Name: \qquad
Teacher: \qquad
Class: \qquad

FORT STREET HIGH SCHOOL
2011
HIGHER SCHOOL CERTIFICATE COURSE ASSESSMENT TASK 3: TRIAL HSC

Mathematics Extension 1
Time allowed: 2 hours
(plus 5 minutes reading time)

Outcomes Assessed	Questions	Marks
Chooses and applies appropriate mathematical techniques in order to solve problems effectively.	1,2	
Manipulates algebraic expressions to solve problems from topic areas such as inverse functions, trigonometry and polynomials.	3,4	
Uses a variety of methods from calculus to investigate mathematical models of real life situations, such as rates, kinematics and growth and decay.	5,6	
Synthesises mathematical solutions to harder problems such as projectiles and 3D trigonometry and communicates them in appropriate form.	7	

Question	1	2	3	4	5	6	7	Total	$\%$
Marks	$/ 12$	$/ 12$	$/ 12$	$/ 12$	$/ 12$	$/ 12$	$/ 12$	$/ 84$	

Directions to candidates:

- Attempt all questions
- The marks allocated for each question are indicated
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Board - approved calculators may be used
- Each new question is to be started in a new booklet

STANDARD INTEGRALS

$$
\begin{array}{ll}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, a \neq 0 \\
\int \sin a x d x & =-\frac{1}{a} \cos a x, a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \tan a x, a \neq 0 \\
\int \sec ^{2} a x \tan a x d x & =\frac{1}{a} \sec a x, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\frac{1}{a} \tan -1 \frac{x}{a}, a \neq 0 \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\sin -1 \frac{x}{a}, a>0,-a<x<a \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{array}
$$

NOTE : $\ln x=\log _{e} x, \quad x>0$

Question 1 (12 marks) Use a SEPARATE writing booklet
a) If $A(2,-2)$ and $B(4,2)$, find the co-ordinates of the point $C(x, y)$, as shown in the diagram below, given that $A C: C B=7: 5$

b) Find the perpendicular distance from the point $(1,2)$
to the line $y=3 x-5$
(Express the answer in exact rationalised form)
c) Solve $\frac{x+2}{x+1} \geq 3$
d) Differentiate $e^{x} \tan ^{-1} \frac{x}{2}$
e) Evaluate $\lim _{x \rightarrow 0} \frac{2 \sin 2 x}{x}$
a) $\mathrm{T}\left(2 t, t^{2}\right)$ is a point on the parabola $x^{2}=4 y$ with focus F . The tangent to the parabola at T makes an acute angle θ with the line FT.

i) Show that the tangent to the parabola at T has gradient t.
ii) Find $\tan \theta$ in simplest form in terms of t.
b) Evaluate $2 \int_{0}^{\frac{\pi}{4}} \cos ^{2} 4 x d x$
c) Without using calculus, sketch $f(x)=\frac{x^{2}}{x^{2}-4}$

Showing all the important features.
d) Consider the function $f(x)=x-e^{-2 x}$.

Use one application of Newton's Method with an initial approximation of $x=0.5$ to find the value of the x intercept on the graph of $y=f(x)$, giving the answer correct to two decimal places.
a) A, B, C and D are points on the circumference of a circle. $A B$ produced intersects $D C$ produced at point $P . A B=12 \mathrm{~cm}, B P=3 \mathrm{~cm}$ and $C D=4 \mathrm{~cm}$.
i) Draw a clear sketch showing the above information.
ii) Find the length of CP .
b) The equation $8 x^{3}-36 x^{2}+22 x+21=0$
has roots which form an arithmetic progression. Find the roots.
c) Find the area enclosed between the curves $\mathrm{y}=\sin 2 x$ and $\mathrm{y}=2 \sin ^{2} x$.

$$
\begin{equation*}
0 \leq x \leq \frac{\pi}{4} . \text { (Answer correct to } 2 \text { decimal places). } \tag{4}
\end{equation*}
$$

