

# **Girraween High School**

# 2017

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

# Mathematics Extension 1

#### **General Instructions**

- Reading time: 5 minutes
- Working time: 2 Hours
- Write using a black or blue pen
- Board approved calculators may be used
- Laminated reference sheets are provided
- Answer multiple choice questions by completely colouring in the appropriate circle on your multiple choice answer sheet on the front page of your answer booklet.
- In questions 11-15 start all questions on a separate page in your answer booklet and show all relevant mathematical reasoning and/or calculations.

#### Total Marks: 85

#### Section 1

#### 10 Marks

- Attempt Q1 Q10
- Allow about 15 minutes for this section

#### Section 2

#### 75 marks

- Attempt Q11 Q15
- Allow about 1 hour and 45 minutes for this section

## **MATHEMATICS**

### **Trial Examination**

For questions 1-10, fill in the response oval corresponding to the correct answer on your Multiple choice answer sheet.

1. What is the value of 
$$\lim_{x \to x} \frac{\sin\left(\frac{1}{2}\right)x}{2x}$$
?  
A) 0 B)  $\frac{1}{4}$  C) 1 D) 4

2. Which of the following is a simplification of  $\cot 2x + \tan x$ ?

A)  $\sec 2x$  B)  $\sec x$  C)  $\cos ecx$  D)  $\cos ec2x$ 

3. The equation  $x^3 + bx^2 + cx + d = 0$  has roots  $\alpha, \beta \gamma$ . What is the value of

$$\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\gamma\alpha}?$$
A)  $-b$ 
B)  $\frac{-b}{d}$ 
C)  $\frac{b}{d}$ 
D)  $b$ 

4. Which of the following is a simplification of  $4\log_e \sqrt{e^x}$ ?

A)  $4\sqrt{x}$  B)  $\frac{1}{2}x$  C) 2x D)  $x^2$ 

. ....

5. Which of the following is an expression for  $\int \sin^2 6x \, dx$ ?

A) 
$$\frac{x}{2} - \frac{1}{12}\sin 6x + c$$
  
B)  $\frac{x}{2} + \frac{1}{12}\sin 6x + c$   
C)  $\frac{x}{2} - \frac{1}{24}\sin 12x + c$   
D)  $\frac{x}{2} + \frac{1}{24}\sin 12x + c$ 

6. Four female and four male students are to be seated around a circular table.

How many ways can this be done if the males and females must alternate?

7. The acute angle between the lines 2x - y = 0 and kx - y = 0 is equal to  $\frac{\pi}{4}$ . What is the value of k?

A) 
$$k = 3$$
 or  $k = -\frac{1}{3}$   
C)  $k = -3$  or  $k = -\frac{1}{3}$   
D)  $k = 3$  or  $k = \frac{1}{3}$ 

8. Which of the following is equivalent to  $\int \frac{dx}{4x^2+9}$ , ignoring the constant of integration?

A)  $\tan^{-1}\frac{2x}{3}$  B)  $\frac{1}{6}\tan^{-1}\frac{2x}{3}$  C)  $\frac{2}{3}\tan^{-1}\frac{2x}{3}$  D)  $\frac{3}{2}\tan^{-1}\frac{2x}{3}$ 

9. What is the term independent of x in the expansion of 
$$\left(x^3 + \frac{2}{x}\right)^{20}$$
?  
A)  $\binom{20}{10}2^{20}$  B)  $\binom{20}{5}2^{15}$  C)  $\binom{20}{4}2^{16}$  D)  $\binom{20}{5}2^{25}$ 

10. Which of the following is an expression for  $\frac{d}{dx}\sin^{-1}(2x-1)$ ?

A) 
$$\frac{-1}{\sqrt{x(x-1)}}$$
 B)  $\frac{-1}{2\sqrt{x(x-1)}}$  C)  $\frac{1}{2\sqrt{x(1-x)}}$  D)  $\frac{1}{\sqrt{x(1-x)}}$ 

# Question11.(15 marks)- (show all necessary working)marksa) A(-3,1) and B(1,-2) are two points. Find the coordinates of the point P that divides theinterval AB externally in the ratio 3:1.2

b) Find 
$$\int \frac{1+2x}{1+x^2} dx$$
. 2

c) Use the substitution x = u - 2 to evaluate  $\int_{-1}^{2} \frac{3x + 5}{\sqrt{x + 2}} dx$ . 3

d) Use mathematical induction to prove that  $3^{2n+4} - 2^{2n}$  is divisible by 5, for  $n \ge 1$ .

