

Student Number: _____

Teacher: _____

Class: _____

FORT STREET HIGH SCHOOL

2018 HIGHER SCHOOL CERTIFICATE COURSE ASSESSMENT TASK 3: TRIAL HSC

Mathematics Extension 1

Time allowed: 2 hours

(plus 5 minutes reading time)

Syllabus	Assessment Area Description and Marking Guidelines	Questions
Outcomes		
	Chooses and applies appropriate mathematical techniques in	1-10
	order to solve problems effectively	
HE2, HE4	Manipulates algebraic expressions to solve problems from topic	
	areas such as inverse functions, trigonometry, polynomials,	
	permutations and combinations.	
HE3, HE5	Uses a variety of methods from calculus to investigate	13
HE6	mathematical models of real life situations, such as projectiles,	
	kinematics and growth and decay	
HE7	Synthesises mathematical solutions to harder problems and	14
	communicates them in appropriate form	

Total Marks 70

Section I10 marksMultiple Choice, attempt all questions,Allow about 15 minutes for this sectionSection II60 MarksAttempt Questions 11-14,Allow about 1 hour 45 minutes for this section

General Instructions:

- Questions 11-14 are to be started in a new booklet.
- The marks allocated for each question are indicated.
- In Questions 11 14, show relevant mathematical reasoning and/or calculations.
- Marks may be deducted for careless or badly arranged work.
- Board approved calculators may be used.

Section I	Total 10	Marks
Q1-Q10		
Section II	Total 60	Marks
Q11	/15	
Q12	/15	
Q13	/15	
Q14	/15	
	Percent	

SECTION I (One mark each)

Answer questions 1 to 10 on the multiple choice answer sheet.

- 1 The number plates for motor vehicles consist of 2 letters, 2 numbers and then 2 letters such as AB01CD. How many different number plates are possible?
 - (A) 135 200
 - (B) 270 400
 - (C) 37 015 056
 - (D) 45 697 600
- 2 What is the exact value of $\tan 75^\circ$?
 - (A) $2 \sqrt{3}$
 - (B) $4 \sqrt{3}$
 - (C) $2 + \sqrt{3}$
 - (D) $4 + \sqrt{3}$

3 A curve has parametric equations $x = \frac{2}{t}$ and $y = 2t^2$.

What is Cartesian equation of this curve?

- (A) $y = \frac{4}{x}$ (B) $y = \frac{8}{x}$
- (C) $y = \frac{4}{x^2}$
- $(D) \quad y = \frac{8}{x^2}$
- 4 What are the coordinates of the point P that divides internally the interval joining the points A(1,2) and B(7,5) in the ratio 2:1?
 - (A) (3,3)
 - (B) (3,4)
 - (C) (5,3)
 - (D) (5,4)

- 5 What is the solution to the inequality $\frac{3}{x-2} \le 4$?
 - (A) x < -2 and $x \ge -\frac{11}{4}$ (B) x > -2 and $x \le -\frac{11}{4}$ (C) x < 2 and $x \ge \frac{11}{4}$ (D) x > 2 and $x \le \frac{11}{4}$
- 6 What is the acute angle to the nearest degree between the lines y=1-3x and 4x-6y-5=0?
 - (A) 15°
 - (B) 38°
 - (C) 52°
 - (D) 75°
- 7 PQRS is a cyclic quadrilateral. SR is produced to T and $\angle PRS = \angle QRT$.

Why is $\angle PQS = \angle PRS$?

- (A) Angle at the circumference is equal to the angle in the alternate segment.
- (B) Angle between the tangent and a chord is equal to the angle in the alternate segment.
- (C) Angle between the two chords in the same segment are equal.
- (D) Angles in the same segment standing on the same arc are equal.
- 8 Consider the polynomial $P(x) = 3x^3 + 3x + a$.
 - If x-2 is a factor of P(x), what is the value of a?
 - (A) –30
 - (B) –18
 - (C) 18
 - (D) 30

9 Which of the following is an expression for $\int \cos^2 2x \, dx$?

(A)
$$x - \frac{1}{4}\sin 4x + c$$

(B) $x + \frac{1}{4}\sin 4x + c$
(C) $\frac{x}{2} - \frac{1}{8}\sin 4x + c$
(D) $\frac{x}{2} + \frac{1}{8}\sin 4x + c$

- 10 A particle moving in a straight line obeys $v^2 = -x^2 + 2x + 8$ where x is its displacement from the origin in metres and v is its velocity in m/s. The motion is simple harmonic. What is the amplitude?
 - (A) 2π metres
 - (B) 3 metres
 - (C) 8 metres
 - (D) 9 metres

SECTION II (15 marks for each question.)

Answer each question in the appropriate booklet. Extra writing booklets are available.

Question 11: Use a separate writing booklet.