Question 4 (12 marks) Use a SEPARATE writing booklet

a) i) Express $\sqrt{3} \cos x-\sin x$ in the form of $R \cos (x+a)$ where $0<a<\frac{\pi}{2}$, and $R>0$
ii) Hence, solve $\sqrt{3} \cos x-\sin x=\sqrt{2}$ for $0 \leq x \leq \pi$
(Answer in terms of π).
b) Show that $\frac{d}{d x}\left(\sin ^{-1} x+\sqrt{1-x^{2}}\right)=\sqrt{\frac{1-x}{1+x}}$,
hence evaluate $\int_{0}^{\frac{1}{2}} \sqrt{\frac{1-x}{1+x}} d x \quad$ (Answer in exact form)
c) Use Mathematical Induction to prove the following result for positive integral values of n :

$$
\sum_{r=1}^{n} \frac{1}{(2 r-1)(2 r+1)}=\frac{1}{1.3}+\frac{1}{3.5}+\cdots \ldots \cdots \frac{1}{(2 n-1)(2 n+1)}=\frac{n}{2 n+1}
$$

Question 5 (12 marks) Use a SEPARATE writing booklet
a) A particle P , initially at rest at $x=2$ metres from the origin is moving along a straight line with an acceleration given by:

$$
\frac{\mathrm{d}^{2} \mathrm{x}}{\mathrm{dt}^{2}}=-4\left(\mathrm{x}+\frac{16}{\mathrm{x}^{3}}\right) .
$$

i) Show that if the velocity is $v \mathrm{~m} / \mathrm{s}$ at any given time, then

$$
v^{2}=\frac{64}{x^{2}}-4 x^{2}
$$

ii) Hence, calculate the velocity when P is halfway to the origin.
iii) Calculate the time taken for the particle to reach the origin, given that

$$
\left.\frac{d}{d x}\left(\frac{1}{2} \cos ^{-1}\left(\frac{x}{2}\right)^{2}\right)=\frac{-x}{\sqrt{16-x^{4}}} \quad \text { (Answer in terms of } \pi\right)
$$

b) Laura placed a cup of noodle soup with a temperature $95^{\circ} \mathrm{C}$ in her room which has a temperature of $20^{\circ} \mathrm{C}$. In 5 minutes the cup of noodle soup cools to $60^{\circ} \mathrm{C}$. Assuming the rate of heat loss is proportional to the excess of its temperature above room temperature, that is:

$$
\frac{d T}{d t}=-k(T-20)
$$

i) Show that $T=20+A e^{-k t}$ is a solution of

$$
\frac{d T}{d t}=-k(T-20)
$$

ii) If Laura likes to drink her noodle soup at $50^{\circ} \mathrm{C}$. Calculate the extra minutes she has to leave it to cool down.
(Answer to 1 decimal place).

Question 6 (12 marks) Use a SEPARATE writing booklet

a) The displacement, $x \mathrm{~cm}$, of an object from the origin is given by $x=2 \sin t-3 \cos t, \quad t \geq 0$, where time t, is measured in seconds.
i) Show that the object is moving in Simple Harmonic Motion.
ii) At what time does the object first reach its maximum velocity?
(Answer correct to 2 decimal places).
b) The diagram below shows a water trough 150 cm long that has a cross section of a right angled isosceles triangle. Water is poured in at a constant rate of 3 litres per minute.

i) Show that when the depth of water is $h \mathrm{~cm}$, the volume of water in the tank is $150 h^{2} \mathrm{~cm}^{3}$.
ii) Find the rate at which the water is rising when the depth is 5 cm .
c) In the diagram, $A B$ is a diameter of the circle, centre $\mathbf{0}$, and $B C$ is a tangent to the circle at B. The line AED intersects the circle at E and $B C$ at D. The tangent to the circle at E intersects BC at F , Let $<E B F=\alpha$.

i) Copy the diagram into your Writing Booklet with all the relevant information.
ii) Prove that $\angle F E D=\frac{\pi}{2}-\alpha$.

