

Girraween High School

2016 Year 12 Trial Higher School Certificate Mathematics Extension 1

General Instructions

- Reading Time - 5 minutes
- Working Time - 2 hours
- Calculators and ruler may be used
- All necessary working out must be shown
- Write on both sides of the paper

Total Marks - 70

- Attempt all questions
- Marks may be deducted for careless or badly arranged work

Section I

10 marks
Attempt Questions 1-10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Question 1-10

Question 1 (1 mark)
Line $A T$ is a tangent to the circle at $A . T B$ is a secant cutting the circle at B and C.
If $A T=6, T B=x$ and $B C=9$, what is the value of x ?

A. 2
B. 3
C. 4
D. 12

Question 2 (1 mark)
What is the derivative of $\cos ^{-1}(3 x)$?
A. $\frac{1}{3 \sqrt{1-9 x^{2}}}$
B. $\frac{-1}{3 \sqrt{1-9 x^{2}}}$
C. $\frac{3}{\sqrt{1-9 x^{2}}}$
D. $\frac{-3}{\sqrt{1-9 x^{2}}}$

Question 3 (1 mark)
What is the value of $\lim _{x \rightarrow 0} \frac{2 \sin 3 x}{x}$?
A. $\frac{2}{3}$
B. 2
C. 6
D. undefined

Question 4 (1 mark)
The point P divides the interval $A B$ in the ratio $-1: 2$. Which of the following diagrams is correct?
A.

B.

C.

D.

Question 5 (1 mark)
The degrees of two polynomials $P(x)$ and $Q(x)$ are m and n respectively, where $m>n$.
What is the degree of $P(x)+Q(x)$?
A. $m+n$
B. $m n$
C. m
D. n

Question 6 (1 mark)
What is the term independent of x in the expansion of $\left(x^{2}-\frac{2}{x}\right)^{9}$?
A. ${ }^{9} C_{3}(-2)^{3}$
B. ${ }^{9} C_{3}(2)^{3}$
C. ${ }^{9} C_{6}(-2)^{6}$
D. ${ }^{9} C_{6}(2)^{6}$

Question 7 (1 mark)
A hotel has 3 different rooms.
How many different ways can 4 people be accommodated?
A. 3^{4}
B. 4^{3}
C. ${ }^{4} C_{3}$
D. ${ }^{4} P_{3}$

Question 8 (1 mark)

The position function of a particle is given by $x=2 \sin \pi t+1$. Which of the following is true?
A. The maximum velocity of the particle occurs at $t=\frac{1}{2}$ at $x=3$
B. The maximum velocity of the particle occurs at $t=\frac{3}{2}$ at $x=-1$
C. The maximum velocity of the particle occurs at $t=2$ at $x=1$
D. The maximum velocity of the particle occurs at $t=6$ at $x=-1$

Question 9 (1 mark)
For which of the following is true?
A. If $f(x)=\sin x$ for $0 \leq x \leq \pi$ then $f^{-1}(x)$ exists
B. If $f(x)=x^{2}$ for all real x then $f^{-1}(x)$ exists
C. If $f(x)=m x$ for all real x then $f^{-1}(x)$ exists for any real value of m
D. $f^{-1}(x)$ does not exist for any of the above

Question 10 (1 mark)
Projectiles A and B are launched at same time at velocity V and angle α. However projectile A is launched from a higher position. The two projectiles land in the same horizontal plane. Which of the following is always true?
A. A and B will reach the ground at the same time
B. A and B will have the same range
C. A will reach its maximum height earlier than B
D. The maximum speed of A is greater than the maximum speed of B

Question 11 on the next page

Section II

60 marks

Attempt Questions 11-14

Allow about 1 hour and 45 minutes for this section
Write your answers on the paper provided.
In Questions 11-14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks)
(a) Solve $\frac{3}{x+2}<4$.
(b) Find the size of the acute angle between the lines $2 x+y=5$ and $3 x-y=1$.
(c) The point P divides the interval joining $A(-1,-2)$ to $B(9,3)$ internally in the ratio 4:1. Find the coordinates of P.
(d) If $\cos \theta=\frac{4}{5}$ and $\frac{3 \pi}{2}<\theta<2 \pi$ find the exact value of $\sin 2 \theta$.
(e) Using the substitution $u=\sqrt{x}$ find $\int \frac{1}{\sqrt{x}(1+x)} d x$.
(f) Find the value of a if $P(x)=x^{3}+a x^{2}+a x+5$ gives the same remainders when it is divided by $x+2$ or $x-4$.

