

2014

YEAR 12

TRIAL HSC EXAMINATION

Mathematics Extension 1

General Instructions

- Reading time - 5 minutes
- Working time - 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- Show all necessary working in Questions 11-14

Total marks - 70

Section I

10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II

60 marks

- Attempt Questions 11-14
- Allow about 1 hour 45 minutes for this section

Section I

10 marks

Attempt Questions 1-10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1-10

1 What is the domain and range of $y=\frac{1}{2} \cos ^{-1}\left(\frac{x}{2}\right)$?
(A) Domain: $-2 \leq x \leq 2$ Range: $0 \leq y \leq \pi$
(B) Domain: $-1 \leq x \leq 1$ Range: $0 \leq y \leq \pi$
(C) Domain: $-2 \leq x \leq 2$ Range: $0 \leq y \leq \frac{\pi}{2}$
(D) Domain: $-1 \leq x \leq 1$ Range: $0 \leq y \leq \frac{\pi}{2}$

2 When a polynomial $P(x)=x^{3}+a x+1$ is divided by $(x+2)$ the remainder is 5 . What is the value of a ?
(A) -6
(B) -3.5
(C) 2
(D) 3

3 Which of the following is an expression for $\int \frac{x}{\left(2-x^{2}\right)^{3}} d x$?
Use the substitution $u=2-x^{2}$.
(A) $\frac{1}{2\left(2-x^{2}\right)^{2}}+C$
(B) $\frac{1}{4\left(2-x^{2}\right)^{2}}+C$
(C) $\frac{1}{4\left(2-x^{2}\right)^{4}}+C$
(D) $\frac{1}{8\left(2-x^{2}\right)^{4}}+C$

4 What is the exact value of the definite integral $\int_{0}^{1} \frac{1}{x^{2}+1} d x$?
(A) $\frac{\pi}{4}$
(B) $\frac{\pi}{3}$
(C) $\frac{\pi}{2}$
(D) π

5 How many arrangements of all of the letters of the word PROBABILITY are possible?
(A) 362880
(B) 9979200
(C) 19958400
(D) 39916800

6 Find the acute angle between the lines $y=2 x$ and $x+y-5=0$. Answer correct to the nearest degree.
(A) 18°
(B) 32°
(C) 45°
(D) 72°

7 Find the value of x :
(A) 30°
(B) 45°
(C) 60°
(D) 90°

8 What are the coordinates of the point that divides the interval joining the points $A(-1,2)$ and $B(3,5)$ externally in the ratio $3: 1$?
(A) $(2.5,4.25)$
(B) $(2.5,6.5)$
(C) $(5,4.25)$
(D) $(5,6.5)$

9 What is the solution to the inequality $\frac{2 x-5}{x-4} \geq x$?
(A) $x \leq-1$ and $4 \leq x \leq 5$
(B) $x \leq-1$ and $4<x \leq 5$
(C) $x \leq 1$ and $4 \leq x \leq 5$
(D) $x \leq 1$ and $4<x \leq 5$

10 The velocity of a particle moving in a straight line is given by $v=2 x+5$, where x metres is the distance from fixed point O and v is the velocity in metres per second. What is the acceleration of the particle when it is 1 metre to the right of O ?
(A) $a=7 \mathrm{~ms}^{-2}$
(B) $a=12 \mathrm{~ms}^{-2}$
(C) $a=14 \mathrm{~ms}^{-2}$
(D) $a=24 \mathrm{~ms}^{-2}$

Section II

60 marks

Attempt Questions $11 \square 14$
Allow about 1 hour and 45 minutes for this section
Answer each question in the appropriate writing booklet.
All necessary working should be shown in every question.

Question 11 (15 marks)

Marks

(a) What are the roots of the equation $4 x^{3}-4 x^{2}-29 x+15=0$ given that one root is the difference between the other two roots?
(b) A circle, centre O, passes through the points A, C, D and E.

Another circle, centre P, passes through the points A and O.
$C E$ is a tangent to the circle centre P, with point of contact at O. $A B$ is a tangent to both circles with point of contact at A.
$\angle C B A=x^{\circ}$.
Show that $\angle C E D=(90-x)^{\circ}$

(c) Prove the following identity

$$
\frac{\sin \theta}{\sin _{\theta}+\cos \theta}+\frac{\sin \theta}{\cos \theta-\sin \theta}=\tan 2 \theta
$$

(d) A class consists of 10 boys and 12 girls. How many ways are there of selecting a committee of 3 boys and 2 girls from this class?
(e) Point A is due south of a hill and the angle of elevation from A to the top of the hill is 35°. Another point B is a bearing 200° from the hill and the angle of elevation from B to the top of the hill is 46°. The distance $A B$ is 220 m .