Question 7 (12 marks) Use a SEPARATE writing booklet

a) Andrew whose height is $\mathbf{2}$ metres throws a ball from area A to the roof of the Cohen building which is 15 metres high. He throws the ball at an initial velocity of $25 \mathrm{~m} / \mathrm{s}$, and he is 20 metres from the base of the building. (Assume $\ddot{x}=0$ and $\ddot{y}=-10 \mathrm{~m} / \mathrm{s}^{2}$)

A

i) Show that $y=x \tan \alpha-\frac{5 x^{2}}{v^{2}}\left(1+\tan ^{2} \alpha\right)+2$, at any time t.
ii) Hence, find between which two angles of projection must he throw the ball to ensure that it lands on the roof of the building?
(Answer to the nearest degrees).
b) A helicopter flies due west from A to B at a constant speed of $420 \mathrm{~km} / \mathrm{h}$. From a point G on the ground the bearing of the helicopter when it is at A is $\mathbf{0 7 9} \boldsymbol{T}$ with an angle of elevation $\boldsymbol{\beta}$. Four minutes later the helicopter is at B with a bearing from G being $\mathbf{3 0 2}^{\circ} \mathbf{T}$ and an angle of elevation $\mathbf{3 2}$. The altitude of the helicopter is $\boldsymbol{h} \boldsymbol{k m}$.

i) Calculate the height of the plane to the nearest metre.
ii) Calculate the value of $\boldsymbol{\beta}$ to the nearest degree.

END OF PAPER

Extra
a) i) Show that $\frac{d}{d x} \log (\operatorname{cosec} x+\cot x)=-\operatorname{cosec} x$ 1
ii) Determine the volume generated when $y=-\operatorname{cosec} x$,
is rotated about the x-axis, and the ordinates $x=\frac{\pi}{3}$ and $x=\frac{\pi}{2}$. (Leave the answer in terms of π).

Solutions
1)
a) $A(2,-2) \quad B(4,2)$

C is external
Point c :

$$
\begin{array}{ll}
x=\frac{7(4)-(5 \times 2)}{2}, & y=\frac{7(2)+10}{2} \\
\therefore(9,12) & \text { (1) working } \\
& \text { (1) point. }
\end{array}
$$

b)

$$
\begin{array}{rl|l|}
d & =\left|\frac{a x+b y+c}{\sqrt{a^{2}+b^{2}}}\right| & \text { Point }(1,2) \\
& a=3, b=-1, c=-5 \\
& =\left\lvert\, \begin{array}{ll}
3-2-5 \\
\frac{3}{10} & \text { (1) woriaing } \\
& =\frac{-4}{\sqrt{10}} \\
& =\frac{4}{\sqrt{10}} \times \frac{\sqrt{10}}{\sqrt{10}} \\
& =\frac{2 \sqrt{10}}{5}
\end{array}\right.
\end{array}
$$

c)

$$
\begin{gathered}
\frac{x+2}{x+1} \geqslant 3 \quad(x \neq-1) \\
\quad\left(x \text { b-s by }(x+1)^{2}\right) \\
(x+2)(x+1) \geqslant 3(x+1)^{2} \\
3(x+1)^{2}-(x+1)(x+2) \leq 0 \\
(x+1)[3 x+3-(x+2)] \leq 0 \\
(x+1)(2 x+1) \leq 0
\end{gathered}
$$

Many ded not realise thes was extenal divesur and shil many enrars in Oomila.

$$
x=-150
$$

need to talce care not to pect et in stanal answer.
(1) Correct Inequality signs
e) $\frac{d}{d x}\left(e^{x} \cdot \tan ^{-1} \frac{x}{2}\right)=u \frac{d v}{d x}+v \frac{d u}{d x}$
(i) Correct denivative of

$$
\tan ^{-1} \frac{x}{2}
$$

(1) Answer
f) Evaluate:

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{2 \sin 2 x}{x} \\
= & 4 \lim _{x \rightarrow 0} \frac{\sin 2 x}{2 x} \\
= & 4
\end{aligned}
$$