(e) i) Show that 
$$\frac{\sin 2x}{1 + \cos 2x} = \tan x$$
 2

ii) Hence show that  $\tan 15^\circ + \cot 15^\circ = 4$  2

Question 12.(15 marks)

a)i) Find 
$$\frac{d}{dx} \left( \tan^{-1} \frac{x}{3} \right)^2$$
 2

ii) Hence find the exact value of 
$$\int_{0}^{\sqrt{3}} \frac{\tan^{-1} \frac{x}{3}}{x^{2} + 9} dx$$

b) The region enclosed by the curve  $y = \sin^{-1} x$  and the y-axis between y = 0and  $y = \frac{\pi}{3}$  is rotated about the y-axis to form a solid. Find the exact volume of the solid of revolution formed.

c)



The diagram above shows a hot air balloon at point H with altitude 800m. The passengers in the balloon can see a barn and a dam below, at points B and D respectively. Point C is directly below the hot airballoon. From the hot air balloon's position, the barn has a bearing of  $250^{\circ}$  and the dam has a bearing of  $130^{\circ}$ , and  $\angle BCD = 120^{\circ}$ . The angles of depression to the barn and the dam are  $50^{\circ}$  and  $30^{\circ}$  respectively.

How far is the barn from the dam, to the nearest metre?

3

d) In the diagram,  $T(2at, at^2)$  is a point on the parabola  $x^2 = 4ay$ .



i) Show that the normal to the parabola at T has equation  $x + ty = 2at + at^3$ .

2

ii) This normal cuts the x and y axes at X and Y respectively.

Show that 
$$\frac{TX}{TY} = \frac{t^2}{2}$$
 2

#### Question 13.(15 marks)

a) A particle is performing Simple Harmonic Motion in a straight line. At time t seconds it has displacement x metres from a fixed point O on the line given by  $x = 6\cos^2 t - 2$ .

i) Show that 
$$\ddot{x} = -4(x-1)$$
. 2

2

3

1

2

ii) Find the centre and period of the motion.

b) A particle is moving in a straight line. At time t seconds it has displacement x metres from a fixed point O on the line. Its velocity v m/s is given by  $v = -\frac{1}{8}x^3$ . The particle is initially 2 metres to the right of O.

- i) Show that the acceleration a, is given by :  $a = \frac{3}{64}x^5$ . 2
- ii) Find an expression for x in terms of t.
- c) Consider the function  $f(x) = (x+2)^2 9$ ,  $-2 \le x \le 2$ .
- i) Find the equation of the inverse function  $f^{-1}(x)$ .
- ii) On the same diagram, sketch the graphs of y = f(x) and y = f<sup>-1</sup>(x), showing clearly the coordinates of the end points and the intercepts on the coordinate axes.
  3
- iii) Find the x-coordinate of the point of intersection of the curves y = f(x) and  $y = f^{-1}(x)$ , giving the answer in simplest exact form.

#### Question 14(15 marks).

a) The coefficients of  $x^2$  and  $x^{-1}$  in the expansion of  $\left(ax - \frac{b}{x^2}\right)^2$  are the same.