Question 12 (15 marks)
(a) Prove by mathematical induction that for all integers $n \geq 1$,

$$
1 \times 2^{0}+2 \times 2^{1}+3 \times 2^{2}+\cdots+n \times 2^{n-1}=1+(n-1) 2^{n}
$$

(b) i. Find the coefficient of x in the expansion of $\left(3 x-\frac{1}{2 x}\right)^{7}$.
ii. Hence state the constant term in the expansion of $\left(1+\frac{1}{x}\right)^{2}\left(3 x-\frac{1}{2 x}\right)^{7}$.
(c) Consider the function $f(x)=x^{3}+x$.
i. State the domain of $f(x)$.
ii. Show that $f(x)$ does not have any stationary points.
iii. By giving reasons, state whether $f^{-1}(x)$ exists.
(d) The diagram shows a circle with diameter $A B . E F$ is a tangent to the circle at $C . A C$ is extended to D such that $D E$ is perpendicular to $A E$. Let $\angle B A C=\theta$.

i. Copy the diagram and prove that $B C D E$ is a cyclic quadrilateral.
ii. Prove that $E C=E D$.

Question 13 (15 marks)
(a) i. A fair coin is tossed 4 times, what is probability of getting more heads than tails?
ii. A person decides to flip a two dollar coin 4 times each day, and if he gets more heads than tails he will contribute the coin towards his savings. He does this for 7 days. What is the probability that he will contribute four dollars towards his savings by the end of the 7 days? Give your answer to one decimal place.
(b) A particle moves along a straight line with displacement $x m$ and velocity $v \mathrm{~ms}^{-1}$. Initially the particle is at the origin at with velocity $-1 \mathrm{~ms}^{-1}$. The acceleration of a particle is given by

$$
\ddot{x}=4 x+2
$$

i. Show that $v^{2}=4 x^{2}+4 x+1$
ii. Show that $x=\frac{1}{2}\left(e^{-2 t}-1\right)$
iii. What happens to x as $t \rightarrow \infty$?
(c) A particle moves in a straight line and its position at time t is given by

$$
x=5+\sqrt{3} \sin 3 t-\cos 3 t
$$

i. Express $\sqrt{3} \sin 3 t-\cos 3 t$ in the form $R \sin (3 t-\alpha)$, where α is in radians.
ii. Prove that the particle is undergoing simple harmonic motion and find its period.
iii. State the particle's maximum displacement.
iv. When does the particle first reach its minimum acceleration?

The exam continues on the next page

Question 14 (15 marks)
(a) A person walks a length of d metres due north along a road from point A to point B. The point A is due east of a mountain $O M$, where M is the top of the mountain. The point O is directly below point M and is on the same horizontal plane as the road. The height of the mountain above point O is h metres.

From point A, the angle of elevation to the top of the mountain is 2θ.
From point B, the angle of elevation to the top of mountain is θ.

i. Find the expressions for $O A$ and $O B$ in terms of h and θ.
ii. Show that $d^{2}=\frac{h^{2} \operatorname{cosec}^{2} \theta}{4}\left(3-\tan ^{2} \theta\right)$
(b) A projectile is launched from a height of 5 m above the ground at $V=60 \mathrm{~ms}^{-1}$ at 30° to the horizontal. You may assume $g=10 \mathrm{~ms}^{-2}$.

i. Derive the equations for x and y.
ii. Find the maximum height of the projectile.
iii. Find the speed and angle (to nearest degree) at which the projectile hits the ground.
(c) The diagram shows a point $P\left(2 a t, a t^{2}\right)$ on the parabola $x^{2}=4 a y$. The tangent to the parabola at P cuts the reflection of the parabola in the x axis at points A and B. The point M is the midpoint of the interval $A B$.

