Girraween High School

2017

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 1

General Instructions

- Reading time: 5 minutes
- Working time: 2 Hours
- Write using a black or blue pen
- Board approved calculators may be used
- Laiminated reference sheets are provided
- Answer multiple choice questions by completely colouring in the appropriate circle on your multiple choice answer sheet on the front page of your answer booklet.
- In questions 11-15 start all questions on a separate page in your answer booklet and show all relevant mathematical reasoning and/or calculations.

Total Marks: 85

Section 1
10 Marks

- Attempt Q1- Q10
- Allow about 15 minutes for this section

Section 2
75 marks

- Attempt Q11-Q15
- Allow about 1 hour and 45 minutes for this section

MATHEMATICS
 Trial Examination

For questions 1-10, fill in the response oval corresponding to the correct answer on your Multiple choice answer sheet.

1. What is the value of $\lim _{x \rightarrow x} \frac{\sin \left(\frac{1}{2}\right) x}{2 x}$?
A) 0
B) $\frac{1}{4}$
C) 1
D) 4
2. Which of the following is a simplification of $\cot 2 x+\tan x$?
A) $\sec 2 x$
B) $\sec x$
C) $\operatorname{cosec} x$
D) $\operatorname{cosec} 2 x$
3. The equation $x^{3}+b x^{2}+c x+d=0$ has roots $\alpha, \beta \gamma$. What is the value of $\frac{1}{\alpha \beta}+\frac{1}{\beta \gamma}+\frac{1}{\gamma \alpha}$?
A) $-b$
B) $\frac{-b}{d}$
C) $\frac{b}{d}$
D) b
4. Which of the following is a simplification of $4 \log _{e} \sqrt{e^{x}}$?
A) $4 \sqrt{x}$
B) $\frac{1}{2} x$
C) $2 x$
D) x^{2}
5. Which of the following is an expression for $\int \sin ^{2} 6 x d x$?
A) $\frac{x}{2}-\frac{1}{12} \sin 6 x+c$
B) $\frac{x}{2}+\frac{1}{12} \sin 6 x+c$
C) $\frac{x}{2}-\frac{1}{24} \sin 12 x+c$
D) $\frac{x}{2}+\frac{1}{24} \sin 12 x+c$
6. Four female and four male students are to be seated around a circular table.

How many ways can this be done if the males and females must alternate?
A) $4!\times 4!$
B) $3!\times 4!$
C) $3!\times 3$!
D) $2 \times 3!\times 4!$
7. The acute angle between the lines $2 x-y=0$ and $k x-y=0$ is equal to $\frac{\pi}{4}$.

What is the value of k ?
A) $k=3$ or $k=-\frac{1}{3}$
B) $k=-3$ or $k=\frac{1}{3}$
C) $k=-3$ or $k=-\frac{1}{3}$
D) $k=3$ or $k=\frac{1}{3}$
8. Which of the following is equivalent to $\int \frac{d x}{4 x^{2}+9}$, ignoring the constant of integration?
A) $\tan ^{-1} \frac{2 x}{3}$
B) $\frac{1}{6} \tan ^{-1} \frac{2 x}{3}$
C) $\frac{2}{3} \tan ^{-1} \frac{2 x}{3}$
D) $\frac{3}{2} \tan ^{-1} \frac{2 x}{3}$
9. What is the term independent of x in the expansion of $\left(x^{3}+\frac{2}{x}\right)^{20}$?
A) $\binom{20}{10} 2^{20}$
B) $\binom{20}{5} 2^{15}$
C) $\binom{20}{4} 2^{16}$
D) $\binom{20}{5} 2^{25}$
10. Which of the following is an expression for $\frac{d}{d x} \sin ^{-1}(2 x-1)$?
A) $\frac{-1}{\sqrt{x(x-1)}}$
B) $\frac{-1}{2 \sqrt{x(x-1)}}$
C) $\frac{1}{2 \sqrt{x(1-x)}}$
D) $\frac{1}{\sqrt{x(1-x)}}$
a) $A(-3,1)$ and $B(1,-2)$ are two points. Find the coordinates of the point P that divides the interval $A B$ externally in the ratio 3:1.
b) Find $\int \frac{1+2 x}{1+x^{2}} d x$.
c) Use the substitution $x=u-2$ to evaluate $\int_{-1}^{2} \frac{3 x+5}{\sqrt{x+2}} d x$.
d) Use mathematical induction to prove that $3^{2 n+4}-2^{2 n}$ is divisible by 5 , for $n \geq 1$.
(e) i) Show that $\frac{\sin 2 x}{1+\cos 2 x}=\tan x$
ii) Hence show that $\tan 15^{\circ}+\cot 15^{\circ}=4$

