Question 1 (12 marks) Begin a new booklet

(a) Factorise fully
$$16x^3 - 2$$

(b) Consider the points A(-3,2) and B(6,-4). Find the coordinates of the point P(x, y) that divides the interval AB in the ratio of 2:1.
2

(c) Solve the inequality
$$\frac{2}{x+1} < 1$$
. 2

(d) Consider $f(x) = 3x^3 + 6$. Explain, using calculus, why f(x) is always increasing. 2

(e) Differentiate:

(i)
$$x \cos^2 3x$$
 2

(ii)
$$x^2 \tan^{-1} x$$
 2

Marks

Question 2 (12 marks) Begin a new booklet

Marks

- (a) Find the values of k such that (x-2) is a factor of the polynomial **2** $P(x) = x^3 - 2x^2 + kx + k^2$.
- (b) Find correct to the nearest degree the acute angle between the lines 2y=3x+1 and x+y-5=0

(c) Evaluate
$$\int_0^1 \frac{dx}{\sqrt{4-x^2}}$$
 2

(d) Use the substitution
$$t = \tan \frac{x}{2}$$
 to show that $\frac{1 - \cos x}{\sin x} = \tan \frac{x}{2}$ 3

(e) Graph $y = 2\sin 3x$ for $0 \le x \le 2\pi$ 3

Question 3 (12 marks) Begin a new booklet

(a) If
$$5x^3 - 6x^2 - 29x + 6 = 0$$
 has roots α, β, γ then find the value of $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$ 2

(b) Use Mathematical Induction to prove that
$$2^n \ge 1 + n$$
 for $n \ge 1$ 4

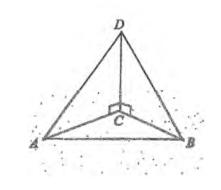
(c) Use the substitution
$$u = x^2 + 1$$
 to evaluate $\int_1^7 \frac{x}{(1+x^2)^2} dx$. 4

(d) Find the sum of the infinite series $\sin^2 x + \sin^4 x + \sin^6 x + \dots$ Express your **2** answer in simplest form.

Marks

(a)

Marks



Three points *A*, *B* and *C* lie on a plane. Points *A* and *B* are 30 metres apart and $\angle ACB = 120^\circ$. A vertical flagpole, *CD*, of height *h* metres stands at *C*. From *A* the angle of elevation of the top, *D*, of the flagpole is 30°. From *B* the angle of elevation to *D* is 45°

(i)	Find the length of AC and BC in	2
	terms of <i>h</i> .	
(ii)	Hence find the value of <i>h</i> to	2
	one decimal place.	

(b) The parametric equations of a parabola are

$$x = 2t$$
$$y = 2t^{2}$$

C

(i) Find the Cartesian equation of the parabola. 1

(ii) Find the equation of the tangent to this parabola at the point where x = 2. 2

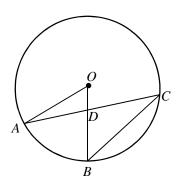
(c) Find
$$\int \sin^2 2x \, dx$$
 2

(d) (i) Find the domain and range of the function
$$f(x) = \cos^{-1}(2x)$$
. 2

(ii) Sketch the graph of the curve
$$f(x) = \cos^{-1}(2x)$$
.

Marks

1	>
1	٩١
L	aı



A, *B* and *C* are points lying on circle with centre *O*. *AO* is parallel to *BC*. *OB* and *AC* intersect at *D*. $\angle ACB = 31^{\circ}$.

(i)	Find the size of $\angle AOB$, giving reasons.	2
(ii)	Find the size of $\angle BDC$, giving reasons.	2

(b) At time t years after the start of the year 2000, the number of individuals in A population is given by $N = 80 + Ae^{0.1t}$ for some constant A > 0.

(i) Show that
$$\frac{dN}{dt} = 0.1(N-80)$$
. 1

(ii) If there were 100 individuals in the population at the start of the year 20003 Find the year in which the population size is expected to reach 200.

