. (Assume $\ddot{x} = 0$ and $\ddot{y} = -10$ m/s²)

- Hence, find between which two angles of projection must he throw the ball to ensure that it lands on the roof of the building? (Answer to the nearest degrees).
- b) A helicopter flies due west from A to B at a constant speed of **420km/h**. From a point G on the ground the bearing of the helicopter when it is at A is $079^{\circ}T$ with an angle of elevation β . Four minutes later the helicopter is at B with a bearing from G being $302^{\circ}T$ and an angle of elevation 32° . The altitude of the helicopter is $h \, km$.

- i) Calculate the height of the plane to the nearest metre.
- ii) Calculate the value of β to the nearest degree.

2

<u>Extra</u>

- a) i) Show that $\frac{d}{dx} \log (cosec x + \cot x) = -cosec x$
 - ii) Determine the volume generated when y = -cosec x, is rotated about the x - axis, and the ordinates $x = \frac{\pi}{3}$ and $x = \frac{\pi}{2}$. (Leave the answer in terms of π).

1

Solutions A(2, -2)B(4,2) æ C is external -3 Point C $\chi = 7(4) - (5 \times 2)$ y = 7(2) + 10Many ded not realise O working **.**. (9, 12)this was O point. external d = <u>b)</u> Point(1, 2)an thytc division and Va2+62 a = 3, b = -1, c = -5still man enners in 3-2-5 Dworking Somula. 1) Answer = 4 × Jio Vio Jio -4-2 5 C x + 2 > 3 $(x \neq -1)$ $(\times b \cdot s \ by (2c+1)^2)$ $\chi + 1$ $(\chi+2)(\chi+1) \geq 3(\chi+1)^2$ $3(x+1)^2 - (2c+1)(2c+2) \leq 0$ $(x+1)[3x+3-(x+2)] \leq 0$ $(x+1)(2x+1) \leq 0$ $02 \ 1 - = 30$ need to take care not to D working (any method) D values put it in X final answer. O correct Inequality signs 1

<u>e</u> $tan^{-1}\frac{\chi}{2} = U\frac{dv}{dn} + V\frac{du}{dx}$ d du $=e^{2(.2)} + \tan^{-1}\frac{x}{2} \cdot e^{-x}$ $4+\pi^{2}$ $u = e^{\chi}$ $\frac{du}{dx} = e^{\chi}$ $= 2e^{x}$ $\pm e^{\chi} \cdot tan \frac{1}{2}$ $V = \tan^{-1} \frac{\chi}{2}$ $4+\chi^2$ dv = $1 + \binom{2}{2}^{2}$ 1) Product rule 4+222 Correct derivative of tan-1 2 $\widehat{}$ (1) Answer Evaluate: 287 27 スラロ × him Son 22 ____ 4 202 2-70 = 4 (\hat{z})

Question 2 $\chi^2 = 4au$)______) $\frac{y = x^2}{4}$ $\chi^2 = 44$ $T(2t,t^2)$ -[0,1] $\frac{dy}{dx} =$ $\frac{\chi}{2}, T(2t, t^2)$ אל dy dn $= \frac{2t}{2}$ 4a = 4a = 1. Some did not = t \mathcal{O} calculate the veilne of a. from O $m_{\mp} = t$ $M_{FT} = \underline{y}_2 - \underline{y}_1$ $M_1 - M_2$ $= t - (t^2 - 1)$ 22-24, $= t^2 - 1$ 2t-0 $=2t^{2}-t^{2}+1$ $= \frac{t^2 - 1}{2t}$ 3 namy made $= \dot{t}^2 + 1$ 2 \dot{t} mistakes in the algebraic $tan \theta =$ $M_1 - M_2$ manipulation of M, -M2 1 + m, m, $=1+t.t^{2}-1$ $1+M_1M_2$ 1+m, M2 $=1+t^{2}-1$ $(+^2+1) \times 2$ Some left the $= \frac{1}{2} + \frac{1}{2}$ $(+^2+)$ anywer for tand as an obtuse angle. (Did not read the question canefully. 3

6) 2 Cos² 4x dx $\cos 2\chi = \cos^2 \chi - \sin^2 \chi$ 0 $= 2 \left(\frac{\pi}{4} \right) \left(\cos(8\pi) + 1 \right) d^{2} d^{2}$ $COS2\chi = COS^2\chi - (1 - 40S_{2})$ $(052)(=2105^{2})(-1)$ $\cos^2 x = \frac{1}{2} (\cos x + i)$ Ò $= \int \frac{4}{7} \cos 8 2(-1) d_{2}$ mostly well dore. # 14 L 1 Sm 8 2 + 20 $\frac{1}{4} + \frac{1}{8} \sin(8 \times \frac{1}{4}) - \int 0$ TI - $= \chi^2$ $\chi^2 - 4$ (x) C $(x \neq \pm 2)$ $\frac{\chi^2}{(\chi-2)(\chi+2)}$ y 2 $\chi^2 - 4$ X $\chi^2 - 4$ + 4 22-4