Question 12.(15 marks)
a)i) Find $\frac{d}{d x}\left(\tan ^{-1} \frac{x}{3}\right)^{2}$
ii) Hence find the exact value of $\int_{0}^{\sqrt{3}} \frac{\tan ^{-1} \frac{x}{3}}{x^{2}+9} d x$
b) The region enclosed by the curve $y=\sin ^{-1} x$ and the y-axis between $y=0$ and $y=\frac{\pi}{3}$ is rotated about the y-axis to form a solid. Find the exact volume of the solid of revolution formed.
c)

The diagram above shows a hot air balloon at point H with altitude 800 m .
The passengers in the balloon can see a barn and a dam below, at points B and D respectively. Point C is directly below the hot airballoon. From the hot air balloon's position, the barn has a bearing of 250° and the dam has a bearing of 130°, and $\angle B C D=120^{\circ}$. The angles of depression to the barn and the dam are 50° and 30° respectively.
How far is the barn from the dam, to the nearest metre?
d) In the diagram, $T\left(2 a t, a t^{2}\right)$ is a point on the parabola $x^{2}=4 a y$.

i) Show that the normal to the parabola at T has equation $x+t y=2 a t+a t^{3}$.
ii) This normal cuts the x and y axes at X and Y respectively.

$$
\text { Show that } \frac{T X}{T Y}=\frac{t^{2}}{2}
$$

Question 13.(15 marks)

a) A particle is performing Simple Harmonic Motion in a straight line. At time t seconds it has displacement x metres from a fixed point O on the line given by $x=6 \cos ^{2} t-2$.
i) Show that $\ddot{x}=-4(x-1)$.

2
ii) Find the centre and period of the motion.
b) A particle is moving in a straight line. At time t seconds it has displacement x metres from a fixed point O on the line. Its velocity $v \mathrm{~m} / \mathrm{s}$ is given by $v=-\frac{1}{8} x^{3}$. The particle is initially 2 metres to the right of O.
i) Show that the acceleration a, is given by : $a=\frac{3}{64} x^{5}$.
ii) Find an expression for x in terms of t.
c) Consider the function $f(x)=(x+2)^{2}-9,-2 \leq x \leq 2$.
i) Find the equation of the inverse function $f^{-1}(x)$.
ii) On the same diagram, sketch the graphs of $y=f(x)$ and $y=f^{-1}(x)$, showing clearly the coordinates of the end points and the intercepts on the coordinate axes.
iii) Find the x-coordinate of the point of intersection of the curves $y=f(x)$ and $y=f^{-1}(x)$, giving the answer in simplest exact form.

Question 14(15 marks).

a) The coefficients of x^{2} and x^{-1} in the expansion of $\left(a x-\frac{b}{x^{2}}\right)^{5}$ are the same.

Show that $a+2 b=0$, where a and b are positive integers.
b) Show that $\tan ^{-1}\left(\frac{3}{4}\right)+\cos ^{-1}\left(\frac{3}{5}\right)=\frac{\pi}{2}$

2
c) i) Neatly sketch the graph of $y=\sin ^{-1}\left(\frac{x}{2}\right)$ clearly indicating the domain and range. 2
ii) By considering the graph in part(i), find the exact value of:

$$
\int_{0}^{1} \sin ^{-1}\left(\frac{x}{2}\right) d x
$$

d) A projectile is fired from a point O, which is 6 metres above horizontal ground, with initial velocity Vm / s at an angle of θ to the horizontal.

There is a thin vertical post which is 4 metres high and 8 metres horizontally away from a point A, directly below O, as shown in the diagram below.