Show that a + 2b = 0, where a and b are positive integers.

b) Show that 
$$\tan^{-1}\left(\frac{3}{4}\right) + \cos^{-1}\left(\frac{3}{5}\right) = \frac{\pi}{2}$$
 2

c) i) Neatly sketch the graph of  $y = \sin^{-1}\left(\frac{x}{2}\right)$  clearly indicating the domain and range. 2

ii) By considering the graph in part(i), find the exact value of:

$$\int_{0}^{1} \sin^{-1}\left(\frac{x}{2}\right) dx$$

d) A projectile is fired from a point O, which is 6 metres above horizontal ground, with initial velocity Vm/s at an angle of  $\theta$  to the horizontal.

There is a thin vertical post which is 4 metres high and 8 metres horizontally away from a point A, directly below O, as shown in the diagram below.



The equations of motion are given by:

 $x = Vt \cos \theta$  and  $y = Vt \sin \theta - 4.9t^2$  (Do Not prove this)

- i) If 2 seconds after projection, the projectile passes just above the top of the post, show that  $\tan \theta = 2.2$
- ii) Show that the projectile hits the ground approximately 0.3 seconds after passing over the post.

iii) Find the angle that the projectile makes with the ground when it hits the ground, correct to the nearest degree.

2

2

2

2

#### Question 15.(15 marks)

a)  $P(x) = ax^3 - 7x^2 + kx + 4$  has x - 4 as a factor. When P(x) is divided by (x - 1), the remainder is -6.

i) Determine the values of a and k.

ii) Evaluate 
$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$$
. 1

2

2

b) Consider the series  $\log_e \frac{a^3}{\sqrt{b}} + \log_e \frac{a^3}{b} + \log_e \frac{a^3}{b\sqrt{b}} + \log_e \frac{a^3}{b^2} + \dots$ 

i) Prove that the series is an arithmetic series and state the common difference. 2

ii) Find an expression for the sum of the first 23 terms of the series, giving your answer in the form  $\log_e \frac{a^m}{b^n}$  where *m* and *n* are integers.

c) Use the substitution  $u = e^{4x} + 9$  to give the exact value of :

$$\int_{0}^{\ln 2} \frac{3e^{4x}}{\sqrt{e^{4x} + 9}} dx$$
 2

d) AB is a diameter of the circle and C is a point on the circle. The tangent to the circle at A meets BC produced at D. E is apoint on AD and F is a point on CD such that  $EF \parallel AC$ 



| i) Copy the diagram in your answer booklet and state why $\angle EAC = \angle ABC$ | 1 |
|------------------------------------------------------------------------------------|---|
| ii) Hence show that <i>EABF</i> is a cyclic quadrilateral.                         | 2 |
| iii) Show that $BE$ is a diameter of the cicle through $E, A, B$ and $F$ .         | 1 |

e) Four adults and four children are to be seated around a circular table.

A particular child cannot sit next to any adult and a particular adult cannot sit next to any child.

Find how many such arrangements are possible.