(i) Express $O A$ and $O B$ in terms of h.
(ii) Calculate the height h of the hill correct to three significant figures.
(f) Factorise $x^{3}+3 x^{2}-9 x+5$ 2
(a) The tangent at the point $P\left(2 a p, a p^{2}\right)$ on the parabola $x^{2}=4 a y$ cuts the x-axis at A and the y-axis at B.
(i) Find the coordinates of M, the midpoint of A and B in terms of P.

2
(ii) Show that the locus of M is a parabola.
(iii) Find the coordinates of the focus of this parabola and the equation of the directrix.
(b) Use the principle of mathematical induction to prove that for all positive integers n :

$$
1+2+4+\ldots+2^{n-1}=2^{n}-1
$$

(c) Find the exact value of $\sin \left[\cos ^{-1} \frac{2}{3}+\tan ^{-1}\left(-\frac{3}{4}\right)\right]$
(d) Find all the angles θ with $0 \leq \theta \leq 2 \pi$ for which $\sin \theta+\cos \theta=1$.
(e) The function $f(x)$ is given by $f(x)=\sin ^{-1} x+\cos ^{-1} x, 0 \leq x \leq 1$.
(i) Find $f^{\prime}(x)$.
(ii) Sketch the graph of $y=f(x)$.

1
2

3

2

Question 13 (15 marks)
Marks
(a) (i) Show that the function $f(x)=x e^{x}-1$ has a zero between $x=0$ and $x=1$.
(ii) Using $x=0.5$ as the first approximation, use Newton's Method to obtain a second approximation. Answer correct to 2 decimal places.
(b) A golfer hits a golf ball to clear a 6 metres high tree. The tree is 20 metres away on level ground. The golfer uses a golf club that produces an angle of elevation of 40°. Take $g=10 \mathrm{~ms}^{-1}$.
(i) Derive the expressions for the vertical and horizontal components of the displacement of the ball from the point of projection.
(ii) Find the Cartesian equation of the flight path?
(iii) Calculate the speed at which the ball must leave the ground to just clear the tree. Answer correct to one decimal place.
(c)

Consider the curve $f(x)=(x-2)^{2}$
(i) If the domain is to be restricted to the largest possible domain that contains $x=0$, so that an inverse function will exist, state the domain.
(ii) What is the domain of $f^{-1}(x)$?
(iii) What is the equation of $f^{-1}(x)$?
(iv) Explain why $x=(x-2)^{2}$ gives the points of intersection of $y=f(x)$

2 and $y=f^{-1}(x)$ and hence why $x=1$ is the only point of intersection.
(a) Find $\int \cos ^{2} 2 x d x$
(b) A particle moves in a straight line and its position at any time is given by:

$$
x=3 \cos 2 t+4 \sin 2 t
$$

(i) Prove that the motion is simple harmonic. $\mathbf{2}$
(ii) Calculate the particle's greatest speed.
(c) Water at a temperature of $24^{\circ} \mathrm{C}$ is placed in a freezer maintained at a temperature of $-12^{\circ} \mathrm{C}$. After time t minutes the rate of change of temperature T of the water is given by the formula:

$$
\frac{d T}{d t}=-k(T+12)
$$

where t is the time in minutes and k is a positive constant.
(i) Show that $T=A e^{-k t}-12$ is a solution of this equation, where A is a constant.
(ii) Find the value of A.
(iii) After 15 minutes the temperature of the water falls to $9^{\circ} \mathrm{C}$. Find to the nearest minute the time taken for the water to start freezing. (Freezing point of water is $0^{\circ} \mathrm{C}$).
(d) Each rectangular table in a hall has nine seats, five facing the front and four facing the back. In how many ways can 9 people be seated at a table if:
(i) Alex and Bella must sit on the same side.
(ii) Alex and Bella must sit on opposite sides

End of paper

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \\
& =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0 \text {, if } n<0 \\
& \int \frac{1}{x} d x \\
& =\ln x, x>0 \\
& \int e^{a x} d x \\
& =\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, a \neq 0 \\
& \int \sec a x \tan a x d x \quad=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right) x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$