The equations of motion are given by:

$$
x=V t \cos \theta \text { and } y=V t \sin \theta-4.9 t^{2}(\text { Do Not prove this })
$$

i) If 2 seconds after projection, the projectile passes just above the top of the post, show that $\tan \theta=2.2$
ii) Show that the projectile hits the ground approximately 0.3 seconds after passing over the post.
iii) Find the angle that the projectile makes with the ground when it hits the ground, correct to the nearest degree.

Question 15.(15 marks)

a) $P(x)=a x^{3}-7 x^{2}+k x+4$ has $x-4$ as a factor. When $P(x)$ is divided by $(x-1)$, the remainder is -6 .
i) Determine the values of a and k.
ii) Evaluate $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$.
b) Consider the series $\log _{e} \frac{a^{3}}{\sqrt{b}}+\log _{e} \frac{a^{3}}{b}+\log _{e} \frac{a^{3}}{b \sqrt{b}}+\log _{e} \frac{a^{3}}{b^{2}}+\ldots \ldots .$.
i) Prove that the series is an arithmetic series and state the common difference.
ii) Find an expression for the sum of the first 23 terms of the series, giving your answer in the form $\log _{e} \frac{a^{m}}{b^{n}}$ where m and n are integers.
c) Use the substitution $u=e^{4 x}+9$ to give the exact value of :

$$
\int_{0}^{\ln 2} \frac{3 e^{4 x}}{\sqrt{e^{4 x}+9}} d x
$$

d) $A B$ is a diameter of the circle and C is a point on the circle. The tangent to the circle at A meets $B C$ produced at $D . E$ is apoint on $A D$ and F is a point on $C D$ such that $E F \| A C$

i) Copy the diagram in your answer booklet and state why $\angle E A C=\angle A B C \quad \mathbf{1}$
ii) Hence show that $E A B F$ is a cyclic quadrilateral. $\mathbf{2}$
iii) Show that $B E$ is a diameter of the cicle through E, A, B and F.
e) Four adults and four children are to be seated around a circular table.

A particular child cannot sit next to any adult and a particular adult cannot sit next to any child.

Find how many such arrangements are possible.

End of examination!!!

Girraween 2017 Ext 1 Trial Solutions

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10
B	D	C	C	C	D	B	B	B	D

Notes on Multiple Choice:

Q1: Divide top and bottom through by 4.
Q2:
$\frac{\sin x}{\cos x}+\frac{\left(\cos ^{2} x-\sin ^{2} x\right)}{2 \sin x \cos x}=\frac{2 \sin ^{2} x+\left(\cos ^{2} x-\sin ^{2} x\right)}{2 \sin x \cos x}=\frac{1}{2 \sin x \cos x}=\frac{1}{\sin 2 x}=\csc 2 x$
Q3:
$\frac{\gamma+\alpha+\beta}{\alpha \beta \gamma}=\frac{\left(-\frac{b}{a}\right)}{\left(-\frac{d}{a}\right)}=\frac{b}{d}$
Q4: $4 \log _{e} e^{\frac{x}{2}}=4 \cdot \frac{1}{2} \log _{\mathrm{e}} e^{x}=2 x$
Q5: Recall that $\sin ^{2} 6 x=\frac{1}{2}(1-\cos 12 x)$
$\int \sin ^{2} 6 x d x=\int \frac{1}{2}(1-\cos 12 x) d x=\frac{1}{2} x-\frac{1}{24} \sin 12 x+C$

Q6:

Doesn't matter where first person sits. Sit him/her down and call that position 1 on the table. Fill the remaining odd positions (clockwise) with the same gender. This accounts for the 3!.

Fill the remaining even positions with the remaining people (4!).
Multiple by 2 , as the initial person could be either a male/female $=2 \times 4!\times 3$!
Q7: Gradient of line $2 x-y=0$, is 2 .
$\frac{2-m}{1+2 m}= \pm 1$,
$2-m=1+2 m$ or $2-m=-1-2 m$
$m=\left\{\frac{1}{3},-3\right\}$
Q8: Modify integral to standard form
$\frac{1}{4} \int \frac{d x}{x^{2}+\left(\frac{9}{4}\right)}=\frac{1}{6} \tan ^{-1} \frac{2 x}{3}$
Q9: $\binom{20}{n} 2^{20-n} x^{4 n-20}$ is the value of each term. Solve the coefficient equal to zero $\Rightarrow n=5$.
Q10: Differentiate
$\frac{d}{d x} \sin ^{-1}(2 x-1)=\frac{2}{\sqrt{1-4 x^{2}+4 x-1}}=\frac{1}{\sqrt{x(1-x)}}$