#### End of examination!!!

| Q1                                                  | Q2                                                              | Q3                                | Q4               | Q5                              | Q6                                           | Q7             | Q8        | Q9        | Q10 |
|-----------------------------------------------------|-----------------------------------------------------------------|-----------------------------------|------------------|---------------------------------|----------------------------------------------|----------------|-----------|-----------|-----|
| В                                                   | D                                                               | С                                 | С                | C                               | D                                            | В              | В         | В         | D   |
| Notes on N                                          | Multiple C                                                      | hoice:                            |                  |                                 |                                              |                |           |           |     |
| <b>Q1:</b> D                                        | ivide top a                                                     | and bottom                        | through b        | oy 4.                           |                                              |                |           |           |     |
| Q2:                                                 |                                                                 |                                   |                  |                                 |                                              |                |           |           |     |
| $\frac{\sin x}{\cos x} + \frac{\cos x}{\cos x}$     | $\cos^2 x - \sin^2 x$                                           | $\frac{n^2 x}{x} = \frac{2 s}{x}$ | $ in^2 x + (c) $ | $\cos^2 x - \sin^2 x$           | $\left(\frac{x^2}{x}\right) = \frac{1}{x^2}$ | 1              | = 1 =     | $\csc 2x$ |     |
| $\cos x$                                            | $2\sin x\cos \theta$                                            | s x                               | 2 sin            | $x \cos x$                      | 2 si                                         | $\ln x \cos x$ | $\sin 2x$ |           |     |
| $\frac{\gamma + \alpha + \beta}{\alpha\beta\gamma}$ | $=\frac{\left(-\frac{b}{a}\right)}{\left(-\frac{d}{a}\right)}=$ | $=\frac{b}{d}$                    |                  |                                 |                                              |                |           |           |     |
| <b>Q4:</b> 4 log <sub>e</sub>                       | $e^{\frac{x}{2}} = 4 \cdot \frac{1}{2}$                         | $\log_e e^x = 1$                  | 2x               |                                 |                                              |                |           |           |     |
| <b>Q5:</b> R6                                       | ecall that s                                                    | $\sin^2 6x = \frac{1}{2}$         | $(1 - \cos 1)$   | 2 <i>x</i> )                    |                                              |                |           |           |     |
| $\int \sin^2 6x$                                    | $dx = \int$                                                     | $\frac{1}{2}(1-\cos$              | 12x) dx =        | $=\frac{1}{2}x - \frac{1}{24}s$ | $\sin 12x + 0$                               | 2              |           |           |     |
| Q6:                                                 |                                                                 |                                   |                  |                                 |                                              |                |           |           |     |

Doesn't matter where first person sits. Sit him/her down and call that position 1 on the table. Fill the remaining odd positions (clockwise) with the same gender. This accounts for the 3!.

Fill the remaining even positions with the remaining people (4!).

Multiple by 2, as the initial person could be either a male/female =  $2 \times 4! \times 3!$ 

Q7: Gradient of line 
$$2x - y = 0$$
, is 2.  
 $\frac{2-m}{1+2m} = \pm 1$ ,  
 $2-m = 1+2m$  or  $2-m = -1-2m$   
 $m = \{\frac{1}{3}, -3\}$ 

**Q8:** Modify integral to standard form  $\frac{1}{4} \int \frac{dx}{x^2 + \left(\frac{9}{4}\right)} = \frac{1}{6} \tan^{-1} \frac{2x}{3}$ 

**Q9:**  $\binom{20}{n} 2^{20-n} x^{4n-20}$  is the value of each term. Solve the coefficient equal to zero  $\Rightarrow n = 5$ .

Q10: Differentiate

$$\frac{d}{dx}\sin^{-1}(2x-1) = \frac{2}{\sqrt{1-4x^2+4x-1}} = \frac{1}{\sqrt{x(1-x)}}$$

(1) Cirraneen 2017 Ext 1 Solutions Q11-15 QII P (3,-31/2) (9) B (1-2) A (-1, -1/2) A (-3, 1) thede using formals P(my) = (mx2-nor, my2-ny) = (mx2-ny) 12 (b)  $\int \frac{1+2x}{1+x^2} dx = \int \frac{1}{1+x^2} + \frac{2x}{1+x^2} dx$ =  $tan^{-1}(a) + log_e(1+x^2) + c /2$ (c) helf  $\alpha = u - 2$ . Limits become [1,4] Had is u = x + 2 dy = 1,  $J_{0} I = \int \frac{3(u-2)+5}{\sqrt{u}} du = \int \frac{3u-1}{\sqrt{u}} du$ = 53.12 - u-12 du  $= \frac{2}{2} \frac{1}{2} \frac{1}{2} - \frac{1}{2} \frac{1}{2}$ 