Frensham 2014

HSC Mathematics Extension 1 Trial HSC Examination

Worked solutions and marking guidelines

Section I		
	Solution	Criteria
1	Domain: $-1 \leq \frac{x}{2} \leq 1$ or $-2 \leq x \leq 2$. Range: $\frac{1}{2} \times 0 \leq y \leq \frac{1}{2} \times \pi$ or $0 \leq y \leq \frac{\pi}{2}$	1 Mark: C
2	$\begin{aligned} P(x) & =x^{3}+a x+1 \\ P(-2) & =(-2)^{3}+a \times-2+1=5 \\ -2 a & =12 \\ a & =-6 \end{aligned}$	1 Mark: A
3	$\begin{array}{rlrl} & \int \frac{x}{\left(2-x^{2}\right)^{3}} d x & =-\frac{1}{2} \int \frac{1}{u^{3}} d u \\ u & =2-x^{2} & & =-\frac{1}{2} \times-\frac{1}{2} u^{-2}+C \\ \frac{d u}{d x} & =-2 x & & =\frac{1}{4\left(2-x^{2}\right)^{2}}+C \end{array}$	1 Mark: B
4	$\begin{aligned} \int_{0}^{1} \frac{1}{x^{2}+1} d x & =\left[\tan ^{-1} x\right]_{0}^{1} \\ & =\frac{\pi}{4}-0 \\ & =\frac{\pi}{4} \end{aligned}$	1 Mark: A
5	$\begin{aligned} \text { Number of arrangements } & =\frac{11!}{2 \times 2!} \quad(2 \text { I's and } 2 \text { B's }) \\ & =9979200 \end{aligned}$	1 Mark: B
6	For $y=2 x$ then $m_{1}=2 \quad$ For $x+y-5=0$ then $m_{2}=-1$	1 Mark: D

$\tan \theta$	$=\left\|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right\|=\left\|\frac{2-(-1)}{1+2 \times-1}\right\|$
	$=3$
θ	$=71.56505118 \ldots$
	$\approx 72^{\circ}$

7		1 Mark: A
8	$A(-1,2)$ and $B(3,5)$ with $3:-1$ $\begin{aligned} x & =\frac{m x_{2}+n x_{1}}{m+n} & y & =\frac{m y_{2}+n y_{1}}{m+n} \\ & =\frac{3 \times 3+-1 \times-1}{3+-1} & & =\frac{3 \times 5+-1 \times 2}{3+-1} \\ & =5 & & =6.5 \end{aligned}$ Point is $(5,6.5)$	1 Mark: D
9	$\begin{aligned} (x-4)^{2} \times \frac{2 x-5}{x-4} & \geq x \times(x-4)^{2} \quad(x \neq 4) \\ (x-4)(2 x-5)-x(x-4)^{2} & \geq 0 \\ (x-4)[(2 x-5)-x(x-4)] & \geq 0 \\ (x-4)\left(-x^{2}+6 x-5\right) & \geq 0 \\ (x-4)(x-5)(1-x) & \geq 0 \end{aligned}$ Critical points are 1,4 and 5 or use a sketch and where the	1 Mark: D

	polynomial is above the x-axis. Test values in each region $x \leq 1$ and $4<x \leq 5$	
Note Alternate method: since $x \neq 4$ answer must be B or D then test $x=0$ in original inequality which gives $\frac{5}{4}>0$ which is true so $x=0$ must be included in the solution $\therefore \mathrm{D}$		
10	$v=2 x+5$ $v^{2}=4 x^{2}+20 x+25$ $\frac{1}{2} v^{2}=2 x^{2}+10 x+\frac{25}{2}$ $a=\frac{d}{d x}$ $=4 x+10$ When $x=1$ then $a=14$	1 Mark: C

Sectio				
11(a)	Let the roots be α, β and $\alpha-\beta$. $\begin{aligned} 4 x^{3}-4 x^{2}-29 x & +15=0 \\ \alpha+\beta+(\alpha-\beta) & =-\frac{b}{a}=-\frac{-4}{4}=1 \\ 2 \alpha & =1 \text { or } \alpha=\frac{1}{2} \\ \alpha \beta(\alpha-\beta) & =-\frac{d}{a} \\ \frac{1}{2} \beta\left(\frac{1}{2}-\beta\right) & =-\frac{15}{4} \\ \beta\left(\frac{1}{2}-\beta\right) & =-\frac{15}{2} \\ 2 \beta^{2}-\beta-15 & =0 \\ (2 \beta+5)(\beta-3) & =0 \\ \beta & =-\frac{5}{2} \text { or } \beta=3 \end{aligned}$ Roots are $x=-\frac{5}{2}, x=\frac{1}{2}$ and $x=3$	3 Marks: Correct answer. 2 Marks: Makes significant progress towards the solution. 1 Mark: Finds the sum or product of the roots.		
11(b)	$\angle P A B=90^{\circ}$ (Angle between a tangent and radius) $\angle P O C=90^{\circ}$ (Λ ngle between a tangent and radius) $\therefore O C \\| A B$ (cointerior angles are supplementary) $\therefore \quad \angle O C B=180-x^{\circ}$ (Cointerior angles on $\\|$ lines) $\therefore \quad \angle D C E=x^{\circ}$ (angles on straight line) $\angle E D C C^{\prime}=90^{\circ}$ (angle in a semicircle is a right angle) $\angle C E D=180^{\circ}-90^{\circ}-x^{\circ}($ angle sum $\triangle C E D)$ $\therefore \quad \angle C E D=90^{\circ}-x^{\circ}$	2 Marks: Correct answer. 1 Marks: Makes some progress towards the solution.		