- a) The letters of the word MOUSE are to be rearranged.
 - i. How many arrangements are there which start with the letter M and end with the letter E? 1

1

1

2

4

- ii. How many arrangements are there in which the vowels are grouped together? (A vowel is one of the letters A, E, I, O, U)
- iii. How would your answers to parts (i) and (ii) change if the given word had been MOOSE instead of MOUSE?
- b) Write 7.12 as the sum of an infinite series. Hence write 7.12 as a mixed fraction. 2
- c) Given the function $g(x) = \sqrt{x+2}$ and that $g^{-1}(x)$ is the inverse function of g(x), find $g^{-1}(5)$.
- d) Solve the equation $1 + \cos 2x = \sin 2x$ for $0 \le x \le 2\pi$.

Question 11 continues over the page.

 $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ are two points which move on the parabola $x^2 = 4ay$ such that $\angle POQ = 90^\circ$, where O(0,0) is the origin. $M\left(a(p+q), \frac{a}{2}(p^2+q^2)\right)$ is the midpoint of *PQ*. *R* is the point such that *OPRQ* is a rectangle.

- i. Show that pq = -4.
- ii. Show that *R* has coordinates of $(2a(p+q), a(p^2+q^2))$. 1
- iii. Find the equation of the locus of *R*.

e)

2

Question 12: *Use a separate writing booklet.*

a) The polynomial equation $P(x) = 3x^3 - 2x^2 + x - 4$ has roots α, β and γ . Find the exact value of $\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\alpha\gamma}$.

b) Find
$$\lim_{h \to 0} \left(\frac{\cos 2h - 1}{h} \right)$$
.

2

1

c) .

- i. Sketch the graph of y = |2 x|.
- ii. Using this graph, or otherwise, find the solution to |2-x| < x.
- d) Use the method of Mathematical induction to show that $2+5+8+...+(3n-1) = \frac{n(3n+1)}{2}$ 3
- e) A plate is initially heated to $55^{\circ}C$, and it then cools to $41^{\circ}C$ in 10 minutes. Assume Newtons Law of Cooling $\frac{dT}{dt} = -k(T-S)$ applies, where S is the surrounding temperature. If the surrounding temperature is $22^{\circ}C$:
 - i.Show that the temperature T is given by $T = 22 + 33e^{\frac{-t}{10}\ln\left(\frac{33}{19}\right)}$.2ii.Find the temperature after 25 minutes (to the nearest degree).1iii.Find the time for the plate to cool to $25^{\circ}C$ (to 1 decimal place).2

Question 13: Use a separate writing booklet.

a) Find
$$\frac{d}{dx} \left(e^{-x} \cos^{-1} x \right)$$
.

b) By making the substitution
$$u = x - 2$$
, evaluate $\int_{4}^{5} \frac{x(x-4)}{(x-2)} dx$. 3

c) For the polynomial $P(x) = x^3 + 2x^2 - 15x - 36$,

i. Factorize
$$P(x)$$
 fully over the real numbers. 3

- ii. Hence solve $x^3 + 2x^2 15x 36 < 0$.
- d) Wheat falls from an auger onto a conical pile at the rate of 20 cm³/s. The radius of the base of the pile is always equals to half its height.

i. Show that
$$V = \frac{\pi}{12}h^3$$
 and hence find $\frac{dh}{dt}$.

- ii. Find the rate, in terms of π , at which the pile is rising when it is 8cm high. 1
- iii. Find the time, to 1 decimal place, for the pile to reach a height of 8cm. 2

a) A particle moves in a straight line on the x axis. At time t its velocity is v and its acceleration is \ddot{x} . Given $\ddot{x} = 4 - 4x$ and initially x = 3 when $v^2 = 20$:

i.	Show that the motion is SHM and state the centre of motion and the value of <i>n</i> .	2

- ii. Hence show that $v^2 = 32 + 8x 4x^2$.
- iii. Use this expression for v^2 to find the possible values for x. 1

1

4

iv. Describe the motion of the particle until it first stops if initially $v = -2\sqrt{5}$.

b)

i. Differentiate $x \sin^{-1} x$, and hence find an equation to evaluate $\int \sin^{-1} x \, dx$. 2

ii. Hence evaluate
$$\int_0^1 \sin^{-1} x \, dx$$
.

- c) An object is projected from the origin *O* with initial speed *U* m/s at an angle of elevation of α . At the same instant another object is projected from a point *A* which is *h* units above the origin *O*. The second object is projected with initial speed *V* m/s at an angle of elevation of β , where $\beta < \alpha$. Both objects move freely under gravity in the same plane.
 - i. Given that the equations of motion for the object projected from the origin are:

$$x = Ut \cos \alpha$$
 $y = Ut \sin \alpha - \frac{1}{2}gt^2$,

write down the equations of motion for the object projected from the point A. 2

ii. If the objects collide T seconds after they are simultaneously projected, show that $T = \frac{h\cos\beta}{U\sin(\alpha - \beta)}$

End of examination.