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 11 d) For N=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |
| 3° - 2ª                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
| = 729-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
| = 725                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| which is divisible by 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |
| Assure 32K14 - 22k to be divisible by 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |
| Now for Nek+1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |
| 1 = 3 <sup>2(k+1)+9</sup> - 2 <sup>2(k+1)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
| $= 3^{2k+6} - 2^{2k+2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
| $= 3^{2} / 3^{2k+4} - 2^{2k} + 3^{2} \cdot 2^{2k} - 2^{2} \cdot 2^{2k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | lk          |
| $= 9(5K) + (9-4)2^{2k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KelN        |
| $= 5 (9k + 2^{2k})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |
| = 5K or regired KCN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
| > Tous the las when rel and two contest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | where cases |
| Have I Principal of Multer ofwill bolychen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ke          |
| club of it down is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
| 32144 - 72 is divitle by 5 th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | by all ACIN |
| 5 - 6 13 0143/04 09 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14          |
| as is I do a mar de show the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *           |
| (c) (i) $(c)$ | 12          |
| y = (2 (03 - 3 - 7))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
| (i) Ising (i), for the is (or in the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50 = 2NS    |
| 40h 15 = 60 (1+13) = 2+13, M (5) 1<br>= 0-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | =2+3        |
| - x-152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,           |
| · · (10 10 1 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /2          |
| y Since (2-13)(2+13) = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •           |
| EL POU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
| End of dell.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |







| 13 (b) (i) or = at = Vat                | i (using chain rule)              |
|-----------------------------------------|-----------------------------------|
| so dv3 22                               |                                   |
| あ 3                                     |                                   |
| · a= = = - = =                          | 23                                |
| = -3/64 25                              | /2                                |
| (i) $dx = -\frac{1}{2}x^3$              | ,                                 |
| => == == ============================== |                                   |
| + = 8×-2 =(                             | -h) +C.                           |
| $+ = -4x^{-2} +$                        | <i>C</i> .                        |
| At 1=0, x=2.                            |                                   |
| -44 => C=1                              |                                   |
| + = - 4, +1                             |                                   |
| 4 = - + + 1                             |                                   |
| 24 14                                   | in the istall                     |
| × +/++                                  | Since KIU Juinaing.               |
| 2000                                    | 171, 240. /3                      |
| (1) (1) $y = x^2 + 4x^{-5}$             | Inverse defred on either (-2,00)  |
| = (2-1)(2+5)=                           | P interrept of (1.0) or (-00, -2) |
| forferclare 'x' at '                    |                                   |
| $y_{1} = y^{2} + 4y_{-5}$               |                                   |
| $= (y+2)^2 - q$ .                       |                                   |
| 4 the = Jx+92                           | (check interrepts of (0,1))       |
| u= 12+9 -2.                             |                                   |
|                                         | 4                                 |





|                                                                                          | 9                                 |
|------------------------------------------------------------------------------------------|-----------------------------------|
| 14 (d) (i)                                                                               |                                   |
| At t=2, x=8, y=-2 (t=0,                                                                  | 4=0,2=0)                          |
| av iose = 3 2V sine                                                                      | = 19.6-2.                         |
| V io, 0 = 4 V sin ?                                                                      | = 8.8                             |
| =) to 0 = 2.5                                                                            | /2                                |
| (ii) Let y= f(+)                                                                         |                                   |
| = Vt sino - 4.912+6 (a                                                                   | (justed XA)                       |
| y = V sin 0 - 9.8+                                                                       |                                   |
| But V sine = V cose time                                                                 |                                   |
| = <del>~</del> ×2·2                                                                      |                                   |
| Using Newton's method approximate to=                                                    | Q.                                |
| $+$ = $4 \rightarrow \frac{f'(i_o)}{2}$                                                  |                                   |
| f"(to)                                                                                   |                                   |
| $Y_{11_0} = \frac{1}{2} \left(\frac{1}{2}\right) = \frac{3}{2} \left(\frac{1}{2}\right)$ |                                   |
| - (to) - 0.000                                                                           | 1                                 |
| $S_{+} = R - 4$                                                                          | 4                                 |
| -10-8                                                                                    |                                   |
| = 2.37.                                                                                  |                                   |
| 2.3 seconds. (since the                                                                  | tument intersects after           |
| or the s                                                                                 | tonjectos, projectie hits ground) |
| Follo QA                                                                                 |                                   |
|                                                                                          |                                   |