Girramen 2017 Ext 1 Solutions Q1F-15
(QII)
(a)

* Check usiny formads $P\left(x_{1}, y\right)=\left(\frac{m x_{2}-n v_{1}}{m-n}, \frac{m y_{2}-n y_{1}}{m-n}\right)$ /2
(b)

$$
\begin{aligned}
& \int \frac{1+2 x}{1+x^{2}} d x=\int \frac{1}{1+x^{2}}+\frac{2 x}{1+x^{2}} d x \\
= & \tan ^{-1}(x)+\log _{e}\left(1+x^{2}\right)+6
\end{aligned}
$$

(c) Lut $\alpha=u-2$. Limits become [$[4,4]$
that is $v=x+2 \quad \frac{d y}{d x}=1$,

$$
\begin{aligned}
\beta_{0} I=\int_{1}^{4} \frac{3(u-2)+5}{\sqrt{u}} d u & =\int_{1}^{4} \frac{3 u-1}{\sqrt{u}} d u \\
& =\int_{i}^{4} 3 u^{1 / 2}-u^{-1 / 2} d u \\
& =2 u^{3 / 2}-\left.2 u^{1 / 2}\right|^{4} \\
& =2(8-2)-(2-2) \\
& =12 .
\end{aligned}
$$

11(d) Fon $n=1$

$$
\begin{aligned}
& =3^{6}-2^{2} \\
& =729-4 \\
& =725
\end{aligned}
$$

wich is diusitle by 5 .
Assume $3^{2 k+4}-2^{2 k}$ to be divisible by S.
Now, for weteri-1,

$$
\begin{aligned}
&\{ =3^{2(k+1)+4}-2^{2(k+1)} \\
&=3^{2 k+6}-2^{2 k+2} \\
&=3^{2}\left(3^{2 k+4}-2^{2 k}\right)+3^{2} \cdot 2^{2 k}-2^{2} \cdot 2^{2 k} \\
&=9(5 k)+(9-4) 2^{2 k} \\
&=5\left(9 k+2^{2 k}\right) \\
&=5 \widetilde{k} \quad \text { as requined. } \quad \hat{k} \in \mathbb{N} . \\
&
\end{aligned}
$$

\Rightarrow The Aor the cane whan nel , and two convecustive ceres
Mance by Primipit of muthenatreil hoduction the statemat is true., ise.
$3^{2 n+4}-2^{2 n}$ is diusible by 5 for a $\| n \in \mathbb{N}$
(e) (i) $\frac{2 \sin x \cos x}{1+\left(2 \cos ^{2} x-1\right)}=\sin \frac{\sin x}{\cos x}=\tan x$
(ii) ising (i) $101 x=15^{\circ}$ (ov $\left.7 / 2\right)$ $/ 4$

$$
\begin{aligned}
\tan 15^{\circ}=\frac{1}{2} \cdot \frac{1}{\left(1+\frac{\sqrt{3}}{2}\right)} & =\frac{1}{2+\sqrt{3}} ; \& \cot 15^{\circ}
\end{aligned}=\frac{2+\sqrt{3}}{1}
$$

$\therefore \cot 15+\tan 15=4$.
: since $(2-\sqrt{3})(2+\sqrt{3})=1$.
End of QII.
(a,2)
(a) (i) $\frac{6 \tan ^{-1}\left(\frac{x}{3}\right)}{x^{2}+9}$
i()

$$
\begin{aligned}
I & =\frac{1}{6} \int_{0}^{\sqrt{3}} \frac{6 \tan ^{-1}\left(\frac{x}{3}\right)}{x^{2}+9} d x \\
& =\frac{1}{6} \int_{0}^{\sqrt{3}} \frac{d}{d x}\left[\tan ^{-1}\left(\frac{x}{3}\right)\right]^{2} d x \\
& =\frac{1}{6}\left[\left.\tan ^{-1}\left(\frac{x}{5}\right]^{2}\right|_{0} ^{6}\right. \\
& =\frac{\pi^{2}}{216}
\end{aligned}
$$

