Student Name:

FRENSHAM

YEAR 12

TRIAL HSC EXAMINATION

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- Show all necessary working in Questions 11-14

Total marks - 70

Section I

10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II

60 marks

- Attempt Questions 11-14
- Allow about 1 hour 45 minutes for this section

Section I

10 marks Attempt Questions 1 - 10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10

- 1 What is the domain and range of $y = \frac{1}{2}\cos^{-1}(\frac{x}{2})$?
 - (A) Domain: $-2 \le x \le 2$ Range: $0 \le y \le \pi$
 - (B) Domain: $-1 \le x \le 1$ Range: $0 \le y \le \pi$
 - (C) Domain: $-2 \le x \le 2$ Range: $0 \le y \le \frac{\pi}{2}$
 - (D) Domain: $-1 \le x \le 1$ Range: $0 \le y \le \frac{\pi}{2}$
- 2 When a polynomial $P(x) = x^3 + ax + 1$ is divided by (x + 2) the remainder is 5. What is the value of *a*?
 - (A) -6
 - (B) -3.5
 - (C) 2
 - (D) 3

3 Which of the following is an expression for $\int \frac{x}{(2-x^2)^3} dx$?

Use the substitution $u = 2 - x^2$.

(A) $\frac{1}{2(2-x^2)^2} + C$ (B) $\frac{1}{4(2-x^2)^2} + C$

(C)
$$\frac{1}{4(2-x^2)^4} + C$$

(D)
$$\frac{1}{8(2-x^2)^4} + C$$

- 4 What is the exact value of the definite integral $\int_0^1 \frac{1}{x^2 + 1} dx$?
 - (A) $\frac{\pi}{4}$
 - (B) $\frac{\pi}{3}$
 - (C) $\frac{\pi}{2}$
 - (D) π
- 5 How many arrangements of all of the letters of the word PROBABILITY are possible?
 - (A) 362 880
 - (B) 9 979 200
 - (C) 19 958 400
 - (D) 39 916 800
- 6 Find the acute angle between the lines y = 2x and x + y 5 = 0. Answer correct to the nearest degree.
 - (A) 18°
 - (B) 32°
 - (C) 45°
 - (D) 72°
- 7 Find the value of x:
 - (A) 30°
 - (B) 45°
 - (C) 60°
 - (D) 90°

- 8 What are the coordinates of the point that divides the interval joining the points A(-1,2) and B(3,5) externally in the ratio 3:1?
 - (A) (2.5, 4.25)
 - (B) (2.5,6.5)
 - (C) (5,4.25)
 - (D) (5,6.5)

9 What is the solution to the inequality $\frac{2x-5}{x-4} \ge x$?

- (A) $x \leq -1$ and $4 \leq x \leq 5$
- (B) $x \leq -1$ and $4 < x \leq 5$
- (C) $x \le 1$ and $4 \le x \le 5$
- (D) $x \le 1$ and $4 < x \le 5$
- 10 The velocity of a particle moving in a straight line is given by v = 2x + 5, where x metres is the distance from fixed point O and v is the velocity in metres per second. What is the acceleration of the particle when it is 1 metre to the right of O?
 - (A) $a = 7 \text{ ms}^{-2}$
 - (B) $a = 12 \text{ ms}^{-2}$
 - (C) $a = 14 \text{ ms}^{-2}$
 - (D) $a = 24 \text{ ms}^{-2}$

Section II

60 marks Attempt Questions 11 🗆 14 Allow about 1 hour and 45 minutes for this section

Answer each question in the appropriate writing booklet.

All necessary working should be shown in every question.

Question 11 (15 marks)

- (a) What are the roots of the equation $4x^3 4x^2 29x + 15 = 0$ given that one root is the difference between the other two roots? 3
- (b) A circle, centre O, passes through the points A, C, D and E. Another circle, centre P, passes through the points A and O. CE is a tangent to the circle centre P, with point of contact at O. AB is a tangent to both circles with point of contact at A.
 ∠CBA = x°.