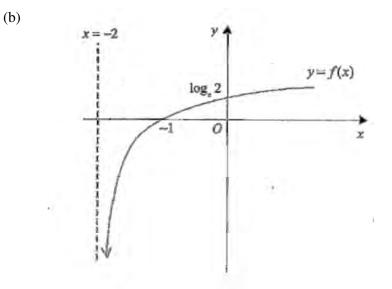
(c) (i) Write $\sqrt{3}\cos x - \sin x$ in the form $r\cos(x+\alpha)$. 1

(ii) Hence, give the general solution to
$$\sqrt{3}\cos x - \sin x = 1$$
 3

Question 6 (12 marks) Begin a new booklet

- (a) A particle is moving in a straight line. At time t seconds it has displacement x metres from a fixed point O in the line, $v \text{ ms}^{-1}$ is given by $v = \frac{1}{x+1}$ and acceleration $a \text{ ms}^{-2}$. Initially the particle is at O.
 - (i) Express a as a function of x. 1
 - (ii) Express x as a function of t.

to one decimal place.



The diagram shows the graph of the function $f(x) = \ln(x+2)$.

(i) Copy the diagram and on it draw the graph of the inverse function f⁻¹(x)
(i) showing the intercepts on the axes and the equation of the asymptote.
(ii) Show that the *x*-coordinates of the points of intersection of the curves y = f(x) and y = f⁻¹(x) satisfy the equation e^x - x - 2 = 0.
(iii) Show that the equation e^x - x - 2 = 0 has a root α such that 1 < α < 2.
(iv) Use one application of Newton's method with an initial approximation α₀ = 1.2 to find the next approximation for the value of α, giving your answer correct

3

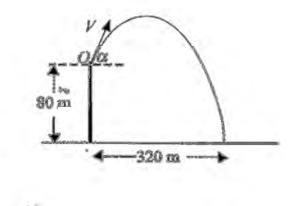
Question 7 (12 marks) Begin a new booklet

(c)

(a) A particle is moving in a straight line with Simple Harmonic Motion. At time *t* seconds it has displacement *x* metres from a fixed point *O* on the line, given by $x = 1 + 3\cos\frac{t}{2}$, velocity *v* ms⁻¹ and acceleration *a* ms⁻².

(i) Show that
$$a = -\frac{1}{4}(x-1)$$
. 2

(ii) Find the distance travelled and the time taken by the particle over one complete oscillation of its motion.



A particle is projected with speed $V \text{ ms}^{-1}$ at an angle α above the horizontal from a point *O* at the top edge of a vertical cliff which is 80 m above horizontal ground. The particle moves in a vertical plane under gravity where the acceleration due to gravity is 10 ms^{-2} . It reaches its greatest height after 3 seconds and hits the ground at a horizontal distance of 320 m from the foot of the cliff.

The horizontal and vertical displacements, x and y metres respectively, of the particle from the point O after t seconds are given by $x = Vt \cos \alpha$ and $y = -5t^2 + Vt \sin \alpha$. (Do NOT prove these results.)

(i)	Show that $V \sin \alpha = 30$.	1
(ii)	Show that the particle hits the ground after 8 seconds.	2
(iii)	Show that $V \cos \alpha = 40$.	1
(iv)	Hence find the exact value of V and the value of α to the nearest minute.	2
(v)	Find the time after projection when the direction of motion of the particle first makes an angle of 45° below the horizontal.	2

Ext Sols
QII (a)
$$2(2x-1)(4x^{2}+2x+1)$$
 (2)
(b) $\frac{2(4)-3}{3}, \frac{-4(1)+2(1)}{3}$
 $P(3,-2)$ (2)
(c) $\frac{2}{4}$ (1)
 $2x+2 \le x^{2}+2x+1$
 $0 \le x^{2}-1$ (2)
(d) $f'(x) = 27x^{2}$ and $x^{2}y^{0}$
 $x^{0} \ge 9xa d \sin t$
 $always increasing$
(e) (i) $u=x$ $v = \cos^{2} 3x$
 $u'=1$ $v' = -6\cos^{3} 3x = \frac{1}{6x\cos^{3} x \sin^{3} x}$ (2)
(ii) $u=x^{1}$ $v = \tan^{-1} x$
 $u'=2x$ $v' = \frac{1}{1+x^{2}}$
 $2x \tan^{-1}x + \frac{x^{2}}{1+x^{2}}$ (2)