(b)

Typiral dise les whene.

$$
\Delta v=\pi x^{2} \Delta y
$$

$y=x=\sin y \quad$ (a) $y=\sin ^{-1} x$)
So $\Delta V=\pi \sin ^{2} y \Delta y$
So $v=\frac{\pi}{\pi} \int_{0}^{\frac{\pi}{3}} \sin ^{2} 4 y=\int_{0}^{\frac{\pi}{3}}\left(\frac{1}{2} \frac{1}{2} \cos 2 y\right) d y$

$$
=\frac{\pi}{2} x-\left.\frac{1}{4} \sin 2 y\right|_{0} ^{\frac{\pi}{3}}
$$

$$
=\frac{\pi^{2}}{6}-\frac{1}{4} \cdot \frac{\sqrt{3}}{2}
$$

$$
=\frac{\pi^{2}}{6}-\frac{\sqrt{3}}{8}
$$

Using cosine rate

$$
\begin{aligned}
& B 0^{2}=a^{2}+b^{2}-2 a h \cos C \\
& B D^{2}=(800 \tan 40)^{2} \cdot(800 \tan 60 t \\
& +2-800 \operatorname{san} 40 \cdot 800 \tan 60 \\
& B D=
\end{aligned}
$$

$=1817$ metres (weiresta)
(d) (i) Impliath diffecetione

$$
\begin{aligned}
& \text { (d) (i) mpluith differative } \\
& 2 x=4 a \cdot \frac{d y}{d x} \Rightarrow \frac{d y}{d x}=\frac{x^{2}}{2 a} .
\end{aligned}
$$

So $m_{T}=t ; m_{\mu}=-\frac{1}{7}$. Nomul is $\left.(y-a)^{2}\right)=-\frac{1}{f}(x-2 u t)$

$$
\begin{aligned}
& t y-a t^{3}=-x+2 a t \\
& x+t y=24 t+a t^{3}
\end{aligned}
$$

/4
$12(d)$ (ii)

$$
\begin{aligned}
& x=\left(2 a t+a t^{3}, 0\right) \\
& y=\left(0,2 a+a t^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
T X^{2} & =\left(-a t^{3}\right)^{2}+\left(a t^{2}\right)^{2} \\
& =a^{2} t^{6}+a^{2} t^{4}=a^{2} t^{4}\left(t^{2}+1\right) \\
T y^{2} & =(2 a t)^{2}+(2 a)^{2} \\
& =4 a^{2} t^{2}+4 a^{2} \\
& =4 a^{2}\left(t^{2}+1\right) \\
\frac{T X^{2}}{T y^{2}} & =\frac{a^{2} t^{4}\left(t^{2}+1\right)}{4 a^{2}(15+1)}=\frac{14}{4} \Rightarrow \frac{T X}{T Y}=\frac{t^{2}}{2} .
\end{aligned}
$$

End of QR.
(43)
(4)

$$
\text { (i) } \begin{aligned}
& \dot{i}=-12 \cos t \sin t=-6 \sin 2 t \\
& \ddot{x}=-12 \cos 2 t \\
&=-i 2\left(2 \cos ^{2} t-1\right) \\
&=-4\left(6 \cos ^{2} t-3\right) \\
&=-4\left(6 \cos ^{2} t-2-1\right) \\
&=-4(x-1) \text { as reguined } / 2
\end{aligned}
$$

(ii) $x=6 \cos ^{2} t-2=3 \cos 2 t+1$

$$
\therefore \text { Period }=\frac{2 \pi}{\alpha}=\pi, \quad \text { Centre }=1 \text {. }
$$

反.
B (b) (i) $a=\frac{d v}{d t}=V \frac{d V}{d x}$ (uing) dith ,uk)
So $\frac{d v}{d x}=-\frac{3}{9} x^{2}$

$$
\begin{aligned}
\therefore \quad a^{2} & -\frac{3}{3} x^{2}-\frac{1}{3} x^{3} \\
& =-3 / 64 x^{5}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\frac{d x}{d t} & =-\frac{1}{8} x^{3} \\
\Rightarrow \frac{d t}{d x} & =8 x^{-3} \\
t & =8 x^{-2}+(-1 / 2)+C . \\
+ & =-4 x^{-2}+C .
\end{aligned}
$$