Show that $\angle CED = (90 - x)^{\circ}$

(c) Prove the following identity

$$\frac{\sin\theta}{\sin\theta + \cos\theta} + \frac{\sin\theta}{\cos\theta - \sin\theta} = \tan 2\theta$$

(d) A class consists of 10 boys and 12 girls. How many ways are there of selecting a committee of 3 boys and 2 girls from this class?

2

2

Marks

2

(e) Point *A* is due south of a hill and the angle of elevation from *A* to the top of the hill is 35° . Another point *B* is a bearing 200° from the hill and the angle of elevation from *B* to the top of the hill is 46° . The distance *AB* is 220 m.

- (i) Express *OA* and *OB* in terms of *h*.
 (ii) Calculate the height *h* of the hill correct to three significant figures.
 2
- (f) Factorise $x^3 + 3x^2 9x + 5$

Question 12 (15 marks)

Marks

- (a) The tangent at the point $P(2ap, ap^2)$ on the parabola $x^2 = 4ay$ cuts the x-axis at A and the y-axis at B.
 - (i) Find the coordinates of *M*, the midpoint of *A* and *B* in terms of *P*.
 (ii) Show that the locus of *M* is a parabola.
 1
 - (iii) Find the coordinates of the focus of this parabola and the equation of 1 the directrix.
- (b) Use the principle of mathematical induction to prove that for all positive **3** integers *n*:

$$1 + 2 + 4 + \ldots + 2^{n-1} = 2^n - 1$$

(c) Find the exact value of
$$\sin\left[\cos^{-1}\frac{2}{3} + \tan^{-1}\left(-\frac{3}{4}\right)\right]$$
 2

- (d) Find all the angles θ with $0 \le \theta \le 2\pi$ for which $\sin \theta + \cos \theta = 1$. 3
- (e) The function f(x) is given by $f(x) = \sin^{-1} x + \cos^{-1} x$, $0 \le x \le 1$.
 - (i) Find f'(x). 1
 - (ii) Sketch the graph of y = f(x). 2

Question 13 (15 marks) Marks (a) (i) Show that the function $f(x) = xe^{x} - 1$ has a zero between x = 0 and 1 x = 1. Using x = 0.5 as the first approximation, use Newton's Method to (ii) 2 obtain a second approximation. Answer correct to 2 decimal places. A golfer hits a golf ball to clear a 6 metres high tree. The tree is 20 metres (b) away on level ground. The golfer uses a golf club that produces an angle of elevation of 40°. Take $g = 10 \text{ ms}^{-1}$. Derive the expressions for the vertical and horizontal components of (i) 3 the displacement of the ball from the point of projection. (ii) Find the Cartesian equation of the flight path? 2 (iii) Calculate the speed at which the ball must leave the ground to just 2 clear the tree. Answer correct to one decimal place. (c) Consider the curve $f(x) = (x-2)^2$ If the domain is to be restricted to the largest possible domain that (i) 1 contains x = 0, so that an inverse function will exist, state the domain. What is the domain of $f^{-1}(x)$? (ii) 1 (iii) What is the equation of $f^{-1}(x)$? 1

(iv) Explain why $x = (x - 2)^2$ gives the points of intersection of y = f(x) 2 and $y = f^{-1}(x)$ and hence why x = 1 is the only point of intersection.

Marks

2

Question 14 (15 marks)

(a) Find
$$\int \cos^2 2x dx$$
 2

- (b) A particle moves in a straight line and its position at any time is given by:
 x = 3 cos 2t + 4 sin 2t
 (i) Prove that the motion is simple harmonic.
 - (ii) Calculate the particle's greatest speed. 2
- (c) Water at a temperature of 24° C is placed in a freezer maintained at a temperature of -12° C. After time *t* minutes the rate of change of temperature *T* of the water is given by the formula:

$$\frac{dT}{dt} = -k(T+12)$$

where *t* is the time in minutes and *k* is a positive constant.