Question 2

$$
x^{2}=4 a y
$$

a) i) $y=\frac{x^{2}}{4}$

$$
\frac{d y}{d x}=\frac{x}{2}, T\left(2 t, t^{2}\right)
$$

$$
\frac{d y}{d x}=\frac{2 t}{2}
$$

$$
4 a=4
$$

$$
a=1
$$

$$
=t
$$

ii) from (1)

$$
\begin{align*}
& m_{T}=t \\
& m_{F}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
&=\frac{t^{2}-1}{2 t-0} \\
& \left.=\frac{t^{2}-1}{2 t} / \frac{1+m_{1} m_{2}}{} \right\rvert\, \tag{2}\\
& \tan \theta=\left|\frac{M_{1}-M_{2}}{2}\right| \\
&=\left\lvert\, \frac{1}{t^{2}+11 \times 2}\right. \\
&=\mid\left.\frac{1}{t} / t^{2}+1\right) \mid
\end{align*}
$$

some did not calculate the value of a.
many made mistakes in the algebraic manipulation of $\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}$
Some left the
aniler for
$\tan \theta$ as an obtuse angle
(Did not read the question carefully)
b)

$$
\begin{aligned}
& 2 \int_{0}^{\frac{\pi}{4}} \cos ^{2} 4 x d x \\
& =2 \int_{0}^{\frac{\pi}{4} \frac{1}{2}(\cos 8 x+1) d x}\left|\begin{array}{l}
\cos 2 x=\cos ^{2} x-\sin ^{2} x \\
\cos 2 x=\cos ^{2} x-\left(1-\cos ^{2} x\right) \\
\cos 2 x=2 \cos ^{2} x-1 \\
\cos 2 x=\frac{1}{2}(\cos 2 x+1)
\end{array}\right| \\
& \left.=\int_{0}^{\frac{\pi}{4}} \frac{\cos 8 x+1) d x}{0} \quad\left[\begin{array}{l}
\left.\frac{1}{2} \sin 8 x+x\right] \frac{\pi}{4} \\
=
\end{array}\right] \frac{\pi}{4}+\frac{1}{8} \sin \left(8 \times \frac{\pi}{4}\right)\right]-[0] \\
& =\frac{\pi}{4}
\end{aligned}
$$

c)

$$
\begin{aligned}
& f(x)=\frac{x^{2}}{x^{2}-4} \quad(x \neq \pm 2) \\
& y=\frac{x^{2}}{(x-2)(x+2)}
\end{aligned}
$$

$$
\begin{aligned}
x^{2}-4 & \frac{\sqrt{x^{2}}}{\left(x^{2}-4\right)} \\
\therefore y & =1+\frac{4}{x^{2}-4}
\end{aligned}
$$

$$
(y-1)=\frac{4}{(x-2)(x+2)}
$$

Critical Points:

$$
\begin{gathered}
(x-2)(x+2)(y-1)=4 \\
x \neq \pm 2, y \neq 1
\end{gathered}
$$

Many did not find the horizontal asymptote.
d) $f(x)=x-e^{-2 x}$

$$
\Rightarrow f(0.5)=0.5-e^{-1}
$$

$$
\begin{aligned}
f^{\prime}(x) & =1+2 e^{-2 x} \\
f^{\prime}(0.5) & =1+2 e^{-1} \\
& =1.7350
\end{aligned}
$$

$$
=0.132 \therefore
$$

$$
=1.7358 \ldots
$$

$$
\begin{aligned}
x & =0.5-\frac{f(x)}{f^{\prime}(x)} \\
& =0.5-\frac{f(0.5)}{f^{\prime}(0.5)} \downarrow \\
& =0.5-\frac{0.132}{1.7368} \\
& =0.42
\end{aligned}
$$

(1) Working
(1) Answer

Question 3
3)ai)

ii) $\operatorname{let} C P=x$

$$
\begin{aligned}
x(x+4) & =3(15) \\
x^{2}+4 x-45 & =0 \\
(x+9)(x-5) & =0 \\
x & =5 \mathrm{~cm},(x \neq-9)
\end{aligned}
$$

b)

$$
\begin{align*}
& 8 x^{3}-36 x^{2}+22 x+21=0 \\
& \alpha+\beta+\gamma=\frac{36}{8}=\frac{9}{2}-(1) \tag{1}\\
& \alpha \beta+\alpha \gamma+\beta \gamma=\frac{22}{8}=\frac{11}{4} \text { (2) } \tag{2}\\
& \alpha \beta \gamma=\frac{-21}{8} \text { (3) } \tag{3}
\end{align*}
$$

For $A P: \alpha, \beta, \gamma$

$$
\begin{equation*}
\beta=\frac{\alpha+\gamma}{2} \text { or } 2 \beta=\alpha+\gamma \tag{4}
\end{equation*}
$$

a veasonably simple quesino very complucated - Noo mary ample awhuche errons.