1	Number of arrangements = $26^2 \times 10^2 \times 26^2$ = 45 697 600	1 Mark: D
2	$\tan 75^{\circ} = \tan(45^{\circ} + 30^{\circ})$ $= \frac{\tan 45^{\circ} + \tan 30^{\circ}}{1 - \tan 45^{\circ} \tan 30^{\circ}}$ $= \frac{1 + \frac{1}{\sqrt{3}}}{1 - \frac{1}{\sqrt{3}}} \times \frac{\sqrt{3}}{\sqrt{3}}$ $= \frac{\sqrt{3} + 1}{\sqrt{3} - 1} \times \frac{\sqrt{3} + 1}{\sqrt{3} + 1}$ $= 2 + \sqrt{3}$	1 Mark: C
3	$x = \frac{2}{t} \text{ or } t = \frac{2}{x}$ Substitute $\frac{2}{x}$ for x into $y = 2t^2$ $y = 2(\frac{2}{x})^2$ $= \frac{8}{x^2}$	1 Mark: D
4	$x = \frac{mx_2 + nx_1}{m+n} \qquad y = \frac{my_2 + ny_1}{m+n}$ $= \frac{2 \times 7 + 1 \times 1}{2+1} = 5 \qquad = \frac{2 \times 5 + 1 \times 2}{2+1} = 4$ The coordinates of P are (5,4)	1 Mark: D
5	$(x-2)^{2} \times \frac{3}{(x-2)} \le 4 \times (x-2)^{2}$ $(x-2)3 \le 4(x-2)^{2} x \ne 2$ $(x-2)(3-4x+8) \le 0$ $(x-2)(11-4x) \le 0$ $x < 2 \text{ and } x \ge \frac{11}{4}$	1 Mark: C

	For $y = 1 - 3x$ then $m_1 = -3$	
	For $4x - 6y - 5 = 0$ then $m_2 = \frac{2}{3}$	
	$\tan\theta = \left \frac{m_1 - m_2}{1 + m_1 m_2}\right $	
6	$= \left \frac{-3 - \frac{2}{3}}{1 + -3 \times \frac{2}{3}} \right $	1 Mark: D
	$= \left \frac{-\frac{11}{3}}{-1} \right $	
	$=\frac{11}{3}$	
	$\theta = 74.7448813 \approx 75^{\circ}$	
7	$\angle PQS = \angle PRS$	1 Mark [.] D
/	(angles in the same segment standing on the same arc are equal).	I Mark. D
	$P(x) = 3x^3 + 3x + a$	
8	$P(2) = 3(2)^3 + 3(2) + a = 0$ (x - 2 is a factor of $P(x)$)	1 Mark: A
	24 + 6 + a = 0	I MUR. A
	a = -30	
	$\int \cos^2 2x dx = \int \frac{1}{2} (1 + \cos 4x) dx$	
9	$=\frac{1}{2}\left[x+\frac{1}{4}\sin 4x\right]+c$	1 Mark: D
	$=\frac{x}{2}+\frac{1}{8}\sin 4x+c$	
	$v^2 = -x^2 + 2x + 8$	
	$=1^{2}(8+2x-x^{2})$	
	$=1^{2}(9-(x-1)^{2})$	
10	$=n^2(a^2-x^2)$	1 Mark: B
	$a^2 = 9$	
	<i>a</i> = 3	
	Amplitude is 3 metres	

Ques	tion 11:	Marking	Comments
a)			
i.	1×3×1 0		
	= 6		
ii.	Grouping vowels is one item, leaves 3! ways to the vowel group and the 2 conservation. But there are 2! arrangements of the		
	and the z consonants. But there are 3! arrangements of the vowels, hence $3 \times 3! = 36$ ways		
iii.	Both answers would have OU and UO count as one, hence both	Reasoning must	Question asked
	answers would be divided by 2. \bullet	be clear	<i>how</i> the answer
b)	7.12 = 7 + 0.12 + 0.0012 + 0.000012 + which is a GP with		changed, not
<i>a</i> = (0.12, r = 0.01 ① . Thus		what the new
	712 - 7 + a	Must show a GP	answer was.
	$r_{12} = r + \frac{1}{1-r}$	as read by	
	$=7+\frac{0.12}{1-0.01}$	question or no	Many students
	1 - 0.01	marks	did not follow the
	$=7\frac{4}{33}$ 0		instructions and
c)	$g^{-1}(x)$:		marks.
,	$r = \sqrt{v+2}$		
	$x = \sqrt{y + 2}$ $x^2 = y + 2$		
	x = y + 2		
	y = x - 2		
	$g'(x) = x - 2\mathbf{U}$		
	$g^{-1}(5) = 5^2 - 2$		Dividing her
4)	= 230		$2\cos x$ was a
u)	$1 + \cos 2x = \sin 2x$		common error –
	$2\cos^2 x = 2\sin x \cos x \bullet$		this lost one set
	$\cos x - \sin x \cos x = 0$		of solutions!
	$\cos x (\cos x - \sin x) = 0 \mathbf{U}$		As many students
	Hence: $\cos r = 0$ $\cos r = \sin r = 0$		attempted the
	$\frac{\pi}{2\pi} \frac{3\pi}{2\pi} \cos x = \sin x$		more complex
	$x = \frac{\pi}{2}, \frac{\pi}{2}$		$R\sin(2x-\theta)$ or
	π 5 π		$R\cos(2x+\theta)$
	$x = \frac{1}{4}, \frac{1}{4}$		transformations,
	$\therefore x = \frac{\pi}{2}, \frac{\pi}{2}, \frac{5\pi}{2}, \frac{3\pi}{2} (0 \le x \le 2\pi)$		they are
`	4,2,4,2 (0,000)		end of the
e)	$an^2 = 0$ $aa^2 = 0$		solutions.
i.	Gradient <i>OP</i> : $m_{OP} = \frac{ap - 0}{2ap - 0}$ and gradient OQ: $m_{OP} = \frac{aq - 0}{2ap - 0}$		
	2up = 0 p = a		Many found p
	$=\frac{r}{2}$ $=\frac{q}{2}$		gradients (the
	_		tangents) in error.