- (i) Show that T = Ae^{-kt} 12 is a solution of this equation, where A is a constant.
 (ii) Find the value of A.
- (iii) After 15 minutes the temperature of the water falls to 9°C. Find to the nearest minute the time taken for the water to start freezing. (Freezing point of water is 0°C).
- (d) Each rectangular table in a hall has nine seats, five facing the front and four facing the back. In how many ways can 9 people be seated at a table if:

(i)	Alex and Bella must sit on the same side.	2
(ii)	Alex and Bella must sit on opposite sides	2

End of paper

STANDARD INTEGRALS

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1; \ x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} \, dx \qquad = \ln x, \ x > 0$$

$$\int e^{ax} dx \qquad \qquad = \frac{1}{a} e^{ax}, \ a \neq 0$$

$$\int \cos ax \, dx \qquad \qquad = \frac{1}{a} \sin ax, \ a \neq 0$$

- $\int \sin ax \, dx \qquad \qquad = -\frac{1}{a} \cos ax, \ a \neq 0$
- $\int \sec^2 ax \, dx \qquad \qquad = \frac{1}{a} \tan ax, \ a \neq 0$

$$\int \sec ax \tan ax \, dx \qquad = \frac{1}{a} \sec ax, \ a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left(x + \sqrt{x^2 - a^2}\right) x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx \qquad = \ln\left(x + \sqrt{x^2 + a^2}\right)$$

NOTE:
$$\ln x = \log_e x$$
, $x > 0$

Frensham 2014 HSC Mathematics Extension 1 Trial HSC Examination Worked solutions and marking guidelines

Section I		
	Solution	Criteria
1	Domain: $-1 \le \frac{x}{2} \le 1$ or $-2 \le x \le 2$. Range: $\frac{1}{2} \times 0 \le y \le \frac{1}{2} \times \pi$ or $0 \le y \le \frac{\pi}{2}$	1 Mark: C
2	$P(x) = x^{3} + ax + 1$ $P(-2) = (-2)^{3} + a \times -2 + 1 = 5$ -2a = 12 a = -6	1 Mark: A
3	$\int \frac{x}{(2-x^2)^3} dx = -\frac{1}{2} \int \frac{1}{u^3} du$ $u = 2 - x^2 \qquad \qquad = -\frac{1}{2} \times -\frac{1}{2} u^{-2} + C$ $\frac{du}{dx} = -2x \qquad \qquad = \frac{1}{4(2-x^2)^2} + C$	1 Mark: B
4	$\int_{0}^{1} \frac{1}{x^{2} + 1} dx = \left[\tan^{-1} x \right]_{0}^{1}$ $= \frac{\pi}{4} - 0$ $= \frac{\pi}{4}$	1 Mark: A
5	Number of arrangements = $\frac{11!}{2 \ge 2!}$ (2 I's and 2 B's) = 9 979 200	1 Mark: B
6	For $y = 2x$ then $m_1 = 2$ For $x + y - 5 = 0$ then $m_2 = -1$	1 Mark: D

$$\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \left| \frac{2 - (-1)}{1 + 2 \times -1} \right|$$

= 3
 $\theta = 71.56505118...$
 $\approx 72^{\circ}$

	polynomial is above the <i>x</i> -axis.	
	Test values in each region	
	$x \le 1$ and $4 < x \le 5$	
	Note Alternate method: since $x \neq 4$ answer must be B or D then	
	test $x = 0$ in original inequality which gives $\frac{5}{4} > 0$ which is true so	
	$x = 0$ must be included in the solution \therefore D	
	v = 2x + 5	
	$v^2 = 4x^2 + 20x + 25$	
10	$\frac{1}{2}v^2 = 2x^2 + 10x + \frac{25}{2}$	1 Mark: C
10	$a = \frac{d}{dx} \left(2x^2 + 10x + \frac{25}{2} \right)$	i Mark. C
	=4x+10	
	When $x = 1$ then $a = 14$	