11(c)	$\begin{aligned} \text { LHS } & =\frac{\sin \theta}{\sin \theta+\cos \theta}+\frac{\sin \theta}{\cos \theta-\sin \theta} \\ & =\frac{\sin \theta(\cos \theta-\sin \theta)+\sin \theta(\cos \theta+\sin \theta)}{(\cos \theta+\sin \theta)(\cos \theta-\sin \theta)} \\ & =\frac{2 \sin _{\theta} \cos \theta}{\cos ^{2} \theta-\sin ^{2} \theta} \\ & =\frac{\sin 2 \theta}{\cos 2 \theta} \\ & =\tan 2 \theta=\text { RHS } \end{aligned}$	2 Marks: Correct answer. 1 Marks: Uses a relevant trigonometric identity
11(d)	$\begin{aligned} \text { Number of ways } & ={ }^{10} C_{3} \times{ }^{12} C_{2} \\ & =120 \times 66 \\ & =7920 \end{aligned}$ Class can be selected in 7920 ways.	2 Marks: Correct answer. 1 Marks: Shows some understanding.

$\begin{gathered} \hline \text { 11(e) } \\ \text { (i) } \end{gathered}$	In $\triangle \mathrm{HOA}$ In $\triangle \mathrm{HOB}$ $\tan 35^{\circ}=\frac{h}{O A}$ $\tan 46^{\circ}=\frac{h}{O B}$ $O A=\frac{h}{\tan 35^{\circ}}$ $O B=\frac{h}{\tan 46^{\circ}}$	2 Marks: Correct answer. 1 Mark: One correct expression or shows some understanding of the problem.
$\begin{gathered} \text { 11(e) } \\ \text { (ii) } \end{gathered}$	$\begin{aligned} A B^{2} & =O A^{2}+O B^{2}-2 \times O A \times O B \times \cos 20^{\circ} \\ 220^{2} & =\left(\frac{h}{\tan 35^{\circ}}\right)^{2}+\left(\frac{h}{\tan 46^{\circ}}\right)^{2}-2 \times \frac{h}{\tan 35^{\circ}} \times \frac{h}{\tan 46^{\circ}} \times \cos 20^{\circ} \\ & =h^{2}\left(\frac{1}{\tan ^{2} 35^{\circ}}+\frac{1}{\tan ^{2} 46^{\circ}}-2 \times \frac{\cos 20^{\circ}}{\tan 35^{\circ} \times \tan 46^{\circ}}\right) \\ h^{2} & =220^{2} \div\left(\frac{1}{\tan ^{2} 35^{\circ}}+\frac{1}{\tan ^{2} 46^{\circ}}-2 \times \frac{\cos 20^{\circ}}{\tan 35^{\circ} \times \tan 46^{\circ}}\right) \\ & =127296.7453 \ldots \\ h & =356.7866944 \ldots \approx 357 \mathrm{~m} \end{aligned}$	2 Marks: Correct answer. 1 Mark: Uses the cosine rule with at least one correct value.
11(f)	Factors of 5 are $\{ \pm 1, \pm 5\}$ $P(1)=1^{3}+3 \times 1^{2}-9 \times 1+5=0$ Therefore $(x-1)$ is a factor of $x^{3}+3 x^{2}-9 x+5$ $\begin{aligned} & x - 1 \longdiv { x ^ { 2 } + 4 x - 5 } \\ & \frac{x^{3}-x^{2}}{4 x^{2}-9 x+5} \\ & \frac{4 x^{2}-4 x}{-5 x+5} \\ & \quad \frac{-5 x+5}{2} \\ & \begin{aligned} P(x) & =x^{3}+3 x^{2}-9 x+5=(x-1)\left(x^{2}+4 x-5\right) \\ & =(x-1)(x-1)(x+5)=(x-1)^{2}(x+5) \end{aligned} \end{aligned}$	2 Marks: Correct answer. 1 Mark: Finds one factor or shows some understanding.