Extension 1 Trial HSC - Solutions As $OP \perp OQ$, $m_{OP} \times m_{OQ} = -1$ Fort Street High School

Marking

2018 Comments

	2		
ii. iii.	$\frac{p}{2} \times \frac{q}{2} = -10$ $pq = -4$ The diagonals of the rectangle bisect each other, hence <i>M</i> is also the midpoint of <i>OR</i> . Thus $x_{M} = \frac{x_{R} + 0}{2} \qquad y_{M} = \frac{y_{R} + 0}{2}$ $x_{R} = 2x_{M} \qquad y_{R} = 2y_{M} 0$ $= 2a(p+q) \qquad = 2 \cdot \frac{a}{2}(p^{2}+q^{2})$ $= a(p^{2}+q^{2})$ So <i>R</i> is $(2a(p+q), a(p^{2}+q^{2}))$ $x_{R} = 2a(p+q) \text{ and } y_{R} = a(p^{2}+q^{2})$	Correct use of the midpoint formula.	Many lengthy and convoluted methods used for this one mark – usually without success.
	Hence $(p+q) = \frac{x_R}{2a}$, and then $y_R = a(p^2 + q^2 + 2pq - 2pq)$ $= a((p+q)^2 - 2pq)$ $= a(\left(\frac{x_R}{2a}\right)^2 - 2.(-4))$ $= a\left(\frac{x_R^2}{4a^2} + 8\right)$ $= \frac{x_R^2}{4a} + 8a$ So $x^2 = 4a(y-8a)$	Both substitutions correct.	Many expanded the second line to $a(p+q)^2 - 2pq$, instead of $a(p+q)^2 - 2apq$ (failing to multiply the last term by <i>a</i>), thus losing a mark.

Extension 1 Trial HSC - Solutions Question 12:

Fort Street High School

 $\alpha + \beta + \gamma = \frac{2}{3}; \ \alpha\beta\gamma = \frac{4}{3}$ a) $\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\alpha\gamma} = \frac{\alpha + \beta + \gamma}{\alpha\beta\gamma} \mathbf{0}$ $=\frac{2}{3}\times\frac{3}{4}$ $=\frac{1}{2}$ **0** $\lim_{h \to 0} \left(\frac{\cos 2h - 1}{h} \right) \times \left(\frac{\cos 2h + 1}{\cos 2h + 1} \right)$ *b*) $= \lim_{h \to 0} \left(\frac{\cos^2 2h - 1}{h(\cos 2h + 1)} \right)$ $= \lim_{h \to 0} \left(\frac{-\sin^2 2h}{h(\cos 2h + 1)} \right)$ $=\lim_{h\to 0} \left(\frac{\sin 2h}{2h} \times \frac{-2\sin 2h}{(\cos 2h+1)} \right) \mathbf{0}$ $= \lim_{h \to 0} \left(\frac{\sin 2h}{2h} \right) \times \lim_{h \to 0} \left(\frac{-2\sin 2h}{\cos 2h + 1} \right)$ $=1 \times 0$ = 0 0Or $\lim_{h \to 0} \left(\frac{\cos 2h - 1}{h} \right) = \lim_{h \to 0} \left(\frac{1 - 2\sin^2 h - 1}{h} \right) \quad \mathbf{0}$ $=\lim_{h\to 0}\left(\frac{2\sin^2 h}{h}\right)$ $=2\lim_{h\to 0}\left(\frac{\sin h}{h}\right).\lim_{h\to 0}\left(\sin h\right)$ = 2.1.0= 0O Or

$$2\lim_{h \to 0} \left(\frac{\sin h}{h}\right) \cdot \lim_{h \to 0} (\sin h)$$
$$= 2\lim_{h \to 0} \left(\frac{\sin h}{h}\right) \cdot \lim_{h \to 0} \left(\frac{\sin h}{h}\right) \lim_{h \to 0} h$$
$$= 2.1.1.0 = 0$$
$$\neq h$$