i. Show that the equation of the tangent is $y=t x-a t^{2}$.
ii. Show that the coordinates of M are $\left(-2 a t,-3 a t^{2}\right)$
iii. Show that the locus of M is $x^{2}=-\frac{4}{3}$ ay

End of exam

Y/12 Extl TRIAL 2016
$M C \therefore \quad \underset{B D C A C}{\substack{\text { or } \\ c}}$
al

$$
\begin{align*}
& 6^{2}=x(x+9) \\
& 36=x^{2}+4 x \\
& x^{2}+4 x-36=0 \\
& (x+12)(x-3)=0 \\
& \therefore x=3 \quad \therefore \tag{B}
\end{align*}
$$

42

$$
\begin{align*}
y & =\cos ^{-1}(3 x) \\
y^{\prime} & =-\frac{1}{\sqrt{1-(3 x)^{2}}} \times 3 \\
& =-\frac{3}{\sqrt{1-4 x^{2}}} \tag{1}
\end{align*}
$$

43

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{2 \sin 3 x}{x} & =2 \lim _{x \rightarrow 0} \frac{\sin 3 x}{x} \\
& =2 \times 3 \lim _{x \rightarrow 0} \frac{\sin 3 x}{3 x} \\
& =6 \lim _{x \rightarrow 0} \frac{\sin 3 x}{3 x} \\
& =6 \quad \therefore \text { (c) }
\end{aligned}
$$

04

$$
A P: P B=-1: 2
$$

$\therefore P$ is external to $A B$ and P is closm to A
$\therefore A$
as

$$
\begin{align*}
& \rho(x)=a_{m} x^{m}+a_{n-1} x^{m-1}+\ldots+k_{0} \\
& a(x)=b_{n} x^{n}+b_{n-1} x^{n-1}+\ldots+b_{0} \\
& \therefore d y[p(x)+a(n)]=m \quad \therefore \tag{c}
\end{align*}
$$

ab
Corstant torm occurs when

$$
\begin{align*}
& \binom{9}{3}\left(x^{2}\right)^{3}\left(-\frac{2}{1}\right)^{6} \\
= & \binom{4}{3}(-2)^{6} \frac{x^{6}}{x^{6}} \\
= & \binom{9}{3} 2^{6} \quad \therefore \tag{D}
\end{align*}
$$

47
Euch parson can choore und of the 3 rooms $\therefore 3 \times 3 \times 3 \times 3$

$$
=3^{4} \therefore \text { (A) }
$$

48

\therefore muse V oceurs at $x=1$

$$
T=\frac{2 \pi}{\pi}=2
$$

$\therefore \max V$ ccuas when $t=0$ as A is at the centre initroully
\therefore it will return to thrs positin at $t=2, \therefore$ (c)

49

clearty not 1:1
$\therefore A_{1}$ is fals.
$f(x)=x^{2}$ is clarly even as

$$
f(-x)=(-x)^{2}=x^{2}=f(x) .
$$

As even functions are symmetrioal about the y-axas they are not $1: 1$ \therefore B is false

If $m=0$ then $f(x)=m n$ is a lorizathel line which is clearly not $1: 1 \therefore C$ is false
\therefore (D)
ald
since $y^{j}=V \sin a-g t$ for loth projecteres thy wrll rewen the lizghot points at the sume time
$\therefore c$ a fales
A claully his a lozger floglat time ns it noels to frece a grenter rential distance \therefore A is forlse woth longer flizat time A
must travel a loxger horiantil dostance $\therefore B$ is fulse.
\therefore (D) I true as A will Gain a more nyative vertrial valoity, resultimy in greatur maximum speal.
all
(a) $\frac{3}{x+2}<4$

$$
\begin{aligned}
& 3(x+2)<4(x+2)^{2} \\
& 4(x+2)^{2}-3(x+2)>0 \\
& (x+2)[4(x+2)-3]>0 \\
& (x+2)(4 x+5)>0
\end{aligned}
$$

$$
\therefore x<-2 \& x>-\frac{5}{4} .
$$

(b)

$$
\begin{aligned}
& y=-2 x+5 \\
& y=3 x+1
\end{aligned} \therefore m_{1}=-2, ~ \therefore m_{2}=3
$$

$$
\begin{gathered}
\tan \theta=\left|\frac{-2-3}{1-6}\right|=1 \\
\therefore \theta=45^{\circ}
\end{gathered}
$$