Sub (4) into (1)

$$
\begin{aligned}
& 3 \beta=\frac{9}{2} \\
& \beta=\frac{3}{2}
\end{aligned}
$$

\therefore from (1)

$$
\begin{aligned}
\alpha+\gamma & =3 \\
\alpha & =3-\gamma
\end{aligned}
$$

from (3)

$$
\begin{aligned}
& \alpha \gamma \cdot \frac{3}{2}=-\frac{21}{8} \\
& \text { - } \alpha \gamma=-\frac{7}{4} \\
& \therefore \alpha(3-\alpha)=-\frac{7}{4} 2 \alpha \times 1 \\
& 4 \alpha^{2}-12 \alpha=7 \\
& 4 \alpha^{2}-12 \alpha-7=0 \\
& \gamma=3-\alpha \\
& (2 \alpha+1)(2 \alpha-7)=0 \\
& =\frac{7}{2} \\
& \alpha=-\frac{1}{2}, \frac{7}{2} \lambda
\end{aligned}
$$

(2) working Cany methad
(1) i root solved (1) working to find the othe roots (1) Answers.

Need to ailways take absolure value in ease wrong curve as dep. Also
(1) Susstitution
(1) Integration
(1) values 1 do 2 dee.place
(1) Answer

Question 4
a) i)
$\sqrt{3} \cos x-\sin x=R \cos (x+\alpha)$

$$
\begin{aligned}
\tan \alpha & =\frac{b}{a} \\
& =\frac{1}{\sqrt{3}} \\
& =\frac{\pi}{6}
\end{aligned}
$$

$$
\therefore \sqrt{3} \cos x-\sin x=2 \cos \left(x+\frac{\pi}{6}\right)
$$

ii) hence:

$$
\cos x+\frac{\pi}{6}=\frac{\sqrt{2}}{2}, \quad(0 \leq x \leqslant \pi)
$$

$$
x+\frac{\pi}{6}=\frac{\pi}{4}, \frac{7 \pi}{4}
$$

$$
x=\frac{\pi}{12}, \frac{19 \pi}{12}
$$

$x=\frac{\pi}{12}$ is the only soil.
mostly well executed
(1) The amplind
(1) The acute angle

Full marks
for anew of $\frac{\pi}{2}$ without
showing showing elimination of $\frac{9 \pi}{12}$

$$
12
$$

\square

\square

b)

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}}+\frac{1}{2}\left(1-x^{2}\right)^{-\frac{1}{2}(-2 x)} \\
& =\frac{1}{\sqrt{1-x^{2}}}-\frac{x}{\sqrt{1-x^{2}}} \\
& =\frac{1-x}{\sqrt{1-x^{2}}} \\
& =\frac{(1-x)}{(1-x)^{\frac{1}{2}}(1+x)^{\frac{1}{2}}} \\
& =\frac{(1-x)^{\frac{1}{2}}}{(1+x)^{\frac{1}{2}}} \\
& =\sqrt{\frac{(1-x)}{(1+x)}} \\
& \therefore \int^{\frac{1}{2}} \sqrt{\frac{1-x}{1+x}} d x \quad \sqrt{3} \underbrace{2}_{1} \\
& 0 \\
& =\left[\sin ^{-1} x+\sqrt{1-x^{2}}\right]_{0}^{\frac{1}{2}} \\
& =\left[\frac{\pi}{6}+\sqrt{\frac{3}{4}}\right]-[0+1] \\
& =\frac{\pi}{6}+\frac{\sqrt{3}}{2}-1
\end{aligned}
$$

straight forwarad for most shidents, some makyo numenical errors.
c) $S(n)=\sum_{r=1}^{n} \frac{1}{(2 r-1)(2 r+1)}=\frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\cdots+\frac{1}{(2 n-1)(2 n+1)}$