$\begin{gathered} \text { 12(a) } \\ \text { (i) } \end{gathered}$	To find the gradient of the tangent $y=\frac{1}{4 a} x^{2} \text { and } \frac{d y}{d x}=\frac{1}{2 a} x$ At $P\left(2 a p, a p^{2}\right) \frac{d y}{d x}=\frac{1}{2 a} \times 2 a p=p$ Equation of the tangent at $P\left(2 a p, a p^{2}\right)$ $\begin{aligned} y-y_{1} & =m\left(x-x_{1}\right) \\ y-a p^{2} & =p(x-2 a p) \\ y & =p x-a p^{2} \end{aligned}$ x-intercept $(y=0)$ then $x=a p$. Hence $A(a p, 0)$ y-intercept $(x=0)$ then $y=-a p^{2}$. Hence $B\left(0,-a p^{2}\right)$ Midpoint of A and B. $M\left(\frac{a p+0}{2}, \frac{0+-a p^{2}}{2}\right)=M\left(\frac{a p}{2}, \frac{-a p^{2}}{2}\right)$	2 Marks: Correct answer. 1 Mark: Finds the gradient of the tangent or the coordinates of A and B.
$\begin{gather*} \text { 12(a) } \\ \text { (ii) } \tag{2} \end{gather*}$	To find the locus of M eliminate p from coordinates of M Now $x=\frac{a p}{2}$ (1) and $y=\frac{-a p^{2}}{2}$ From (1) $p=\frac{2 x}{a}$ and sub into eqn (2) $y=\frac{-a\left(\frac{2 x}{a}\right)^{2}}{2}=\frac{-a}{2} \times \frac{4 x^{2}}{a^{2}}=-\frac{2 x^{2}}{a}$ or $x^{2}=-\frac{1}{2}$ ay (parabola)	1 Mark: Correct answer.
$\begin{gathered} \text { 12(a) } \\ \text { (iii) } \end{gathered}$	$x^{2}=-\frac{1}{2} a y=4 \times\left(-\frac{1}{8} a\right) \times y$ Focus is $\left(0,-\frac{1}{8} a\right)$ and equation of the directrix $y=\frac{1}{8} a$	1 Mark: Correct answer.
12(b)	Step 1: To prove the statement true for $n=1$ $\text { LHS }=1 \quad \text { RHS }=2^{1}-1=1$ Result is true for $n=1$ Step 2: Assume the result true for $n=k$ $1+2+4+\ldots+2^{k-1}=2^{k}-1$ Step 3: To prove the result is true for $n=k+1$ i.e. prove $1+2+4+\ldots+2^{k-1}+2^{k}=2^{k+1}-1$	3 Marks: Correct answer. 2 Marks: Proves the result true for $n=1$ and attempts to use the result of $n=k$ to prove the result for $n=k+1$.

	$\begin{array}{rlr} \text { LHS } & =1+2+4+\ldots+2^{k-1}+2^{k} & \\ & =2^{k}-1+2^{k} & \\ & =2 \times 2^{k}-1 & \\ & =2^{k+1}-1 & \\ & =\text { RHS } & \end{array}$ Result is true for $n=k+1$ if true for $n=k$ Step 3: Proven true for $\mathrm{n}=1$, assuming true for $\mathrm{n}=\mathrm{k}$ proven true for $\mathrm{n}=\mathrm{k}+1$, so true for $\mathrm{n}=1+1=2,1+2=3$, and Result true by principle of mathematical induction for all positive integers n.	1 Mark: Proves the result true for $n=1$.
12(c)	$\sin \left[\cos ^{-1} \frac{2}{3}+\tan ^{-1}\left(\frac{-3}{4}\right)\right]=\sin \left[\cos ^{-1} \frac{2}{3}-\tan ^{-1} \frac{3}{4}\right]$ Let $\alpha=\cos ^{-1} \frac{2}{3}$ and $\beta=\tan ^{-1} \frac{3}{4}$ $\begin{aligned} \sin \left[\cos ^{-1} \frac{2}{3}-\tan ^{-1} \frac{3}{4}\right] & =\sin \alpha \cos \beta-\cos \alpha \sin \beta \\ & =\frac{\sqrt{5}}{3} \times \frac{4}{5}-\frac{2}{3} \times \frac{3}{5} \\ & =\frac{4 \sqrt{5}}{15} \end{aligned}$	2 Marks: Correct answer. 1 Mark: Sets up the two triangles or shows some understanding of the problem.
12(d)	$\begin{aligned} & \text { Let } \begin{aligned} \sin \theta+\cos \theta & =R \sin (\theta+\alpha) \\ & =R \sin \theta \cos \alpha+R \cos \theta \sin \alpha \end{aligned} \\ & \therefore R \cos \alpha=1 \text { and } R \sin \alpha=1 \end{aligned} \quad \begin{aligned} R^{2}\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right) & =2 \text { and } \tan \alpha=1 \text { or } \alpha=\frac{\pi}{4} \\ R & =\sqrt{2} \end{aligned}$	3 Marks: Correct answer. 2 Marks: Finds two angles or makes significant progress towards the solution. 1 Mark: Sets up the sum of two