4
(c)

$$
\left.\frac{>1}{4}+1,-2\right)
$$

$$
\begin{aligned}
& x=\frac{4+9-1}{4+1} \quad q=\frac{3 \times 4-2}{5} \\
& x=q \quad q=2 \\
& \therefore \quad P=(2+2)
\end{aligned}
$$

(d)

$$
\cos \theta=\frac{9}{5}
$$

$\sin \frac{T_{1}}{2}<\theta<2 \pi \therefore 5 m b=-\frac{3}{2}$

$$
\begin{aligned}
\therefore \operatorname{sen} 2 \theta & =2 \sin \theta \cos \theta \\
& =2 \times-\frac{3}{5} \times \frac{4}{3}=-\frac{24}{25}
\end{aligned}
$$

(e)

$$
\begin{aligned}
& t=\int \frac{1}{\sqrt{x(1+n)}} d x \\
& x^{2} d=\sqrt{n} \\
& n=n^{\frac{t}{2}} \\
& d a=b_{n}^{-\frac{1}{2}} d n \\
& d a=\frac{1}{2 \sqrt{n}} d x \\
& \therefore \quad I=2 \int \frac{1}{2 \sqrt{2}(\mu) \cdot} d x \\
& =2 \int \frac{1}{1+a^{2}} d n
\end{aligned}
$$

$$
\begin{aligned}
& =2 \tan ^{-1} n t c \\
& =2 \tan ^{1} \sqrt{n}+c
\end{aligned}
$$

(6)

$$
P(-2)=P(4)
$$

$$
\begin{aligned}
& \therefore(-2)^{3}+4 a-2 a+5=4^{3}+16 a+4 a+3 \\
& -8+2 a=64+2 a \\
& \therefore 18 a=-7 a \\
& \therefore B=-4
\end{aligned}
$$

$3 / 2$
(4)

- Pare prover form=1.

Whe $n=1: \angle H S=/ x^{2}=1$

$$
\begin{aligned}
& M M=1+O \times 2^{1}=1 \\
& \therefore \quad C A D=R H S=1
\end{aligned}
$$

\therefore Hous formal

- Assamemer trov for $h=6$, ic

$$
\begin{aligned}
& 1 x 2^{0}+8 x z^{1}+3 \times 2^{2}+\ldots+1+x z^{\operatorname{co-1}} \\
& =1+(1-1) 2^{h} .
\end{aligned}
$$

- Praver fane for bolere, 12.

$$
\begin{aligned}
& =1+2^{x+1}
\end{aligned}
$$

$$
\begin{aligned}
& =1+(k-1) 2^{4}+c(c-\pi) x^{2}+\operatorname{by} \text { essyptina. } \\
& =1+2^{i c}(1 c-1+1-1) \\
& =1+2^{i}(2 k) \\
& =1+k 2^{b+1}=R+B .
\end{aligned}
$$

Rez
Wh－：Bower for som

6_{6}

$$
\therefore \cos \operatorname{tac} \cos t\left(\frac{1}{3}\right) 3^{4}(-2)^{-3}
$$

$$
=-\frac{2335}{8}
$$

Ci

$$
\left(1+\frac{2}{n}+\frac{n^{\infty}}{i}\right)\left(3 n-\frac{L}{2 n}\right)^{7}
$$

nowethyty $\frac{2}{x}$ wothe ne terrow from

$$
\left(3 x-\frac{1}{2 n}\right)^{7}\left(\cos \cos \theta \quad 2 x-\frac{2825}{8}=\frac{2335}{4}\right.
$$

$\left.\cos ^{2}\right) f\left((n)=3 n^{2}+1 \neq 0\right.$ fromen n
(\cdots) of $(x)+1$ fore x
 frowima，so th is $t=1$

$$
\therefore f^{-1} \cos +t .
$$

$$
\begin{aligned}
& \text { (i) } \\
& T_{k+1}=\left(\frac{a}{k}\right)\left(J_{n}\right)^{9+1}\left(-\frac{1}{2 n}\right)^{14} \\
& =(i)^{9-1 t} x^{-18}(-2)^{-18} 2 x^{-6} \\
& =(k) 3^{2-4}(-2)^{-i k} x^{7-2 k} \\
& \therefore-7-26=6 \quad \therefore \quad 2 k=6 \quad \therefore=3
\end{aligned}
$$