(y-1) = 4(x-2)(x+2)Interrepts: $\chi = 0, y = 0$ Critical Points: (x-2)(x+2)(y-1) = 42(丰士2, 以丰1 Many did not find the horizontal asymptote. $> \chi$ 2 ~2 ⊙ Shape ⊙y-asymphote Dx-asymptotes $f(x) = x - e^{-2x} \implies f(0.5) = 0.5 - e^{-1}$ d) = 0.132 ... $f'(x) = 1 + 2e^{-2x}$ $f'(0,5) = 1 + 2e^{-1}$ = 1.7358... well done. $\chi = 0.5 - f(\chi)$ $f(\mathcal{X})$ = 0.5 - f(0.5) /Dworlding f! (0.5) @ Anewer = 0.5 - 0.132 - -1.7368 - -= 0.42

Question 3 <u>3)ai</u> B Very peorly pendents reca to learnities rule. let CP = m Also points are always cydical $\chi(\chi+4) = 3(15)$ named. $\chi^2 + 4\chi - 45 = 0$ DC - produced means weetend (x+q)(x-5) = 0DC in that $x = 5 \text{ cm}, (x \neq -9)$ duechoi *b*) $8\pi^{3} - 36\pi^{2} + 22\pi + 21 = 0$ $x + \beta + \gamma = 36 = 9 - 0$ Mady made a reasonably simple questi $\frac{\alpha_{\beta+\chi_{\sigma}+\beta_{\sigma}}^{2}=22=11}{8}=\frac{11}{4}=2$ very complicated 1 Voio many $\frac{x\beta x}{8} = -21 - 3$ simple anithm errens. For $AP: \alpha, \beta, \delta$ $= \frac{\chi + \chi}{2} \quad \text{or} \quad 2\beta = \chi + \chi$ 4)

Sub (into D $\frac{3\beta}{\beta} = \frac{9}{2}$ ۴. ۲. ک from () $\beta = \frac{3}{2}$ $\alpha + \gamma = 3$ $= 3 - \delta$ α from 3 $\propto \gamma \cdot \frac{3}{2} = -\frac{21}{8}$ $x = -\frac{7}{4}$ 5 $\therefore x(3-x) = -7$ 24 $4x^2 - 12x = 7$ $4x^2 - 12x - 7 = 0$ 8=3-9 $(2\alpha + 1)(2\alpha - 7) = 0$ = - - $\boldsymbol{\varkappa}$ 2 Working ... The roots are : - 1 Cany method M I root solved difference = 2 1 working to find the other foots 2Sin² oc = 1-COSDE (D) Answers Sin 20c - 2 Sin2 x doc С Need to 1 4 0 (Sin22c+ cos22c-1) drc always take abachite # value in $= \frac{\cos 22c}{2} + \frac{\sin 22c}{2} - 2c$ ease wrong curve a -0+2-1-(-1+0-0) dep · Also @ Subshipition questo aded = 0.21 cm2 O Integration to waluate to 2 dec places 1) value O Answer

Question 4 ì 3 cos x - gmx = R cos (2+2) mostly well executed $tan \alpha = b$ Hand P () The amplimal $\frac{1}{5} \sqrt{3} \cos 2 c - \sin 2 c = 2 \cos (2c + \frac{\pi}{6})$ OThe acute angle * ø 11 hence: = JZ $2\cos(x+\overline{L})$ S A Full marks C.J. for answe Cos of I without showing elimination of V2 <u> x+正=</u> $(0 \le \chi \le \pi)$ <u>- 11</u> 4 $\frac{\chi + \pi}{6}$ 711 4 <u>ηπ</u> 12 <u>, 19 îr</u> X 2e = The is the only Sola.