At $t=0, x=2$.

$$
\begin{aligned}
& \text { - } \Rightarrow c=1 \text {. } \\
& t=-\frac{4}{x^{2}}+1 \\
& \frac{4}{x^{2}}=-t+1 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \nmid \neq 1, x \neq 0 \text {. }
\end{aligned}
$$

(c) (i) $y=x^{2}+4 x-5$ inveris deffed a eitler $[-2, \infty)$

$$
=(x-1)(x+5) \Rightarrow \text { interept of }(1,0) \quad \text { or }(-\infty,-2)
$$

teaterians ' x ' ith $;$ '

$$
\begin{aligned}
x & =y^{2}+4 y-5 \\
& =(y+2)^{2}-2 . \\
4 & =\sqrt{x+9}-2 \quad \text { (cleck intenupts of }(0, y) \\
y & =\sqrt{x+9}-2 .
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& y=(x+2)^{2}-9 \\
& y=\sqrt{x+9}-2 . \\
& \sqrt{x+9}-2=(x+2)^{2}-9 \\
& \sqrt{x+9}=(x+2)^{2}-7 \\
& x+9=(x+2)^{4}-14(x+2)^{2}+49 \\
& x-9=x^{4}+x^{3}+2 x^{2} \\
& x+9=\left(x^{2}+4 x+4\right)^{2}-14\left(x^{2}+4 x+4\right)+49 \\
& =x^{4}+116 x^{2}+16+8 x^{3}+32 x+3 x-14 x^{2}-56 x-56+49 . \\
& x=x^{4}+3 x^{3}+10 x^{2}-24 x . \\
& x^{4}+8 x^{3}+10 x^{2}-25 x=0 \\
& 9(x)=x^{3}+8 x^{2}+10 x-25=0, \quad x \neq 0 .
\end{aligned}
$$

Diwh by $(x+5)$. since $g(5)=0 \quad x \neq 5$ Give, $x^{2}+3 x-5=0$.
$\Rightarrow x=\frac{-3+\sqrt{29}}{2}$ ligroee negutive sime a the gyp intrexetin x (wes was $x>0$)
En of $Q B$
(21)
(a) Expad

$$
a^{5} x^{5}-5 a^{4} b x^{2}+10 a^{3} b^{2} x^{-1}-10 a^{2} b^{3} x^{-4}+\ldots
$$

So gter coeffous of $x^{2} \equiv$ beffrent: of x^{-1}

$$
\Rightarrow-5 a^{4} b=10 a^{3} b^{2}
$$

Divate thayt by $-5 a^{3} b$
$a=-2 b$ or $a+2 b=0$
(b)

$$
\begin{aligned}
\tan \beta=\frac{3}{4} & \cos \alpha=\frac{3}{5} \\
\beta=\tan ^{-1}\left(\frac{3}{3}\right) & \alpha=\cos ^{-1}\left(\frac{3}{5}\right)
\end{aligned}
$$

$$
\Rightarrow \tan ^{-1}\left(\frac{3}{4}\right)+\cos ^{-1}\left(\frac{3}{5}\right)=\frac{\pi}{2}
$$

(c) (i)

(i) Integal cea shoted above $\mid \nmid$

$$
\begin{aligned}
I & =\frac{\pi}{6}-\int_{0}^{\frac{1}{6}} \sin y d y \\
& =\frac{\pi}{6}+\left.2 \cos y\right|^{\frac{\pi}{6}} \\
& =\frac{\pi}{6}+\sqrt{3}-2 .
\end{aligned}
$$

K(d) (i)
At $t=2, x=8, y=-2 \quad(t=0, y=0, z=0)$

$$
\begin{array}{cc}
2 V \cos \theta=8 & 2 V \sin \theta=19 \cdot 6-2 . \\
V \cos \theta=7 & V \sin \theta=8.8 \\
\Rightarrow \tan \theta=2.2 &
\end{array}
$$

(ii)

$$
\text { Let } \begin{aligned}
y & =f(t) \\
& =v t \sin \theta-4.9 t^{2}+6 \quad\left(\text { adicited } x_{n}\right) \\
\dot{y} & =v \sin \theta-9.8 t
\end{aligned}
$$