Section II		
11(a)	Let the roots be α, β and $\alpha - \beta$.	3 Marks:
	$4x^3 - 4x^2 - 29x + 15 = 0$	Correct answer.
	$\alpha + \beta + (\alpha - \beta) = -\frac{b}{a} = -\frac{-4}{4} = 1$ $2\alpha = 1 \text{ or } \alpha = \frac{1}{2}$ $\alpha\beta(\alpha - \beta) = -\frac{d}{a}$ $\frac{1}{2}\beta(\frac{1}{2} - \beta) = -\frac{15}{4}$ $\beta(\frac{1}{2} - \beta) = -\frac{15}{2}$ $2\beta^2 - \beta - 15 = 0$ $(2\beta + 5)(\beta - 3) = 0$ $\beta = -\frac{5}{2} \text{ or } \beta = 3$	 2 Marks: Makes significant progress towards the solution. 1 Mark: Finds the sum or product of the roots.
	Roots are $x = -\frac{5}{2}$, $x = \frac{1}{2}$ and $x = 3$	
11(b)	$\angle PAB = 90^{\circ} \text{ (Angle between a tangent and radius)}$ $\angle POC = 90^{\circ} \text{ (Angle between a tangent and radius)}$ $\therefore OC \parallel AB \text{ (cointerior angles are supplementary)}$ $\therefore \angle OCB = 180 - x^{\circ} \text{ (Cointerior angles on lines)}$ $\angle DCE = x^{\circ} \text{ (angles on straight line)}$ $\angle EDC = 90^{\circ} \text{ (angle in a semicircle is a right angle)}$ $\angle CED = 180^{\circ} - 90^{\circ} - x^{\circ} \text{ (angle sum } \Delta CED)$ $\therefore \angle CED = 90^{\circ} - x^{\circ}$ $\boxed{P} = \frac{180^{\circ} - x^{\circ}}{180^{\circ} - x^{\circ}} = \frac{180^{\circ} - x^{\circ}}$	2 Marks: Correct answer. 1 Marks: Makes some progress towards the solution.

11(c)	$LHS = \frac{\sin\theta}{\sin\theta + \cos\theta} + \frac{\sin\theta}{\cos\theta - \sin\theta}$	2 Marks: Correct answer.
	$= \frac{\sin\theta (\cos\theta - \sin\theta) + \sin\theta (\cos\theta + \sin\theta)}{(\cos\theta + \sin\theta)(\cos\theta - \sin\theta)}$ $= \frac{2\sin\theta \cos\theta}{\cos^2\theta - \sin^2\theta}$ $= \frac{\sin 2\theta}{\cos 2\theta}$ $= \tan 2\theta = \text{RHS}$	1 Marks: Uses a relevant trigonometric identity
11(d)	Number of ways = ${}^{10}C_3 \times {}^{12}C_2$ = 120×66 = 7920 Class can be selected in 7920 ways.	2 Marks: Correct answer. 1 Marks: Shows some understanding.

11(e) (i)	H H h h h h h h h h	 2 Marks: Correct answer. 1 Mark: One correct expression or shows some understanding of the problem.
	In \triangle HOA $\tan 35^\circ = \frac{h}{OA}$ $OA = \frac{h}{\tan 35^\circ}$ In \triangle HOB $\tan 46^\circ = \frac{h}{OB}$ $OB = \frac{h}{\tan 46^\circ}$	
11(e) (ii)	$AB^{2} = OA^{2} + OB^{2} - 2 \times OA \times OB \times \cos 20^{\circ}$ $220^{2} = \left(\frac{h}{\tan 35^{\circ}}\right)^{2} + \left(\frac{h}{\tan 46^{\circ}}\right)^{2} - 2 \times \frac{h}{\tan 35^{\circ}} \times \frac{h}{\tan 46^{\circ}} \times \cos 20^{\circ}$ $= h^{2} \left(\frac{1}{\tan^{2} 35^{\circ}} + \frac{1}{\tan^{2} 46^{\circ}} - 2 \times \frac{\cos 20^{\circ}}{\tan 35^{\circ} \times \tan 46^{\circ}}\right)$ $h^{2} = 220^{2} \div \left(\frac{1}{\tan^{2} 35^{\circ}} + \frac{1}{\tan^{2} 46^{\circ}} - 2 \times \frac{\cos 20^{\circ}}{\tan 35^{\circ} \times \tan 46^{\circ}}\right)$ $= 127296.7453$ $h = 356.7866944 \approx 357 \text{ m}$	2 Marks: Correct answer.1 Mark: Uses the cosine rule with at least one correct value.
11(f)	Factors of 5 are {±1,±5} $P(1) = 1^{3} + 3 \times 1^{2} - 9 \times 1 + 5 = 0$ Therefore (x-1) is a factor of x ³ + 3x ² - 9x + 5 $\frac{x^{2} + 4x - 5}{x - 1)x^{3} + 3x^{2} - 9x + 5}$ $\frac{x^{3} - x^{2}}{4x^{2} - 9x}$ $\frac{4x^{2} - 4x}{-5x + 5}$ $P(x) = x^{3} + 3x^{2} - 9x + 5 = (x - 1)(x^{2} + 4x - 5)$ $= (x - 1)(x - 1)(x + 5) = (x - 1)^{2}(x + 5)$	2 Marks: Correct answer. 1 Mark: Finds one factor or shows some understanding.