	$\sin \theta+\cos \theta=\sqrt{2} \sin \left(\theta+\frac{\pi}{4}\right)=1$ $\sin \left(\theta+\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}$ $\theta+\frac{\pi}{4}=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{9 \pi}{4}, \ldots$ $\theta=0, \frac{\pi}{2}, 2 \pi$	angles or shows some understanding of the problem.
	12(e) (i)	$f(x)=\sin ^{-1} x+\cos ^{-1} x$ $f^{\prime}(x)=\frac{1}{\sqrt{1-x^{2}}}-\frac{1}{\sqrt{1-x^{2}}}=0$ 1 Mark: Correct answer.

$\begin{gathered} \text { 12(e) } \\ \text { (ii) } \end{gathered}$	Since $f^{\prime}(x)=0, f(x)$ is a constant (gradient of tangent is 0) Let $x=0$ then $f(0)=\sin ^{-1} 0+\cos ^{-1} 0=0+\frac{\pi}{2}=\frac{\pi}{2}$ Therefore $f(x)=\frac{\pi}{2}$ for $0 \leq x \leq 1$	2 Marks: Correct answer. 1 Mark: Recognises that the graph is a horizontal line or shows some understanding of the problem.
$\begin{aligned} & 13(\\ & \text { (i) } \end{aligned}$	$\begin{aligned} & f(x)=x e^{x}-1 \\ & f(0)=0 \times e^{0}-1=-1<0 \\ & f(1)=1 \times e^{1}-1=e-1>0 \end{aligned}$ Since $f(0)$ and $f(1)$ have opposite signs and $f(x)$ is a continuous function Therefore the root lies between $x=0$ and $x=1$.	1 Mark: Correct answer
13(a) (ii)	$\begin{array}{ll} f(x)=x e^{x}-1 & f^{\prime}(x)=x e^{x}+e^{x}=e^{x}(x+1) \\ f(0.5)=0.5 e^{0.5}-1 & f^{\prime}(0.5)=e^{0.5}(0.5+1)=1.5 e^{0.5} \\ x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \\ & =0.5-\left(\frac{0.5 e^{0.5}-1}{1.5 e^{0.5}}\right)=0.5710204398 \ldots \approx 0.57 \end{array}$	2 Marks: Correct answer. 1 Mark: Finds $f(0.5), f^{\prime}(0.5)$ or shows some understanding of Newton's method.
$\begin{gathered} \text { 13(b) } \\ \text { (i) } \end{gathered}$	$\begin{align*} \text { Horizontal Motion } \begin{aligned} \ddot{x} & =0 \\ \dot{x} & =c_{1} \quad\left(\text { when } t=0, \dot{x}=v \cos 40^{\circ}\right) \\ \dot{x} & =v \cos 40^{\circ} \\ x & =v \cos 40^{\circ} t+c_{2}(\text { when } t=0, x=0) \\ x & =v \cos 40^{\circ} t \quad(1) \\ \text { Vertical Motion } \ddot{y} & =-10 \\ \dot{y} & =-10 t+c_{1} \quad\left(\text { when } t=0, \dot{y}=v \sin 40^{\circ}\right) \\ \dot{y} & =-10 t+v \sin 40^{\circ} \\ y & =-5 t^{2}+v \sin 40^{\circ} t+c_{2}(\text { when } t=0, y=0) \\ y & =-5 t^{2}+v \sin 40^{\circ} t \quad(2) \end{aligned} \end{align*}$	3 Marks: Correct answer. 2 Marks: Derives either the horizontal or vertical equations of motion. 1 Mark: States the expressions.