$1:$

 \therefore 的形《
$\angle A D E=9 D-B C \in C A$

$$
\therefore \angle C B E+\angle A D E=180
$$

 Copurither A^{\prime} s fore jupplemontiony．
（i）

 beger E R mod $\cos \boldsymbol{r} A \mathrm{~A}$ ungobs $4<2$ Me wherrume segremty．
 ＜S）
$\therefore \angle D E=\angle A D E=G O-F$
 \＆quck $\& G$ of A ECD

80
(el
if $\quad \frac{x-k}{x-1}>$

\cos
fo for oxt
\therefore Nu starterma phats.
(fm

 phatron, s of $\theta \theta A$

$$
\therefore f^{-1} \text { exters. }
$$

$$
\begin{aligned}
& f(x)=\frac{1}{2}[\mid x(x+1)-14(x-1)]
\end{aligned}
$$

$$
\begin{aligned}
& f(x)-\sum_{2} x \frac{z}{(x+1 x+1)}=\frac{1}{\left.(x+1) x_{0}+1\right)}
\end{aligned}
$$

W
fl
fi

$$
\begin{aligned}
& =\left(\frac{4}{3}\right)\left(\frac{2}{2}\right)^{4}+\left(\frac{4}{4}\right)(6)^{4} \\
& =\frac{1}{6} \\
& (16)(2)\left(\frac{3}{10}\right)^{2}\left(\frac{16}{16}\right)^{3} \\
& =3 / .5 \% \quad C / A p
\end{aligned}
$$

G)

$$
\begin{aligned}
& Q_{0} A_{A_{x}} L_{i}^{2}=L_{x+2} \\
& \therefore \frac{1}{2} y^{2} \int 4 x+2 d x \\
& \frac{b}{y}=2 x x^{2}+2 x+C
\end{aligned}
$$

Lut $t=-1$ Eusen $x=0$

$$
\begin{aligned}
& \therefore \frac{1}{2}=c \\
& \therefore b^{2}=2 x^{2}+2+2+2- \\
& \therefore y^{2}=4 x^{2}+4 x+1
\end{aligned}
$$

(A) $V^{2}=(2+2 \pi)^{2}$

$$
\therefore V= \pm(2 n+1)
$$

$$
\begin{aligned}
& \therefore y=-(2 n+1) \\
& \therefore \frac{d^{2}}{2 t}=-(2 n+1) \\
& \therefore \frac{2 n+1}{2 n}+4 n=-2 t
\end{aligned}
$$

al3
(h)

$$
\text { (ii) } \begin{aligned}
\int \frac{1}{2 n+1} d x & =-\int d t \\
\frac{1}{2} \int \frac{2}{2 x+1} d x & =-t+C \\
\frac{1}{2} \ln (2 n+1) & =-t+c
\end{aligned}
$$

$$
t=0 \quad x=0
$$

$$
\begin{aligned}
& \therefore \frac{1}{2} \ln 1=c \quad \therefore c=0 \\
& \therefore \ln (2 x+1)=-2 t \\
& \therefore 2 x+1=e^{-2 t} \\
& \therefore x=\frac{1}{2}\left(e^{-2 t}-1\right)
\end{aligned}
$$

(ii.) As $\in \rightarrow \infty \quad x \rightarrow-\frac{1}{2}$.
(c)
(i)

$$
\begin{aligned}
& \sqrt{3} \sin 3 t-\cos 3 t=R \sin (3 t-\alpha) \\
& \sqrt{3} \sin 3 t-\cos 3 t=R[\sin 3 t \cos \alpha-\cos 3 t \sin \alpha] \\
& \sqrt{3} \sin 3 t-\cos 3 t=R \cos \alpha \sin 3 t-R \sin \alpha \cos 3 t
\end{aligned}
$$

$$
\therefore R \cos \alpha=\sqrt{3} \& R \sin r=1
$$

$$
\therefore R^{2} \cos ^{2} \alpha+R^{2} s^{2}{ }^{2} \alpha=3+1
$$

$$
\therefore R^{2}\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right)=4
$$

$$
\therefore R^{2}=4 \quad \therefore R=2
$$

$$
\therefore \quad \cos \theta=\frac{\sqrt{3}}{2} \text { \& } \sin \alpha=\frac{1}{2}
$$

$$
\therefore \alpha=\frac{\pi}{6}
$$

$$
\therefore \sqrt{3} \sin 3 t-\cos 3 t=2 \sin \left(3 t-\frac{\pi}{6}\right) .
$$