12(a)	To find the gradient of the tangent	2 Marks: Correct
(i)	$y = \frac{1}{4a}x^2$ and $\frac{dy}{dx} = \frac{1}{2a}x$	answer.
	4a dx 2a At $P(2ap, ap^2) \frac{dy}{dx} = \frac{1}{2a} \times 2ap = p$	1 Mark: Finds the gradient of the
	Equation of the tangent at $P(2ap, ap^2)$	tangent or the coordinates of A
	$y - y_1 = m(x - x_1)$	and <i>B</i> .
	$y - ap^2 = p(x - 2ap)$	
	$y = px - ap^2$	
	x-intercept ($y = 0$) then $x = ap$. Hence $A(ap, 0)$	
	y-intercept ($x = 0$) then $y = -ap^2$. Hence $B(0, -ap^2)$	
	Midpoint of A and B.	
	$M\left(\frac{ap+0}{2},\frac{0+-ap^2}{2}\right) = M\left(\frac{ap}{2},\frac{-ap^2}{2}\right)$	
12(a)	To find the locus of M eliminate p from coordinates of M	1 Mark: Correct
(ii)	Now $x = \frac{ap}{2}$ (1) and $y = \frac{-ap^2}{2}$ (2)	answer.
	From (1) $p = \frac{2x}{a}$ and sub into eqn (2)	
	$y = \frac{-a(\frac{2x}{a})^2}{2} = \frac{-a}{2} \times \frac{4x^2}{a^2} = -\frac{2x^2}{a}$	
	or $x^2 = -\frac{1}{2}ay$ (parabola)	
12(a) (iii)	$x^{2} = -\frac{1}{2}ay = 4 \times \left(-\frac{1}{8}a\right) \times y$	1 Mark: Correct answer.
	Focus is $\left(0, -\frac{1}{8}a\right)$ and equation of the directrix $y = \frac{1}{8}a$	
12(b)	Step 1: To prove the statement true for $n = 1$	3 Marks: Correct
	$LHS = 1$ $RHS = 2^{1} - 1 = 1$	answer.
	Result is true for $n = 1$	2 Marks: Proves the result true for
	Step 2: Assume the result true for $n = k$	n = 1 and
	Step 2. Assume the result if the for $n = k$ $1+2+4++2^{k-1} = 2^k - 1$	attempts to use the result of
	Step 3: To prove the result is true for $n = k+1$	n = k to prove
	i.e. prove $1+2+4++2^{k-1}+2^k = 2^{k+1}-1$	the result for $n = k + 1$.
1		