$\begin{gathered} \text { 13(b) } \\ \text { (ii) } \end{gathered}$	From eqn (1) $t=\frac{x}{v \cos 40^{\circ}}$ sub into eqn (2) $\begin{aligned} y & =-5\left(\frac{x}{v \cos 40^{\circ}}\right)^{2}+v \sin 40^{\circ}\left(\frac{x}{v \cos 40^{\circ}}\right) \\ & =-\frac{5 x^{2}}{v^{2}} \sec ^{2} 40^{\circ}+x \tan 40^{\circ} \end{aligned}$	2 Marks: Correct answer. 1 Mark: Eliminates t or shows some understanding.
$\begin{gathered} \text { 13(b) } \\ \text { (iii) } \end{gathered}$	To find v for $x=20$ and $y=6$ $\begin{aligned} 6 & =-\frac{5 \times 20^{2}}{v^{2}} \sec ^{2} 40^{\circ}+20 \times \tan 40^{\circ} \\ v^{2} & =\frac{5 \times 20^{2} \times \sec ^{2} 40^{\circ}}{20 \tan 40^{\circ}-6} \\ v & =17.77917137 \ldots \\ & \approx 17.8 \mathrm{~ms}^{-1} \end{aligned}$	2 Marks: Correct answer. 1 Mark: Makes some progress towards the solution.
$\begin{gathered} \text { 13(c) } \\ \text { (i) } \end{gathered}$	 Will have an inverse if strictly increasing or strictly decreasing only. Largest domain, containing $x=0$ where this occurs is $x \leq 2$	1 Mark: Correct answer.
$\begin{gathered} \text { 13(c) } \\ \text { (ii) } \end{gathered}$	Domain of $y=f^{-1}(x)$ is the range of $y=f(x)$. Range of $y=f(x)$ is $y \geq 0$. \therefore domain of $y=f^{-1}(x)$ is $x \geq 0$.	1 Mark: Correct answer.
$\begin{gathered} \text { 13(c) } \\ \text { (iii) } \end{gathered}$	Interchanging x and y, the inverse is $x=(y-2)^{2}$ $\begin{aligned} & y-2= \pm \sqrt{x} \\ & y=2 \pm \sqrt{x} \end{aligned}$ But as $x \leq 2$ for the inverse to exist, $y=2-\sqrt{x}$.	1 Mark: Correct answer.
$\begin{gathered} \text { 13(c) } \\ \text { (iv) } \end{gathered}$	$y=f(x)$ and $y=f^{-1}(x)$ intersect on the line $\boldsymbol{y}=\boldsymbol{x}$. $\therefore y=(x-2)^{2}$ and $y=x$ can be solved simultaneously to give the points of intersection for $y=f(x)$ and $y=f^{-1}(x)$. They meet when $x=(x-2)^{2}$ i.e. when $x=x^{2}-4 x+4$	2 Marks: correct explanation for why $x=(x-2)^{2}$ gives the point of intersection; and correctly solves equation and

$\left.\begin{array}{|l|l|l|}\hline & \begin{array}{l}x^{2}-5 x+4=0 \\ (x-4)(x-1)=0 \\ x=1 \text { or } 4 \\ \text { But as } x \leq 2 \text { for the inverse to exist, } y=f(x) \text { and its } \\ \text { inverse meet when } x=1 .\end{array} & \begin{array}{l}\text { explains why one } \\ \text { solution only. } \\ 1 \text { Mark: one of } \\ \text { above }\end{array} \\ \hline 14(\mathrm{a}) & \begin{array}{rl}\int \cos ^{2} 2 x d x & =\int \frac{1}{2}(1+\cos 4 x) d x \\ & =\frac{1}{2}\left[x+\frac{1}{4} \sin 4 x\right]+c \\ = & \frac{x}{2}+\frac{1}{8} \sin 4 x+c\end{array} & \begin{array}{l}2 \text { Marks: Correct } \\ \text { answer. }\end{array} \\ 1 \text { Mark: Uses } \\ \text { double angle } \\ \text { formula. }\end{array}\right]$