	2018
Marking	Comments
	Keep it simple. If you can't memorise $\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\alpha\gamma} = \frac{\alpha + \beta}{\alpha\beta\gamma}$ then find the common denominator.
Alternative methods possible here	
	$\frac{\sin^2 h}{h} \neq \frac{\sin h}{h} \frac{\sin h}{h}$ Remember $\lim_{h \to 0} h = 0 \neq h$

Extension 1 Trial HSC - Solutions

Fort Street High School

Fort Street High School

2018

	C C	Marking	Comments
d)	Step 1: show true for $n = 1$		
	$LHS = 2$ $RHS = \frac{n(3n+1)}{2}$		
	$\frac{2}{1(3+1)}$		
	$=\frac{1(3+1)}{2}$		
	= 2		
	= LHS		
	Hence true for $n = 1$. Step 2: Assume true for $n = k$:		
	Step 2. Assume the for $h = k$. k(3k+1)		
	i.e. assume $2+5+8++(3k-1) = \frac{1}{2}$		
	Then show true for $n = k + 1$ i.e. show		Do not expand and simplify at
	$2+5+8++(3k-1)+(3(k+1)-1)=\frac{(k+1)(3(k+1)+1)}{2}$		this stage.
	• for setting up correctly. Step 3:		
	$LHS = 2 + 5 + 8 + \dots + (3k - 1) + (3(k + 1) - 1)$		
	$=\frac{k(3k+1)}{2} + (3(k+1)-1)$	This should be explicit.	
	(using the assumption \mathbf{O})		
	$=\frac{k(3k+1)}{2}+3k+2$		
	$=\frac{k(3k+1)+6k+4}{4}$		
	$2 \\ 3k^2 + k + 6k + 4$		
	$=\frac{3\kappa+\kappa+6\kappa+4}{2}$		
	$3k^2 + 7k + 4$		
	2		
	$=\frac{3k^2+3k+4k+4}{2}$		
	$\frac{2}{3k(3k+1)+4(k+1)}$		
	$=\frac{2\pi(2n+1)+2(n+1)}{2}$		Most people
	$-\frac{(k+1)(3k+4)}{3k+4}$		One line early.
	- 2		Show the RHS
	$=\frac{(k+1)(3(k+1)+1)}{2}$ as reqd. O (correct algebra to result)		result here.
	Hence, by Mathematical Induction,		
	$2+5+8++(3n-1)=\frac{n(3n+1)}{2}$		
	2		
		1	1

Extension 1 Trial HSC - Solutions	Fort Street High School		2018
e)		Marking	Comments
i. $\frac{dT}{dt} = -k(T-S)$			
$\frac{dT}{(T-S)} = -k dt$			
(r ~) Integrating:			Do not try to
$\ln(T-S) = -kt + c$			show that the
$T-S=e^{-kt+c}$			model by
$=Ae^{-kt}$			differentiating
$T = S + Ae^{-kt}$		Note: S is given	it's RHS.
$T = 22 + Ae^{-kt}$ (as $S = 22$)	2).	– students just	
When $t = 0, T = 55$, hence $55 = 22$	2 + A.1	need to interpret	
A = 33	30	this correctly.	
When $t = 10, T = 41$, hence			
$41 = 22 + 33e^{-10k}$			
19 e^{-10k}			Many students
$\frac{1}{33} = e$			stopped at
$-10k = \ln\left(\frac{19}{33}\right)$			$k = \frac{-1}{10} \ln\left(\frac{19}{33}\right)$
$k = \frac{-1}{10} \ln\left(\frac{19}{33}\right)$			and fudged.
$=\frac{1}{10}\ln\left(\frac{33}{19}\right)\mathbf{\Phi}$			Make k look positive (distribute the
Thus $T = 22 + 33e^{\frac{-t}{10}\ln\left(\frac{33}{19}\right)}$ as reqd.			negative into the log) if you are
ii. $t = 25$:			working with a
$T = 22 + 33e^{\frac{-25}{10}\ln\left(\frac{33}{19}\right)}$			model which looks like this:
= 30.3° C O			
			$P = B + Ae^{-kt}$

Extension 1 Trial HSC - Solutions iii. T = 25:

Comments

Marking

2018

1 = 23.
$25 = 22 + 33e^{\frac{-t}{10}\ln\left(\frac{33}{19}\right)}$
$\frac{3}{33} = e^{\frac{-t}{10}\ln\left(\frac{33}{19}\right)}$
$\ln\left(\frac{1}{11}\right) = \frac{-t}{10}\ln\left(\frac{33}{19}\right) 0$
$\frac{10\ln\left(\frac{1}{11}\right)}{\ln\left(\frac{33}{3}\right)} = -t$
$\ln\left(\frac{19}{19}\right)$
$t = \frac{10\ln(11)}{\ln\left(\frac{33}{19}\right)}$
= 43.43473528
\approx 43.4 min O

Extension 1 Trial HSC - Solutions **Question 13**:

Fort Street High School

Marking

a) $\frac{d}{dx} \left(e^{-x} \cos^{-1} x \right)$ $= -e^{-x} \cos^{-1} x - \frac{e^{-x}}{\sqrt{1 - x^2}}$ **0** b) With u = x - 2 and x = 5 x = 4du = dx u = 3 u = 2Then

$$I = \int_{4}^{5} \frac{x(x-4)}{(x-2)} dx$$

= $\int_{2}^{3} \frac{(u+2)(u-2)}{u} du$
= $\int_{2}^{3} \frac{u^{2}-4}{u} du$
= $\int_{2}^{3} u - \frac{4}{u} du$ **0**
= $\left[\frac{u^{2}}{2} - 4\ln(u)\right]_{2}^{3}$ **0**
= $\frac{9}{2} - 4\ln 3 - \left(\frac{4}{2} - 4\ln 2\right)$
= $\frac{5}{2} - 4\ln\left(\frac{3}{2}\right)$ **0**

2018 Comments Well done. Note: $\cos^{-1} x \neq \frac{1}{\cos x}$ Generally well done. $\frac{5}{2} + 4 \ln \frac{2}{3}$ also correct. Evaluate means 'give exact answer' i.e. don't approximate.

Exten	ision 1 Trial HSC - Solutions	Fort Street F	ligh School		2018
c)	$P(x) = x^3 + 2x^2 - 15x - 36$			Marking	Comments
i.	Testing:				
	P(1) = -48 P(-1) = -20	P(2) = -50 P(-1)	-2) = 6	Variants possible	
	P(3) = -36 P(-3) = 0			depending on	
	Hence $x+3$ is a factor of <i>P</i>	(x). O		root chosen.	Should show this working but was
	$\frac{x^2 - 1x - 12}{15x^3 + 2x^2 - 15x - 26}$				not penalised if it
	$x+3 \int x + 2x^{2} - 13x - 30$				wasn't. Generally very
	$x^2 + 5x$				well done.
	-x - 15x				
	$-x^{2} - 3x$				
	12x - 36				
	$12\lambda - 50$				
r	r^{2} 1r 12				
1	-(x-4)(x+3)				
	-(x-4)(x+3)				
]	Hence $P(x) = (x-4)(x+3)$				
ii. 	Thus for $x^3 + 2x^2 - 15x - 36$	< 0			A graph or testing regions needed to be shown to gain marks. $x < 4, x \neq 4$ also acceptable answer.
d) 1	Diagram:				
	h				

Extension 1 Trial HSC - Solutions

Fort Street High School

Marking

2018 Comments

Needed to show this line as it was a 'show' question.

Well done.

Well done.

Other valid methods accepted.

One should show the evaluation of the integration constant, c but not penalised.

A common error was to start with $\frac{dh}{dt} = \frac{5}{4\pi}$ which is a specific case rather than the general case. This led to getting an incorrect answer of 20.1 secs.

i.
$$V = \frac{1}{3} \pi r^2 h$$
$$= \frac{1}{3} \pi \left(\frac{h}{2}\right)^2 h \mathbf{0}$$
$$= \frac{\pi}{12} h^3$$
$$\therefore \frac{dV}{dh} = \frac{\pi}{4} h^2$$
Then
$$\frac{dV}{dt} = \frac{dV}{dh} \times \frac{dh}{dt}$$
$$20 = \frac{\pi}{4} h^2 \times \frac{dh}{dt}$$
$$\frac{dh}{dt} = \frac{80}{\pi h^2} \mathbf{0}$$
ii.
$$\frac{dh}{dt} = \frac{80}{\pi h^2}$$
$$= \frac{80}{\pi R^2}$$
$$= \frac{5}{4\pi} \mathbf{0}$$
iii.
$$\frac{dh}{dt} = \frac{80}{\pi h^2}$$
$$\pi h^2 dh = 80 dt$$
Integrating:
$$\frac{\pi}{3} h^3 = 80t + c$$
$$t = 0, h = 0, \text{ hence } c = 0.$$
$$\therefore \frac{\pi}{3} h^3 = 80t$$
$$t = \frac{\pi h^3}{240} \mathbf{0}$$
When $h = 8:$
$$t = \frac{\pi R^3}{240}$$
$$= \frac{32\pi}{15}$$
$$= 6.7 \text{ sec. } \mathbf{0}$$

ii

Marking

Solution/

x = 1.