		1 M. 1. D
	LHS = $1 + 2 + 4 + + 2^{k-1} + 2^k$	1 Mark: Proves the result true for
	$=2^{k}-1+2^{k}$	n=1.
	$= 2 \times 2^k - 1$ using assumption	
	$=2^{k+1}-1$	
	= RHS	
	Result is true for $n = k + 1$ if true for $n = k$	
	Step 3: Proven true for $n = 1$, assuming true for $n=k$ proven true for $n=k+1$, so true for $n=1+1=2$, $1+2=3$, and Result true	
	by principle of mathematical induction for all positive	
	integers n.	
12(c)	$\sin\left[\cos^{-1}\frac{2}{3} + \tan^{-1}\left(\frac{-3}{4}\right)\right] = \sin\left[\cos^{-1}\frac{2}{3} - \tan^{-1}\frac{3}{4}\right]$	2 Marks: Correct answer.
	Let $\alpha = \cos^{-1} \frac{2}{3}$ and $\beta = \tan^{-1} \frac{3}{4}$	
	$\frac{4}{5}$ $\sin\left[\cos^{-1}\frac{2}{3} - \tan^{-1}\frac{3}{4}\right] = \sin\alpha\cos\beta - \cos\alpha\sin\beta$ $= \frac{\sqrt{5}}{3} \times \frac{4}{5} - \frac{2}{3} \times \frac{3}{5}$ $= \frac{4\sqrt{5}}{15}$	1 Mark: Sets up the two triangles or shows some understanding of the problem.
12(d)	Let $\sin \theta + \cos \theta = R \sin(\theta + \alpha)$	3 Marks: Correct
	$= R\sin\theta\cos\alpha + R\cos\theta\sin\alpha$	answer.
	$\therefore R\cos\alpha = 1 \text{ and } R\sin\alpha = 1$	
	$R^2(\cos^2\alpha + \sin^2\alpha) = 2$ and $\tan \alpha = 1$ or $\alpha = \frac{\pi}{4}$	2 Marks: Finds two angles or
	$R = \sqrt{2}$	makes significant
	·· ·· ··	progress towards the solution.
		1 Mark: Sets up
		the sum of two

	$\sin\theta + \cos\theta = \sqrt{2}\sin(\theta + \frac{\pi}{4}) = 1$ $\sin(\theta + \frac{\pi}{4}) = \frac{1}{\sqrt{2}}$	angles or shows some understanding of the problem.
	$\theta + \frac{\pi}{4} = \frac{\pi}{4}, \ \frac{3\pi}{4}, \ \frac{9\pi}{4}, \dots$ $\theta = 0, \ \frac{\pi}{2}, \ 2\pi$	
12(e) (i)	$f(x) = \sin^{-1} x + \cos^{-1} x$ $f'(x) = \frac{1}{\sqrt{1 - x^2}} - \frac{1}{\sqrt{1 - x^2}} = 0$	1 Mark: Correct answer.

12(e) (ii)	Since $f'(x) = 0$, $f(x)$ is a constant (gradient of tangent is 0) Let $x = 0$ then $f(0) = \sin^{-1}0 + \cos^{-1}0 = 0 + \frac{\pi}{2} = \frac{\pi}{2}$ Therefore $f(x) = \frac{\pi}{2}$ for $0 \le x \le 1$	2 Marks: Correct answer. 1 Mark: Recognises that the graph is a horizontal line or shows some understanding of the problem.
13(a) (i)	$f(x) = xe^{x} - 1$ $f(0) = 0 \times e^{0} - 1 = -1 < 0$ $f(1) = 1 \times e^{1} - 1 = e - 1 > 0$ Since f(0) and f(1) have opposite signs and f(x) is a continuous function Therefore the root lies between $x = 0$ and $x = 1$.	1 Mark: Correct answer.
13(a) (ii)	$f(x) = xe^{x} - 1 \qquad f'(x) = xe^{x} + e^{x} = e^{x}(x+1)$ $f(0.5) = 0.5e^{0.5} - 1 \qquad f'(0.5) = e^{0.5}(0.5+1) = 1.5e^{0.5}$ $x_{1} = x_{0} - \frac{f(x_{0})}{f'(x_{0})}$ $= 0.5 - \left(\frac{0.5e^{0.5} - 1}{1.5e^{0.5}}\right) = 0.5710204398 \approx 0.57$	2 Marks: Correct answer. 1 Mark: Finds f(0.5), f'(0.5) or shows some understanding of Newton's method.
13(b) (i)	Horizontal Motion $\ddot{x} = 0$ $\dot{x} = c_1$ (when $t = 0, \dot{x} = v \cos 40^\circ$) $\dot{x} = v \cos 40^\circ$ $x = v \cos 40^\circ t + c_2$ (when $t = 0, x = 0$) $x = v \cos 40^\circ t$ (1) Vertical Motion $\ddot{y} = -10$ $\dot{y} = -10t + c_1$ (when $t = 0, \dot{y} = v \sin 40^\circ$) $\dot{y} = -10t + v \sin 40^\circ$ $y = -5t^2 + v \sin 40^\circ t + c_2$ (when $t = 0, y = 0$) $y = -5t^2 + v \sin 40^\circ t$ (2)	 3 Marks: Correct answer. 2 Marks: Derives either the horizontal or vertical equations of motion. 1 Mark: States the expressions.