Q2
(A)
$$P(2) = 2^{3} - 2(2)^{2} + k(2) + k^{2}$$

 $0 = 8 - 8 + 2k + k^{2}$
 $0 = k(2+k)$
 $k = 0, -2$
(b) $y = 3k+1$ $m_{1} = 3$
 $y = -k + 5 = 0$ $m_{2} = -1$
 $i = 0$
 $i = 63^{2}$
(2)

$$(c) \int_{0}^{1} \frac{dx}{\sqrt{4-x^{2}}} = \left[\frac{\sin^{-1} \frac{x}{2}}{2} \right]_{0}^{1}$$

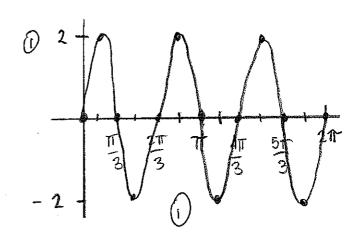
$$= \sin^{-1} \left(\frac{1}{2} \right) - \sin^{-1} (0)$$

$$= \frac{\pi}{6} - 0$$

$$= \frac{\pi}{6}$$

(d)
$$\left(1 - \frac{1 - t^{2}}{1 + t^{2}}\right) \stackrel{!}{\to} \frac{2t}{1 + t^{2}}$$

 $\frac{1 + t^{2} - 1 + t^{2}}{1 + t^{2}} \times \frac{1 + t^{2}}{2 + t}$
 $\frac{1 + t^{2}}{1 + t^{2}} \times \frac{1 + t^{2}}{2 + t}$
 $\frac{2t^{2}}{2t} = t$
but $t = tan \frac{2}{2}$
(e) $y = 2sin 3x$
 $\frac{2\pi}{3} = pn$
(f)



Total

41) Ac = tan 60
A c = h tan 60
A c = h tan 60
A c = h tan 45
Bc = h
900 =
$$3h^{2} + h^{2} - 2\sqrt{3}h^{2}\cos 120^{\circ}$$

900 = $h^{2}(3+1-2\sqrt{3}\times^{-1}/2)$
900 = $h^{2}(5.732...)$
167.01...= h^{2}
 $h = 12.63$