(ir)

$$
\begin{aligned}
& \vec{x}=5+2 \sin \left(3 t-\frac{\pi}{6}\right) \\
& \bar{x}=6 \cos \left(3 t-\frac{\pi}{6}\right) \\
& \ddot{x}=-18 \sin \left(3 t-\frac{\pi}{6}\right) \\
& \tilde{x}=-3^{2} \times 2 \sin \left(3 t-\frac{\pi}{6}\right) \\
& \bar{x}=-3^{2}(x-5)
\end{aligned}
$$

\therefore SHM wrth $T=\frac{2 \pi}{3}$
(iii) $x_{\text {max }}=5+2=7$
(iv) mizermum accelerath wher $x=7$

$$
\begin{aligned}
& \therefore \quad 7=5+2 \sin \left(3 t-\frac{\pi}{6}\right) \\
& \therefore \sin \left(3 t-\frac{\pi}{6}\right)=1 \\
& \therefore \quad 3 t-\frac{\pi}{6}=\frac{\pi}{2} \\
& \therefore \quad t=\frac{1}{3} \times\left(\frac{\pi}{2}+\frac{\pi}{6}\right) \\
& t=\frac{1}{3} \times \frac{4 \pi}{6}=\frac{2 \pi}{9}
\end{aligned}
$$

014
(a)

$$
\text { (i) } \begin{aligned}
& \tan 2 \theta=\frac{h}{O A} \\
& \therefore O A=\frac{h}{\tan 2 \theta} \\
& \tan \theta=\frac{h}{O D} \\
& \therefore O B=\frac{h}{\tan \theta}
\end{aligned}
$$

ai4
(a)
(ii)

$$
\begin{aligned}
& d^{2}=O B^{2}-O A^{2} \\
&=\frac{h^{2}}{\tan ^{2} \theta}-\frac{h^{2}}{\tan ^{2} 2 \theta} \\
&=h^{2}\left(\frac{1}{\tan ^{2} \theta}-\frac{1}{\tan ^{2} 2 \theta}\right) \\
&=h^{2}\left(\frac{1}{\tan ^{2} \theta}-\frac{\left(1-\tan ^{2} \theta\right)^{2}}{4 \tan ^{2} \theta}\right) \\
&=h^{2}\left(\frac{4-1+2 \tan ^{2} \theta-\tan ^{4} \theta}{4 \tan ^{2} \theta}\right)
\end{aligned}
$$

$$
=h^{2}\left(\frac{3+2 \tan ^{2} \theta-\tan ^{4} \theta}{4 \tan ^{2} \theta}\right)
$$

$$
=h^{2} \frac{\left(3-\tan ^{2} \theta\right)\left(1+\tan ^{2} \theta\right)}{4 \tan ^{2} \theta}
$$

$$
=\frac{h^{2}\left(3-\tan ^{2} \theta\right)}{4 \tan ^{2} \theta \times \cos ^{2} \theta}
$$

$$
=\frac{h^{2} \operatorname{cosec}^{2} \theta}{4}\left(3-\tan ^{2} \theta\right)
$$

(c) $(14$ (b) on next page).

$$
\begin{aligned}
& \text { (c) } y=\frac{1}{4 x^{2}} x^{2} \\
& y^{\prime}=\frac{1}{2 a} x \\
& y^{\prime}(2 a t)=t \\
& \therefore y-a t^{2}=t(x-2 a t) \\
& y-a t^{2}=t x-2 a t^{2} \\
& y=t x-a t^{2}
\end{aligned}
$$