a) From
$$\ddot{x} = 4-4x$$

i. $\ddot{x} = -4(x-1)$
 $= -2^{2}(x-1)$
which is of the form $\ddot{x} = -n^{2}x$ **0**, hence the motion is SHM
with $n = 2$ and centre of motion at $x = 1$. **0**
ii. $\frac{d\left(\frac{1}{2}v^{2}\right)}{dx} = 4-4x$
 $\frac{1}{2}v^{2} = 4x-2x^{2}+c$
 $v^{2} = 8x-4x^{2}+c$
When $x = 3$, $v^{2} = 20$:
 $20 = 8.3 - 4.3^{2} + c$
 $20 = 24 - 36 + c$
 $c = 32$ **0** hence
 $v^{2} = 32 + 8x - 4x^{2}$, as reqd.
iii. As motion is SHM, $v = 0$ when x is a min/max. Thus
 $0 = 32 + 8x - 4x^{2}$
 $= -4(x^{2} - 2x - 8)$
 $= -4(x-4)(x+2)$
 $\therefore -2 \le x \le 4$ **0**
iv. The particle starts at $x = 3$, moving to the left and reaching a
maximum velocity of $v = 6$ when $x = 1$, then decelerating to a
stop at $x = -2$ **0**
b)
i. $\frac{d(x \sin^{-1} x)}{dx} = \sin^{-1}x + \frac{x}{\sqrt{1-x^{2}}}$

$$\frac{dx}{dx} = \sin^{-1} x + \frac{1}{\sqrt{1 - x^2}}$$
$$\sin^{-1} x = \frac{d(x \sin^{-1} x)}{dx} - \frac{x}{\sqrt{1 - x^2}}$$

Integrating both sides:

$$\int \sin^{-1} x \, dx = \int \frac{d \left(x \sin^{-1} x\right)}{dx} \, dx - \int \frac{x}{\sqrt{1 - x^2}} \, dx$$
$$= x \sin^{-1} x - \int \frac{x}{\sqrt{1 - x^2}} \, dx \mathbf{0}$$

2018

Comments

 $x \sin^{-1} x$.

Extension 1 Trial HSC - Solutions

Fort Street High School

ii.
$$\therefore \int_{0}^{1} \sin^{-1} x \, dx = \left[x \sin^{-1} x \right]_{0}^{1} - \int_{0}^{1} \frac{x}{\sqrt{1 - x^{2}}} \, dx$$
$$= \left[x \sin^{-1} x \right]_{0}^{1} + \frac{1}{2} \int_{0}^{1} \frac{-2x}{\sqrt{1 - x^{2}}} \, dx$$
$$= 1.\sin^{-1}(1) - 0.\sin^{-1}(0) + \frac{1}{2} \cdot \frac{2}{1} \left[\sqrt{1 - x^{2}} \right]_{0}^{1} \bullet$$
$$= \frac{\pi}{2} - 0 + (0 - 1)$$
$$= \frac{\pi}{2} - 1 \bullet$$

c)

i. $x = Vt \cos \beta \mathbf{0}$

$$y = h + Vt \sin \beta - \frac{1}{2}gt^2 \bullet$$

ii. At time T: For object projected from origin O:

$$x_o = UT \cos \alpha$$
 $y_o = UT \sin \alpha - \frac{1}{2}gT^2$

For object projected from A:

$$x_A = VT \cos \beta$$
 $y_A = h + VT \sin \beta - \frac{1}{2}gT^2$

Also at this time T: $x_o = x_A$ and $y_o = y_A$, thus (noting no V in the final required solution) $UT \cos \alpha = VT \cos \beta$ $UT \cos \alpha$

$$V = \frac{T \cos \beta}{T \cos \beta}$$
$$= \frac{U \cos \alpha}{\cos \beta} \{1\} \bullet$$
$$UT \sin \alpha - \frac{1}{2}gT^{2} = h + VT \sin \beta - \frac{1}{2}gT^{2}$$
$$UT \sin \alpha = h + VT \sin \beta$$
$$h = UT \sin \alpha - VT \sin \beta \{2\} \bullet$$
$$\{1\} \text{ into } \{2\}:$$

Marking

ii. Many careless errors. Some students were unable to correctly integrate the term $\frac{x}{\sqrt{1-x^2}}dx$ i. Answered well ii. Finding the Cartesian equation by eliminating *T* was not necessary since it appears in the eqn to be proven. *h* was added to the horizontal (x)component instead of the vertical. If students didn't explicitly show the expanded form of $sin(\alpha -$ β) a mark was deducted

2018

Comments

Extension 1 Trial HSC - SolutionsFort Street High School2018
$$h = UT \sin \alpha - \left(\frac{U \cos \alpha}{\cos \beta}\right)T \sin \beta \bullet$$
MarkingComments $= T\left(U \sin \alpha - \frac{U \cos \alpha \sin \beta}{\cos \beta}\right)$ $= TU\left(\frac{\sin \alpha \cos \beta - \sin \beta \cos \alpha}{\cos \beta}\right)$ h cos $\beta = TU\left(\sin(\alpha - \beta)\right)\bullet$ h cos $\beta = TU\left(\sin(\alpha - \beta)\right)\bullet$ $T = \frac{h \cos \beta}{U\left(\sin(\alpha - \beta)\right)}$ as reqd.