$\begin{gathered} \text { 14(b) } \\ \text { (i) } \end{gathered}$	Simple harmonic motion occurs when $\ddot{x}=-n^{2} x$ $\text { Now } \begin{aligned} x & =3 \cos 2 t+4 \sin 2 t \\ \dot{x} & =-3 \times 2 \sin 2 t+4 \times 2 \cos 2 t \\ \ddot{x} & =-3 \times 2^{2} \cos 2 t-4 \times 2^{2} \sin 2 t \\ & =-2^{2}(3 \cos 2 t+4 \sin 2 t) \\ \ddot{x} & =-2^{2} x \end{aligned}$	2 Marks: Correct answer. 1 Mark: Recognises the condition for SHM.
$\begin{gathered} \text { 14(b) } \\ \text { (ii) } \end{gathered}$	Maximum speed at $\ddot{x}=0$ or $x=0$ (centre of motion) $x=3 \cos 2 t+4 \sin 2 t=0$ $4 \sin 2 t=-3 \cos 2 t$ $\tan 2 t=-\frac{3}{4}$ $2 t=\tan ^{-1}(-0.75)+n \pi$, where n is an integer $2 t=-0.6435011088 \ldots+0, \pi, 2 \pi$ Smallest positive value of t for maximum speed $\begin{aligned} & t=\frac{1}{2}(-0.6435011088 \ldots+\pi)=1.249045772 \ldots \\ & \dot{x}=-3 \times 2 \sin (2 \times 1.24 \ldots)+4 \times 2 \cos (2 \times 1.24 \ldots)=-10 \end{aligned}$ Maximum speed is 10 Alternatively using the auxillary angle method i.e. $v=-6 \sin 2 t+8 \cos 2 t$ i.e. $v=8 \cos 2 t-6 \sin 2 t$ now writing this in the form $v=R \cos (2 t+\alpha)$ $\begin{aligned} & R=\sqrt{(-6)^{2}+(8)^{2}}=10 \\ & \alpha=\tan ^{-1}\left(\frac{6}{8}\right) \end{aligned}$ $v=10 \cos \left(2 t+\tan ^{-1} 0.75\right)$ which has a maximum value of 10 .	2 Marks: Correct answer. 1 Mark: Makes some progress towards the solution.
$\begin{gathered} \text { 14(c) } \\ \text { (i) } \end{gathered}$	$\begin{aligned} T & =A e^{-k t}-12 \quad \text { or } A e^{-k t}=T+12 \\ \frac{d T}{d t} & =-k A e^{-k t} \\ & =-k(T+12) \end{aligned}$	1 Mark: Correct answer.
$\begin{gathered} \text { 14(c) } \\ \text { (ii) } \end{gathered}$	Initially $t=0$ and $T=24$, $\begin{aligned} & T=A e^{-h t}-12 \\ & 24=A e^{-k \times 0}-12 \\ & A=36 \end{aligned}$	1 Mark: Correct answer.
$\begin{gathered} \text { 14(c) } \\ \text { (iii) } \end{gathered}$	$\begin{gathered} \text { Also } t=15 \text { and } T=9 \\ 9=36 e^{-k \times 15}-12 \\ e^{-15 k}=\frac{21}{36}=\frac{7}{12} \end{gathered}$	3 Marks: Correct answer. 2 Marks: Determines the value of $e^{-k t}$ or makes significant

$-15 k$	$=\log _{e} \frac{7}{12}$		
k	$=-\frac{1}{15} \log _{e} \frac{7}{12}$		
	$=0.03593310005 \ldots$		
We need to find t when $T=0$		\quad	progress.
:---			
1 Mark: Finds the			
exact value of k			
or shows some			
understanding.	\quad		
:---			

	$\begin{aligned} 0 & =36 e^{-k t}-12 \\ e^{-k t} & =\frac{12}{36}=\frac{1}{3} \\ -k t & =\log _{e} \frac{1}{3} \\ t & =-\frac{1}{k} \log _{e} \frac{1}{3} \\ & =30.5738243 \ldots \approx 31 \text { minutes } \end{aligned}$ It will take about 31 minutes for the water to cool to $0^{\circ} \mathrm{C}$	
$\begin{gathered} 14(\mathrm{~d}) \\ \text { (i) } \end{gathered}$	$\begin{aligned} & \text { Facing front: Number of ways }=5 \times 4 \times 7! \\ & \text { Facing back: Number of ways }=4 \times 3 \times 7! \\ & \begin{aligned} \text { Total number of ways } & =(5 \times 4+4 \times 3) \times 7! \\ & =161280 \end{aligned} \end{aligned}$	2 Marks: Correct answer. 1 Mark: Makes some progress towards the solution.
$\begin{gathered} \text { 14(d) } \\ \text { (ii) } \end{gathered}$	Alex facing front and Bella facing back Number of ways $=5 \times 4 \times 7$! Bella facing front and Alex facing back Number of ways $=5 \times 4 \times 7$! $\begin{aligned} \text { Total number of ways } & =(5 \times 4 \times 7!) \times 2 \\ & =201600 \end{aligned}$	2 Marks: Correct answer. 1 Mark: Makes some progress towards the solution.