(c)
(ii) The reftution of the parabich $B x^{2}=-4 a y$.
So its intersutim with
the targent is goren hy:

$$
\begin{aligned}
& \frac{-x^{2}}{4 a}=t x-a t^{2} \\
& -x^{2}=4 a t x-4 a^{2} t^{2} \\
& x^{2}+4 a t x-4 x^{2} t^{2}=0
\end{aligned}
$$

x courdinter of M is average of rook
\therefore the x coordsute of $M \mathrm{~B}$
sivan hy $x=\frac{-4 a t}{2(1)}=-2$ at .

$$
\begin{aligned}
\therefore g & =t(-2 a t)-a t^{2} \\
& =-2 a t^{2}-a t^{2}=-3 a t^{2} \\
\therefore M & =\left(-2 a t,-3 a t^{2}\right) .
\end{aligned}
$$

$$
\text { (iii): } \begin{aligned}
\therefore \quad t & =-\frac{x}{2 a} \\
\therefore y & =-3 a\left(-\frac{x}{2 a}\right)^{2} \\
y & =-3 a \times \frac{x^{2}}{4 a^{2}} \\
y & =-\frac{3 x^{2}}{4 a} \\
\therefore x^{2} & =-\frac{4}{3} a y \\
x^{2} & =-4\left(\frac{a}{3}\right) y
\end{aligned}
$$

\therefore frical longte $=\frac{1}{3}$ of ospinale focal length.

Qug
(4)

$$
\begin{aligned}
& x=0 \\
& x=\int 0 d x \\
& x=c_{1}
\end{aligned}
$$

c. -1
fot $6=3 \quad$ on $=60 \cos 30$

$$
m=30 \sqrt{3}
$$

$$
\therefore c_{1}=30 \sqrt{3}
$$

$$
\therefore x=30 \sqrt{3}
$$

$$
x=\int 3 s \sqrt{3} d x
$$

$$
x=30 \sqrt{3} t+C_{2}
$$

but ta $x=2 \quad \therefore E_{2}=2$.

$$
\begin{aligned}
& \therefore x=30 \sqrt{3} t \\
& \ddot{y}=-10 \\
& y=\int-\cos d t \\
& \therefore y^{-}=-i+t+c \\
& \epsilon=0 \quad y=60 \sin ^{3} 3 \\
& y=3 \\
& \therefore c^{2}=30 \\
& \therefore b^{\prime \prime}=-12 \in+30 \\
& \eta=\int-60 t+50 t . \\
& y=-5 t^{2}+3+4+c_{4} \\
& t=0 \quad y=5 \quad \therefore c_{4}-5 \\
& \therefore \quad g=-5 t^{2}+30 t+5 .
\end{aligned}
$$

\cos

$$
\begin{aligned}
y(3) & =-5(3)^{2}+30(3)+5 \\
& =50
\end{aligned}
$$

\therefore puax fergert is Souro
ciii)

$$
\begin{aligned}
& y=0 \text { dhene } \\
& -5 t^{3}+3+t+5=5 \\
& t^{2}-6 t-1=0 \\
& t^{2}=\frac{6 \pm \sqrt{36-6+1,-1}}{2}
\end{aligned}
$$

$$
b=\frac{6 t \sqrt{4}}{2}=3+\sqrt{\infty}
$$

$$
\begin{aligned}
y(3+\sqrt{\infty}) & =-3 x-1 \sqrt{10}+7 x \\
& =-10 \sqrt{6}
\end{aligned}
$$

$$
v^{2}=(3 \sqrt{3})^{2}+(-0 \sqrt{\infty})^{2}
$$

$$
v^{2}=37.0
$$

$$
\therefore V=10 \sqrt{37} \quad n=1
$$

$t_{n} \theta=\frac{6 \cdot \sqrt{2}}{3 \cdot \sqrt{3}}=\frac{\sqrt{6}}{\sqrt{3}}$
$\therefore \theta=3 l^{-3}\left(\operatorname{sen} t \operatorname{cog}^{2}\right)$.
$\therefore b=10 \sqrt{27} \mathrm{man}$ at 31 bubo the drombatid.

$$
\begin{aligned}
& \text { q=a admen }-10+30=3 . \\
& \therefore 108=30 \\
& 6 \geq 3
\end{aligned}
$$