13(b) (ii)	From eqn (1) $t = \frac{x}{v \cos 40^{\circ}}$ sub into eqn (2)	2 Marks: Correct answer.
	$y = -5\left(\frac{x}{v\cos 40^\circ}\right)^2 + v\sin 40^\circ \left(\frac{x}{v\cos 40^\circ}\right)$ $= -\frac{5x^2}{v^2}\sec^2 40^\circ + x\tan 40^\circ$	1 Mark: Eliminates <i>t</i> or shows some understanding.
13(b) (iii)	To find v for $x = 20$ and $y = 6$ $6 = -\frac{5 \times 20^2}{v^2} \sec^2 40^\circ + 20 \times \tan 40^\circ$	2 Marks: Correct answer.
	$v^{2} = \frac{5 \times 20^{2} \times \sec^{2} 40^{\circ}}{20 \tan 40^{\circ} - 6}$ v = 17.77917137 $\approx 17.8 \text{ ms}^{-1}$	1 Mark: Makes some progress towards the solution.
13(c) (i)	Will have an inverse if strictly increasing or strictly decreasing only. Largest domain, containing $x = 0$ where this occurs is $x \le 2$	1 Mark: Correct answer.
13(c) (ii)	Domain of $y = f^{-1}(x)$ is the range of $y = f(x)$. Range of $y = f(x)$ is $y \ge 0$. \therefore domain of $y = f^{-1}(x)$ is $x \ge 0$.	1 Mark: Correct answer.
13(c) (iii)	Interchanging x and y, the inverse is $x = (y-2)^2$ $y-2 = \pm \sqrt{x}$ $y = 2 \pm \sqrt{x}$ But as $x \le 2$ for the inverse to exist, $y = 2 - \sqrt{x}$.	1 Mark: Correct answer.
13(c) (iv)	$y = f(x)$ and $y = f^{-1}(x)$ intersect on the line $y = x$. $\therefore y = (x-2)^2$ and $y = x$ can be solved simultaneously to give the points of intersection for $y = f(x)$ and $y = f^{-1}(x)$. They meet when $x = (x-2)^2$ i.e. when $x = x^2 - 4x + 4$	2 Marks: correct explanation for why $x = (x-2)^2$ gives the point of intersection; and correctly solves equation and

	$x^{2} -5x + 4 = 0$ $(x - 4)(x - 1) = 0$ $x = 1 \text{ or } 4$ But as $x \le 2$ for the inverse to exist, $y = f(x)$ and its inverse meet when $x = 1$.	explains why one solution only. 1 Mark: one of above
14(a)	$\int \cos^2 2x dx = \int \frac{1}{2} (1 + \cos 4x) dx$	2 Marks: Correct answer.
	$= \frac{1}{2} \left[x + \frac{1}{4} \sin 4x \right] + c$ $= \frac{x}{2} + \frac{1}{8} \sin 4x + c$	1 Mark: Uses double angle formula.