Step 1:
ervors included
assumption
let $n=1$

$$
L_{H S}=\frac{1}{(1)(3)}
$$

$$
\text { RHS }=\frac{1}{3}
$$

$$
\therefore L H S=\text { RHS }
$$

$\therefore S(1)$ is trae
Step 2:
Assume $S(k)$ is also tine
$=\frac{K}{2 k+1}=1$
\therefore Since it is true for $n=1, n=k, n \equiv k+1 \quad(n=1, n=2, n=$ then it is tme for $n \geqslant 1$:

$$
\begin{aligned}
& \frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\cdots+\frac{1}{(2 k-1)(2 k+1)}=\frac{k}{2 k+1} \text { (1) } \\
& \text { Step 3: } \\
& \text { Prove S }(K+1) \\
& \frac{k}{2 k+1}+\frac{\text { LHS : from }}{(2(k+1)-1)(2(k+1)+1}=\frac{\text { RH3 }}{k+1} \\
& \begin{array}{l}
\frac{K}{2 k+1}+\frac{1}{(2 k+1)(2 k+3)}= \\
\text { LHs }=\frac{k(2 k+3)+1}{(2 k+1)(2 k+3)}
\end{array} \\
& =\frac{2 k^{2}+3 k+1}{(2 k+1)(2 k+3)} \\
& \frac{=(2 k \not(1)(k+1)}{(2 k+1)(k+3)}=\frac{k+1}{2 k+3} \\
& =\text { RHS }
\end{aligned}
$$

Question 5
a) i)

$$
\begin{aligned}
& \frac{d^{2} x}{d t^{2}}=-4\left(x+\frac{16}{x^{3}}\right) \\
& \frac{d}{d x}\left(\frac{v^{2}}{2}\right)=-4\left(x+16 x^{-3}\right) \\
& \frac{v^{2}}{2}=-4 \int x+16 x^{-3} d x \\
& \frac{v^{2}}{2}=-4\left(\frac{x^{2}}{2}+\frac{16 x^{-2}}{-2}\right)+c \\
& \frac{v^{2}}{2}=-2 x^{2}+64 x^{-2}+c \\
& v^{2}=\frac{64}{x^{2}}-4 x^{2}+c
\end{aligned}
$$

Initially at rest, $\therefore c=0$

$$
V^{2}=\frac{6.4}{x^{2}}-4 x^{2} \quad \text { as required. }
$$

ii) $v^{2}=\frac{64}{x^{2}}-4 x^{2} \quad(x=1)$.

$$
v^{2}=64-4
$$

$$
V^{2}=60
$$

$$
v=-2 \sqrt{15} \mathrm{~m} / \mathrm{s} \quad(-7.75 \mathrm{~m} / \mathrm{s})
$$

* negative veloaing.

Some tried to integrate (cannot integral x with roll

T some ignored 'c'mocedic not evaluate it
mary did not realise velocity was negative (moving ina -re direction
No mark cunorded
iii)

$$
\begin{aligned}
& V=-\left[\frac{64-4 x^{4}}{x^{2}}\right]^{\frac{1}{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =-2\left(\frac{16-x^{4}}{x^{2}}\right)^{\frac{1}{2}} \\
& \therefore \frac{d t}{d x}=-\frac{x}{2 \sqrt{16-x^{4}}} / \\
& \text { - nepative } \\
& \text { signturs } \\
& \text { ofitico } \\
& t=\frac{1}{2} \int \frac{-x}{\sqrt{16-x^{4}}} d x
\end{aligned}
$$

\therefore It takes $\frac{\pi}{8} 3$ to get to the origin.
(1) expression for

$$
\frac{d t}{d x}
$$

(1) expression for t?
(i) Integration. Jfinding C
(1) Answer
b)i)

$$
\begin{aligned}
T & =20+A e^{-K t} \quad\left(A e^{-K t}=T-20\right) \\
\frac{d T}{d t} & =-K A e^{-K t} \quad \\
& =-K(T-20)
\end{aligned}
$$