But $V \sin \theta=V \cos \theta \cdot \tan \theta$

$$
=\frac{x}{t} \times 2 \cdot 2
$$

Using Nentons nethal approximale $t_{0}=2$.

$$
\begin{aligned}
t_{1} & =42-\frac{f\left(t_{0}\right)}{f^{\prime}\left(t_{0}\right)} \\
y_{i t_{0}}^{\prime}=f\left(t_{0}\right) & =2 \\
f^{\prime}\left(t_{0}\right) & =8.8 \\
6 t_{1} & =2-\frac{4}{-10.8} \\
& =2.37 .
\end{aligned}
$$

≈ 2.3 secorls. (sime the thesent interect after or the tajectary/projectís ints gowd).

End of $0 / 4$
(a15)
(a) (i)

$$
\begin{aligned}
& P(4)=0 \Rightarrow 64 a+4 k-108=0 \quad \text { (1) } \\
& P(1)=-6 \Rightarrow a+k-3=-6 \Rightarrow a+k=-3 .(2)
\end{aligned}
$$

Fron. (1) $16 a+k=27$.

$$
\begin{gathered}
a+k=-3 . \\
15 a=30 \\
x=2 . \\
k=-5
\end{gathered}
$$

So $P(x)=2 x^{3}-x^{2}-5 x+4$
(i) $\frac{\alpha \beta+\beta \sigma+\partial_{\alpha}}{d \hat{\alpha} \alpha=}=\frac{+\frac{c}{\alpha}}{-\frac{c}{\alpha}}=-\frac{c}{d}$

$$
=\frac{5}{4}
$$

(b)

$$
\begin{aligned}
& \text { (i) 的ital Tem }=\log _{9} a^{3}-\log _{2} b^{1 / 2} \\
& =3 \log _{2} a-1 / 2 \log _{e} b \\
& T_{1}=3 \log _{k} a-\log _{2} b
\end{aligned}
$$

For arbitm $n \in \mathbb{N}$.

$$
\begin{aligned}
T_{N} & =3 \log _{e} a-\frac{N}{2} \log _{b} b \\
T_{N+1} & =3 \log _{e} a-\left(\frac{a 1}{2} \log _{e} b .\right. \\
T_{N H 1}-T_{N} & =-\frac{1}{2} \log _{e} b
\end{aligned}
$$

\therefore An anilimetio series, $d=-\frac{1}{2} \log _{e} b$
(ii)

$$
\begin{aligned}
& T_{23}=3 \operatorname{bog}_{e} a-\frac{23}{2} \log _{e} b \\
& T_{1}+T_{2}+T_{3}+\cdots=69 \log _{e} a-\frac{1}{2}(1+2+3 \cdots+i 3) \log _{e} b \\
&=69 \log _{e} a-138 \log _{e} b
\end{aligned}
$$

1S(C)

$$
\begin{aligned}
u & =e^{4 x}+9 & & \\
\frac{d u}{d x} & =e^{4 x} & \text { Limats } & u_{1}
\end{aligned}=e^{4 \ln 2}+9 .
$$

$$
\begin{align*}
\text { So } I & =\int_{10}^{25} \frac{3}{\sqrt{u}} d u \\
& =8 \sqrt{u}]_{10}^{20} \\
& =30-6 \sqrt{10} \tag{12.}
\end{align*}
$$

(d)

(i) Angle in altenute segmeat, sturing on the sane chad

15 (d)(ii) refer to dagyrm.
(can use 180° instend of π)

$$
\begin{aligned}
& \text { Note } \angle F E A+\angle A B C=\pi
\end{aligned}
$$

\Rightarrow EABF is a cyclie quadriatenal since opposte angles are supplementa.
(iii) $\angle B A E=\pi / 2 \quad$ (o. 90°)
(Since $A B$ is dienter, $A E$ is a tagent curd anse betren tangent t radion is $\pi / 2\left(0090^{\circ}\right)$)
$\Rightarrow B E$ is a diameter (angle in semicicle is $\pi / 2\left(0290^{\circ}\right)$)
Fnd of Q1S
Multiple Choice Ansmes:
Q). B Q3. C

Q5. C
Q7. B
Q9. B
Q2. D
24.
c
Q6. D
28. B.