(-22) 0<u>`</u> $\frac{dy}{dx} = \frac{1}{\sqrt{1-\chi^2}} + \frac{1}{2} (1-\chi^2)^{-\frac{1}{2}}$ straight forward $\frac{1}{1-\chi^2} - \frac{\chi}{\sqrt{1-\chi^2}}$ most 8 holents Some making $\frac{1-x^2}{\sqrt{1-x^2}}$ nunerí ca enor $= (/ - \chi)^{\frac{1}{2}} (1 + \chi)^{\frac{1}{2}}$ $\frac{=(1-\pi)^{\frac{1}{2}}}{(1+\pi)^{\frac{1}{2}}}$ $= \frac{(1-2c)}{(1+2c)}$ $\frac{1}{2}\int \frac{1-2\ell}{1+2\ell} d\ell$ 5 0 1 $= \int \sin^{-1} x + \sqrt{1-x^2}$ $\frac{\pi}{6} + \sqrt{\frac{3}{4}} - \int 0 + 1$ $\frac{1}{h} + \frac{\sqrt{3}}{2}$

 $S(n) = \frac{1}{2} = \frac{1}{1 + \frac{1}{2} + \frac{1}{2}} = \frac{1}{1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}}$ $r = \frac{1}{2r - \frac{1}{2r + \frac{1}{2}}} = \frac{1}{1 + \frac{1}{2} + \frac{$ c) (2n-1)(2n+1)errors included η Step 1: assumption containing 2n+1let n=1RHS = LHS = 13 (1)(3)(2K-1)(2K+1):. LHS = RHS on Lits only, ·· SCI) is the ie not Step 2: whole Sm, Assume SCK) is also me working on bs $\frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + \frac{1}{(2k-1)(2k+1)}$ K in proof, 2K+1 insuffi cent step 3: conclusion Prove S(K+1) (not linking the Ltts: from RHS . prenous steps) K + 1 = - K + 1 $\frac{1}{2(k+1)} = (2(k+1)-1)(2(k+1)+1)$ 2(k+1)+1K = K+1+ _ (2K+1)(21C+3) 2K+3 2K+1 LHS = k(2k+3) + 1Darsimption (2k+1)(2k+3)Dusing the prove for K+1 $= 2K^{2} + 3K + 1$ (2K+1)(2K+3)(D Proving K+1 = (2kfi)(k+1)O Conclusion 216+3 (21/(+1)(K+3))= RHS · Since it is the for n=1, n=K, n=K+1 (n=1, n=2, n= then it is the for nois

Question 5 a)i) $\frac{d^2x}{d^{42}} = -4\left(x + \frac{16}{x^3}\right)$ Some tried to integrate (cannot integra z with respect $\frac{d}{dx}\left(\frac{v^{2}}{2}\right) = -4\left(x + 16x^{-3}\right)$ $\frac{V^2}{2} = -4 \left(x + 16 x^{-3} dx \right)$ $\frac{V^2}{2} = -4\left(\frac{\chi^2 + 16\chi^{-2}}{2}\right) + C$ some ignored ct there not exclude $\frac{V^2}{2} = -22t^2 + 642t^{-2} + C$ 1 $V^2 = 64 - 422 + C$ Initially at rest, :. C = 0ie : V=0, x = 2 $V^2 = 64 - 4x^2$ as required. x^2 $\frac{V^2 = 64 - 4x^2}{x^2} (x = 1)$ Mary did not Yealise $V^2 = 64 - 4$ velocity was negative V = -2 JIS m/s (-7.75 m/s) (moving wa -ve atrection * regative velocity No mark awarded

iii) $\begin{bmatrix}
 64 - 4x^4 \\
 x^2
\end{bmatrix}$ V = -2 12 <u>4(16-x4</u> dr. dt ć 7 ò ŧ Ź (negative) $\frac{16-x^4}{x^2}$ 2 =-2 neoch <u> ziq</u> dt <u>ン</u> ۲. oriteo dre offer 16 4 - 2 $\sqrt{16 - x^4}$ dxieo; X = $\frac{1}{2} \cos \frac{-1}{2}$ evolum 25 Mong trauble usma The given prect 11-Seconds. takes Is to get to the origin. ŗ., O expression for dt dr O expression for the O Integration & O Answer k-aling

<u>b)i</u> $= 20 + Ae^{-Kt}$ $\left(Ae^{-KE}=T-20\right)$ nead $\frac{dT}{dt} = -KAe^{-Kt}$ state the If it is aska guestion, = -K(T - 20)just y dawn is regid. need to need to integrate te FIT is the solution show T 11) t=0 $95 = 20 + Ae^{-0}$ Some did A = 75et which T = 20+75 C caused Ritte erors t=5 $60 = 20 + 75 e^{-5K}$ $75e^{-5k} = 40$ 1) expression $-51C = ln\left(\frac{8}{15}\right)$ Method value for executed quite well Alk -K= 5 ln (15 ge kin $= 50^{\circ}$ O Value for Some did not give the 75e-KE = 30 (I) EXTVO tra time $\frac{1}{5} \ln (\frac{8}{15}) t = \ln (\frac{2}{5})$ time. Some hard answers Dunder 5 minute = 5 h (75) t = In 5 =) so should have realsed There was = 7.3 munutes an error : Extra time = 2.3 mins