$$\sqrt{3}\cos x - \sin x = r(\cos x \cos x - \sin x)$$

$$r = \sqrt{3^{2} + i^{2}} = \sqrt{4} = 2$$

$$2\cos d = \sqrt{3} \quad 2\sin 4 = 1$$

$$\cos d = \frac{\sqrt{3}}{2} \quad \sin 4 = \frac{1}{2}$$

$$tan 4 = \frac{1}{\sqrt{3}}$$

$$a = 30^{\circ}$$

$$2\cos(x + 30^{\circ}) = \frac{1}{2}$$

$$\cos(x + 30^{\circ}) = \frac{1}{2}$$

$$\cos(x + 30^{\circ}) = \cos(60^{\circ})$$

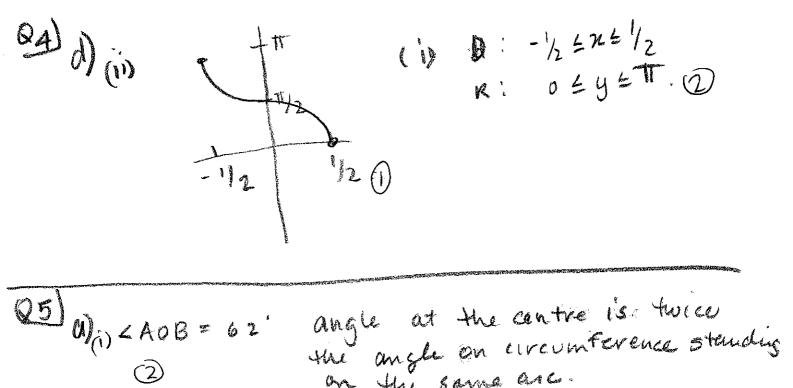
$$x + 20 = 360m \pm 60^{\circ}$$

$$x = 360n + 30^{\circ} \quad \text{or } 360n - 90^{\circ}$$

4b)
$$\chi = 2t$$

 $y = 2t^{2}$
(i) $\frac{\chi}{2} = t$
 $y = 2(\frac{\chi}{2})^{2}$
 $y = 2(\frac{\chi^{2}}{4})$
 $y = \frac{\chi^{2}}{2}$
(ii) $y' = \frac{1}{2} \times 2 \times$
 $= 2$
(iii) $y' = \frac{1}{2} \times 2 \times$
 $= 2$
(iv) $y' = \frac{1}{2} \times 2 \times$
 $= 2$
(iv) $y' = \frac{1}{2} \times 2 \times$
 $= 2$
(iv) $y = \frac{1}{2} \times 2 \times$
 $= \frac{1}{2} - \frac{1}{2} \times \frac{1}{2} \sin 4z + c$
 $= \frac{1}{2} \times -\frac{1}{4} \sin 4x + c$
(iv) $\chi = 2 \times 2 \times 4$
 $y = 2 \times$

(2)



(b) (i)
$$N = 80 + Ae^{0.1t}$$

 $dN = 0.1 Ae^{0.1t}$
 $= 0.1 (N-80)$
(ii) $N = 100$ When $t = 0$. 1, $A = 20$
 $200 = 80 + 20e^{0.1t}$
 $e^{0.1t} = 6$
 $0.1t = 0n6$
 $t = 10 \ln 6$
i. $t = 17.92$
At in 2017 the pop're
Maches 200.

$$\begin{aligned} \widehat{Q}(6) \\ \widehat{A}(1) \\ V &= \frac{1}{(2x+1)^2} \\ = \frac{-1}{(2x+1)^2} \\ = \frac{-1}{(2x+1)^3} \\ (11) \\ \frac{dx}{dt} &= \frac{1}{2x+1} \\ \frac{dt}{dt} &= \frac{1}{2x+1} \\ \frac{d$$

$$\begin{array}{c} (i \ b) (i) \\ i \ c_{1,2} \\ i \ c_{2,2} \\ i \ c_{2$$

.....

(ii)
$$\chi = 1+3\cos\frac{\pi}{2}$$
, V where a misce
 $v = \frac{dx}{dt} = -\frac{3}{2}\sin\frac{\pi}{2}$
 $but = \frac{-3}{4}\cos\frac{\pi}{2}$
 $but = \frac{-3}{4}\cos\frac{\pi}{2}$
 $but = \frac{-3}{4}\cos\frac{\pi}{2}$
 $i = \frac{-1}{4}(\pi - 1) \times$
(ii) $V = 0$ when $-\frac{3}{2}\sin\frac{\pi}{2} = 0$
 at next $\sin\frac{\pi}{2} = 0$
 $t = 0, t = 2\pi, t = 4\pi$
 $t = 2\pi, x = 1 - 3 = -2$
 $tiAVTC VAS$
 $i = \frac{2\pi}{4} = \frac{4\pi}{2}$

1b. (i)
$$\dot{y} = -10t \pm vsind and \dot{y} = 0$$
 when $t = 3$
 $c = -3ct + vsind = 3c$.
(ii) $y = -sv = -5t^{2} + 3ct$
 i' with $t^{2} - 6t - ib = 0$ ($t \ge 0$) (2)
 $(t - s)(t + 2) \ge c$ if $t = t$.
(iii) $x = 320$ when $t = 8$
 $320 = 8V\cos A$
 $i' + V\cos d = 4c$
(iv) $V^{2}(sin^{2}a + cos^{2}a) = 30^{2} + 40^{2}$
 $V^{2} = 2500$
 $i' + v = 5c$
 $V \sin d = 3c$ if $tand = \frac{3}{4}$
and $d = 3c^{2} 52^{2}$
(v) $-y'$ $\int_{1}^{1} \int_{2}^{1} \int_$