14/1		
14(b) (i)	Simple harmonic motion occurs when $\ddot{x} = -n^2 x$	2 Marks: Correct answer.
(1)	$Now x = 3\cos 2t + 4\sin 2t$	1 Mark:
	$\dot{x} = -3 \times 2\sin 2t + 4 \times 2\cos 2t$	Recognises the
	$\ddot{x} = -3 \times 2^2 \cos 2t - 4 \times 2^2 \sin 2t$	condition for
	$=-2^2(3\cos 2t+4\sin 2t)$	SHM.
	$\ddot{x} = -2^2 x$	
14(b)	Maximum speed at $\ddot{x} = 0$ or $x = 0$ (centre of motion)	2 Marks: Correct
(ii)	$x = 3\cos 2t + 4\sin 2t = 0$	answer.
	$4\sin 2t = -3\cos 2t$	1
	$\tan 2t = -\frac{3}{4}$	1 Mark: Makes some progress
	4	towards the
	$2t = \tan^{-1}(-0.75) + n\pi$, where <i>n</i> is an integer	solution.
	$2t = -0.6435011088 + 0, \pi, 2\pi$	
	Smallest positive value of <i>t</i> for maximum speed	
	$t = \frac{1}{2}(-0.6435011088 + \pi) = 1.249045772$	
	$\dot{x} = -3 \times 2\sin(2 \times 1.24) + 4 \times 2\cos(2 \times 1.24) = -10$	
	Maximum speed is 10	
	Alternatively using the auxillary angle method	
	i.e. $v = -6\sin 2t + 8\cos 2t$ i.e. $v = 8\cos 2t - 6\sin 2t$	
	now writing this in the form $v = R\cos(2t + \alpha)$	
	$R = \sqrt{\left(-6\right)^2 + \left(8\right)^2} = 10$	
	$\alpha = \tan^{-1}(\frac{6}{8})$	
	$v = 10\cos(2t + \tan^{-1} 0.75)$ which has a maximum value of 10.	
14(c) (i)	$T = Ae^{-kt} - 12$ or $Ae^{-kt} = T + 12$	1 Mark: Correct
(1)	$\frac{dT}{dt} = -kAe^{-kt}$	answer.
	dt	
14()	=-k(T+12)	
14(c) (ii)	Initially $t = 0$ and $T = 24$,	1 Mark: Correct
(11)	$T = Ae^{-kt} - 12$	answer.
	$24 = Ae^{-k \times 0} - 12$	
	<i>A</i> = 36	
14(c) (iii)	Also $t = 15$ and $T = 9$	3 Marks: Correct
	$9 = 36e^{-k \times 15} - 12$	answer.
	$e^{-15k} = \frac{21}{36} = \frac{7}{12}$	2 Marks: Determines the
	36 12	value of e^{-kt} or
		makes significant

Frensham Trial HSC Mathematics Extension 1 Solutions

$15k - \log 7$	progress.
$-15k = \log_e \frac{7}{12}$	1 Mark: Finds the
k = 1 log 7	exact value of k
$k = -\frac{15}{15} \log_e \frac{12}{12}$	or shows some
= 0.03593310005	understanding.
We need to find <i>t</i> when $T = 0$	

14(d)	$0 = 36e^{-kt} - 12$ $e^{-kt} = \frac{12}{36} = \frac{1}{3}$ $-kt = \log_e \frac{1}{3}$ $t = -\frac{1}{k} \log_e \frac{1}{3}$ $= 30.5738243 \approx 31 \text{ minutes}$ It will take about 31 minutes for the water to cool to 0°C Facing front: Number of ways = 5×4×7!	2 Marks: Correct
(i)	Facing back: Number of ways = $4 \times 3 \times 7!$ Total number of ways = $(5 \times 4 + 4 \times 3) \times 7!$ = $161\ 280$	answer. 1 Mark: Makes some progress towards the solution.
14(d) (ii)	Alex facing front and Bella facing back Number of ways = $5 \times 4 \times 7!$ Bella facing front and Alex facing back Number of ways = $5 \times 4 \times 7!$ Total number of ways = $(5 \times 4 \times 7!) \times 2$ = 201 600	2 Marks: Correct answer. 1 Mark: Makes some progress towards the solution.