Question 6 <u>a) i)</u> $\chi = 26nt - 3cost$ $\dot{x} = 2108 \pm 38nt$ $\dot{\mathcal{H}} = -28nt + 3\cos t$ Need to $=-(2s_{nt}-3cost) - 0$ demonstate $\dot{x} = -x$ (n=1) $3l = -n^2 3l$ not just rewrite <u>o</u> motion is in SHM. \mathcal{D} ·at maximum velocity: mastra $\frac{\partial u = \dot{x} = dV}{dt} = 0$ andina from O Bronesto SIA $3\cos t = 2 \sin t$ BADDANZ tant = 3 Need to have calculator t = 0.98 sec. in radian measure Area = + (h×2h <u>b)</u>i AN units must be same so V = AH3L needs to $= h^2(150)$ be converted to cm³. $= 150 \text{ h}^2 \text{ cm}^3$ $\frac{dV}{dt} = \frac{3l}{min}, \frac{dh}{dt} = \frac{2}{h}, h = 5 cm$ Ì١ () expression for dh dh $\frac{dv}{dt} = \frac{dv}{dh}$ $= 3000 \div 300 h$ 1) worlang $\frac{dh}{dt} = \frac{dv}{dt} = \frac{dv}{dh}$ O Angwer = 2 cm/men on the = 2 cm/min

6 С RTP K $\angle FED = \overline{11} - \alpha$ F ß marked on the diagram Ė LAEB = II **ïi**] (AB is a diameter) LABF = T (tangent 1 cliameter $\therefore \angle ABE = T - \chi$ (Lin alt. Segment). $\angle ABE = \angle AEG$ $= \frac{1}{2} - X$ = LDEF (vertically opp LAEG $= \pi - \varkappa$ <u>,</u>

Question 7 -.: y = 25 and . a) i) $\dot{y} = -10$ $\hat{x} = 25 \cos \alpha$ y =- (10 db = -10t + C, t = 0, y = 25 Bm x• • Many students $\dot{y} = 25 \, \text{sna} - 10 \, \text{t}$ $\dot{y} = V \, \text{sna} - 10 \, \text{t}$ Ste did not OR derive equations $= (255m\alpha - 10t dt)$ of motion. $= 25 \pm 8m\alpha - 5t^2 + C_V$ t=0, y=2 : c=2 $\frac{y}{y} = 25 \pm sm \alpha - 5t^2 + 2$ OR $y = V t \sin x - 5t^2 + 2$ (1)Horizontal: O Integration of y, x, y and x $x = V \pm \cos x$ t = _ DC O Substitution VCOSX (Dexpression Sub @ mto D for y. $y = V \left(\frac{\gamma c}{V \cos x} \right) 8\pi \alpha - 5 \left(\frac{\gamma c}{V^2 \cos^2 x} \right) + 2$ $\frac{1}{\cos^2 x} = \frac{\sec^2 x}{\cos^2 x}$ $\frac{y=x\tan x-5x^2}{y^2\cos^2 x}+2$ $\sin^2 \alpha + \cos^2 \alpha = 1$ $\tan^2 x + 1 = \operatorname{Sec}^1$ $y = 3c + tan x - 53c^2 (1 + tan^2 x) + 2$

 $y = x \tan x - 5x^2 (1 + \tan^2 x) + 2$ $\left(1 \right)$ $15 = 20 \tan \alpha - 16 (1 + \tan^2 \alpha) + 2$ $75 = 100 \tan \alpha - 16 - 16 \tan^2 \alpha + 10$ More care needed $16 \tan^2 \alpha - 100 \tan \alpha + 81 = 0$ to be taken with these $\tan \alpha = 100 \pm (100^2 - 4(16)(-81))$ steps. 32 100±69.40 32 OSUBSK potton O Quadratic X. 44° and 79° formula () Answer. $44^{\circ} \leq \propto \leq 79^{\circ}$ S = 420km/h many student h h did not draw . let cq = xdiagrams DG = yor confused D bearings with oblique angles. C 220 10 302-270 = 32° 19/ 'r

B $\tan 32^\circ = h$ y = hന tan 32° 32° Ч Dc = speed x time 28 Ð 1320 $= 420 \times 4$ 110 = 28 km 58-+7 1370 = 28 sin137° Sinn y = 288m11° (2)Sin 1370 Sub () into (2) = 2885 11° tan32° Sin1370 h = tan 320 x 28 83 110 sin 1370 = 4.895 lcm (4895 m Ĥ from A CDG $\frac{2c}{5in320} = \frac{28000}{5in1370}$ h = 4895P 2C = 21756x $\frac{3}{21756}$ $\frac{3}{21756}$ END