\therefore it is the solution.
(1) Walue for

Some did not find A carred which erors

Metnod execuled quite wel
oek=

$$
T=50^{\circ}
$$

$$
75 e^{-K E}=30
$$

Some did not give the extra time (Some had ancuers
\therefore Extra time $=2.3$ mins
\rightarrow nert this If it isango guestion yo doun what is regid. (no logaer ineed
inde te te shda T)

$$
\frac{1}{5} \ln \left(\frac{8}{15}\right) t=\ln \left(\frac{2}{5}\right)
$$

$$
t=\ln \left(\frac{2}{5}\right) \div \frac{1}{5} \ln \left(\frac{8}{15}\right)
$$

$$
=7.3 \text { munutes }
$$

$$
\begin{aligned}
& \text { ii) } \\
& t=0 \\
& 95=20+A e^{-0} \\
& \therefore A=75 \\
& T=20+75 e^{-k t} \\
& t=5 \\
& 60=20+75 e^{-5 k} \\
& 75 e^{-5 i}=40 \\
& -5 k=\ln \left(\frac{8}{15}\right) \\
& -K=\frac{1}{5} \ln \left(\frac{8}{15}\right)
\end{aligned}
$$

Question 6
a) i)

$$
\begin{aligned}
x & =2 \sin t-3 \cos t \\
\dot{x} & =2 \cos t+3 \sin t \\
\ddot{x} & =-2 \sin t+3 \cos t \\
& =-(2 \sin t-3 \cos t) \\
\ddot{x} & =-x \quad(n=1)
\end{aligned}
$$

\therefore motion is in SHM.
ii) at maximum velocing:
from

$$
a=\ddot{x}=\frac{d v}{d t}=0
$$

$$
3 \cos t=2 \sin t
$$

$$
\tan t=\frac{3}{2}
$$

$$
t=0.98 \mathrm{sec}
$$

b) i)

$$
\begin{aligned}
\text { Area } & =\frac{1}{2}(h \times 2 h) \\
& =h^{2} \\
\therefore V & =A H \\
& =h^{2}(150) \\
& =150 h^{2} \mathrm{~cm}^{3}
\end{aligned}
$$

ii)

$$
\begin{aligned}
& \frac{d V}{d t}=3 l / \mathrm{min}, \frac{d h}{d t}=?, h=5 \mathrm{~cm} \\
& \frac{d V}{d t}=\frac{d V}{d h}\left(\frac{d h}{d t}\right)=?=3000 \div 300 \mathrm{~h} \\
& \frac{d h}{d t}=\frac{d V}{d t} \div \frac{d V}{d h}=\frac{30}{(3 \times 5)} \\
&=2 \mathrm{~cm} / \mathrm{min} \\
& \therefore \frac{d h}{d t}=2 \mathrm{~cm} / \mathrm{min}
\end{aligned}
$$

Need to demonstrate $x_{2}^{4}=-n^{2} x$ not just rewrite x.

和dindor Aabaigina
 Boos? Need to have calculator in radian measure.

All units most be same 10 $3 L$ needs to be converted to cm^{3}.
(1) expression fo $\frac{d h}{d t}$
(1) worlang
(1) Answer
c)
i)

marked on the diagram
ii) $\angle A E B=\frac{\pi}{2}$ ($A B$ is a diameter)
$\angle A B F=\frac{\pi}{2} \quad($ tangent 1 diameter $)$

$$
\therefore \angle A B E=\frac{\pi}{2}-\alpha
$$

$$
\angle A B E=\angle A E G \quad(\sin \text { alt. Segment })
$$

$$
=\frac{\pi}{2}-x
$$

$$
\begin{aligned}
\angle A E G & =\angle D E F \quad(\text { vertically } o p p) \\
& =\frac{\pi}{2}-\alpha
\end{aligned}
$$