Extension 1 Trial HSC - Solutions
Question 11 (d) – using the transformation:

$$1 + \cos 2x = \sin 2x$$

 $1 = \sin 2x - \cos 2x$
(i) $R \sin 2x \cos \theta - R \sin \theta \cos 2x = R \sin (2x - \theta)$
 $R^2 = 1^2 + 1^2$ and $\tan \theta = \left(\frac{1}{1}\right)$
 $R = \sqrt{2}$
 $\theta = \tan^{-1}(1)$
 $= \frac{\pi}{4}$
 $\sqrt{2} \sin\left(2x - \frac{\pi}{4}\right) = 1$
 $\sin\left(2x - \frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$
 $2x - \frac{\pi}{4} = n\pi + (-1)^n \sin^{-1}\left(\frac{1}{\sqrt{2}}\right)$
 $2x = n\pi + \frac{\pi}{4} + (-1)^n \frac{\pi}{4}$
 $x = n\frac{\pi}{2} + \frac{\pi}{8} + (-1)^n \frac{\pi}{8}$
 $= (4n + 1 + (-1)^n) \frac{\pi}{8}$

with $n = 0, \pm 1, \pm 2, ...$ for the general solution. With *n* even: n = 2m gives:

$$x = (8m+1+1)\frac{\pi}{8}$$

= $(4m+1)\frac{\pi}{4}$
= $\dots \frac{-3\pi}{4}, \frac{\pi}{4}, \frac{5\pi}{4}, \frac{9\pi}{4}, \dots$
= $\frac{\pi}{4}, \frac{5\pi}{4}$ (for $0 \le x \le 2\pi$)
For *n* odd, *n* = 2*m*+1 gives:
 $x = (4(2m+1)+1-1)\frac{\pi}{8}$
= $(2m+1)\frac{\pi}{2}$
= $\dots \frac{-3\pi}{4}, \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \dots$

$$=\frac{\pi}{2}, \frac{3\pi}{2} (\text{for } 0 \le x \le 2\pi) \mathbf{0}$$

$$1 + \cos 2x = \sin 2x$$

$$\cos 2x - \sin 2x = -1$$

ii) $R \cos 2x \cos \theta + R \sin 2x \sin \theta = R \cos (2x + \theta)$

$$R^{2} = 1^{2} + 1^{2} \text{ and } \tan \theta = \left(\frac{1}{1}\right)$$

$$R = \sqrt{2} \qquad \theta = \tan^{-1}(1)$$

$$= \frac{\pi}{4} \mathbf{0}$$

$$\sqrt{2} \cos \left(2x + \frac{\pi}{4}\right) = -1$$

$$\cos \left(2x + \frac{\pi}{4}\right) = \frac{-1}{\sqrt{2}}$$

$$2x + \frac{\pi}{4} = 2n\pi \pm \cos^{-1}\left(\frac{-1}{\sqrt{2}}\right) \mathbf{0}$$

$$2x = 2n\pi - \frac{\pi}{4} \pm \frac{3\pi}{4}$$

$$x = n\pi - \frac{\pi}{8} \pm \frac{3\pi}{8}$$

$$= (8n - 1 \pm 3)\frac{\pi}{8} \mathbf{0}$$

with $n = 0, \pm 1, \pm 2, ...$ for the general solution.

$$x = \dots \frac{-4\pi}{8}, \frac{2\pi}{8}, \frac{4\pi}{8}, \frac{10\pi}{8}, \frac{12\pi}{8}, \frac{18\pi}{8}, \dots$$
$$= \frac{\pi}{4}, \frac{\pi}{2}, \frac{5\pi}{4}, \frac{3\pi}{2} (\text{for } 0 \le x \le 2\pi) \mathbf{0} \mathbf{0}$$

Please note:

- how much easier a transformation into *cos* is compared to *sin*
- ① and ② are sometimes referred to as *generators* for the fractional value of π in the general solutions (again, note the easier version that *cos* has over *sin*). Some students attempted to use the generators, only a couple were successful you must pay attention to the required range. Successful students usually used something such as:

$$0 \le x \le 2\pi$$
$$0 \le 2x \le 4\pi$$
$$\frac{\pi}{4} \le 2x - \frac{\pi}{4} \le 4\pi - \frac{\pi}{4}$$

to ensure their answers fell into the required range.