Question 7
a) i)

$$
\begin{aligned}
& \dot{y}=-10 \\
& \dot{y}=-10 d t \quad \\
& \dot{y}=-10 t+c, t=0, \dot{y}=25 \sin \alpha \\
& \therefore \dot{y}=25 \sin \\
& \dot{y}=25 \sin \alpha-10 t \\
& y=\int 25 \sin \alpha-10 t d t \\
&=25 t \sin \alpha-5 t^{2}+c \\
& t=0, y=2 \\
& \therefore y \therefore 25 t \sin \alpha-5 t^{2}+2
\end{aligned}
$$

Horizontal:

$$
\begin{align*}
x & =v t \cos x \\
\therefore t & =\frac{\partial \cos \alpha}{v} \tag{2}
\end{align*}
$$

Sub (2) into (1)

$$
\begin{aligned}
y & =v\left(\frac{x}{v \cos \alpha}\right) \sin \alpha-5\left(\frac{x^{2}}{v^{2} \cos ^{2} \alpha}\right)+2 \\
y & =x \tan \alpha-\frac{5 x^{2}}{v^{2} \cos ^{2} \alpha}+2 \\
\therefore y & =x \tan \alpha-\frac{5 x^{2}\left(1+\tan ^{2} \alpha\right)+2}{v}
\end{aligned}
$$

many students st did not derive equations of motion.

$$
\begin{equation*}
y=v t \sin \alpha-5 t^{2}+2 \tag{1}
\end{equation*}
$$

(1) Integration of y, x, y and \dot{x}
(1) Substitrition (1) expression for y.

$$
\begin{aligned}
& \frac{1}{\cos ^{2} x}=\sec ^{2} x \\
& \sin ^{2} x+\cos ^{2} x=1 \\
& \tan ^{2} x+1=\sec ^{2}
\end{aligned}
$$

ii)

$$
\begin{gathered}
y=x \tan \alpha-\frac{5 x^{2}}{v^{2}}\left(1+\tan ^{2} \alpha\right)+2 \\
15=20 \tan \alpha-\frac{16}{5}\left(1+\tan ^{2} \alpha\right)+2 \\
75=100 \tan \alpha-16-16 \tan ^{2} \alpha+10 \\
16 \tan ^{2} \alpha-100 \tan \alpha+81=0 \\
\tan \alpha=\frac{100 \pm \sqrt{100^{2}-4(16)(-81)}}{32} \\
=\frac{100 \pm 69.40}{32} \\
\alpha=44^{\circ} \text { and } 79^{\circ} \\
\therefore \therefore \div 4^{\circ} \leqslant \alpha \leqslant 79^{\circ}
\end{gathered}
$$

b) i)

More care needed to be taken with these steps.
(1) Substitution
(1) Quadratic formula
(1) Answer.
many student did not draw diagrams or confused bearings with oblique angles

$$
\begin{array}{r}
\tan 32^{\circ}=\frac{h}{y} \\
y=\frac{h}{\tan 32^{\circ}} \tag{1}
\end{array}
$$

$$
\begin{aligned}
D C & =\text { speed } \times \text { time } \\
& =420 \times \frac{4}{60} \\
& =28 \mathrm{~km}
\end{aligned}
$$

$$
\frac{y}{\sin 11^{\circ}}=\frac{28}{\sin 137^{\circ}} \frac{28 \sin 1^{\circ}}{\sin 137^{\circ}}
$$

Sub (1) into (2)

$$
\begin{aligned}
\frac{h}{\tan 32^{\circ}} & =\frac{28 \sin 11^{\circ}}{\sin 137^{\circ}} \\
h & =\tan 32^{\circ} \times \frac{28 \sin 11^{\circ}}{\sin 137^{\circ}} \\
& =4.895 \mathrm{~cm} /(4895 \mathrm{~m})
\end{aligned}
$$

ii)

$$
h=4895
$$

from $\triangle C D G$

$$
\begin{aligned}
\frac{x}{\sin 32^{\circ}} & =\frac{28000}{\sin 137^{\circ}} \\
x & =21756
\end{aligned}
$$

$$
\begin{aligned}
\therefore \tan \beta & =\frac{4895}{21756} \\
\beta & =13^{\circ}
\end{aligned}
$$