|                                                                                                       | 6             |
|-------------------------------------------------------------------------------------------------------|---------------|
| (dis)                                                                                                 |               |
| $(a)(i) P(4) = 0 \implies 64a + 4k - 108 = 0$ (1)                                                     |               |
| $f(1) = -6 \implies a + k - 3 = -6 \implies a$                                                        | + k = -3. (2) |
| Fron (1) 16a + K = 27.                                                                                |               |
| 9+K=-3.                                                                                               |               |
| 159 = 30                                                                                              |               |
| a= 2.                                                                                                 |               |
| k= -5                                                                                                 |               |
| $S_0 P(x) = 2\lambda^3 - 7\lambda^2 - 5x + 4$                                                         | /2            |
| $\frac{d\beta + \beta \delta + \delta a}{\delta \beta \delta} = \frac{c}{-\frac{d}{a}} = \frac{c}{d}$ |               |
| - 5                                                                                                   | ,             |
| 4                                                                                                     | /             |
| (b) (i) Initial Term = log, 93 - loge b/2                                                             |               |
| = 3 log a - 1/2 loge b                                                                                |               |
| T = 3 laye a - loge b.                                                                                |               |
| For infilming nuclin.                                                                                 |               |
| The 3 loge a - & loge b                                                                               |               |
| Tuti = 3 logea - (2) log b.                                                                           |               |
| toti-te = = z loyeb                                                                                   |               |
| . An anithmetic series, d = - z loy                                                                   | , b /2        |
| (iii) T23 = 3 byea - 2 loge 6                                                                         |               |
| Ti+tz+T3+ = 19 loge a - 2 (1+2+3.                                                                     | + 23) layeb   |
| = 69 loge a - 138 loge b                                                                              | s.            |



| (a)(1) 1-                    | M 180°                      | instead           | of #)             |                     |                      |         |             |        |
|------------------------------|-----------------------------|-------------------|-------------------|---------------------|----------------------|---------|-------------|--------|
| LFEA = T                     |                             | AE                | fast              | (co-inter<br>one si | hor any<br>potenence | les ,   | ACIIFE      | )      |
| Note LIFEA                   | + LADU                      | - 11              |                   |                     |                      | -       |             |        |
| => EABF                      | 15 0                        | cyclic            | quadrich          | ent s               | ince                 |         |             |        |
| 99                           | gosik a                     | ingles            | are si            | upplemen            | tay.                 |         |             |        |
| C. 101                       | r 100                       | 17;               | 1. 31             | .01                 |                      |         |             |        |
| (111) 184                    | 12 = 40                     | 12                | (0/ 10            |                     | 1 1                  |         |             |        |
| Since                        | e Ab is                     | dimete            | , AE              | is a                | tagent               | -11     | 1 -         |        |
| C                            | and agle                    | between           | tunjen            | 1 1 1               | adius                | 13 1/2  | (a 90       | "))    |
|                              |                             |                   |                   | _                   |                      |         |             |        |
| => BE is                     | a dia                       | ineter            | (angle            | In Jem              | icircle              | 157/3   | 6 90        | 2)     |
|                              |                             |                   |                   |                     |                      |         |             |        |
|                              |                             |                   |                   |                     |                      |         |             |        |
|                              | En                          | 1 of              | Q15               |                     |                      |         |             |        |
|                              | En                          | h of              | Q15               |                     |                      |         |             |        |
| Multiple (                   | Erc                         | h of<br>Answers   | Q 15              |                     |                      |         |             |        |
| Multiple (<br>a). B          | Erc<br>Choice<br>Q3.        | Answers<br>C      | Q15<br>Q5.        | C                   | Q7.                  | в       | Q7.         | 6      |
| Multiple (<br>a). B<br>Q2. D | Erc<br>Choice<br>23.<br>24. | Answers<br>C      | Q15<br>Q5.<br>Q6. | C<br>D              | Q7.<br>Q8.           | в<br>в. | Q7.<br>U10- | ß      |
| Multiple (<br>Gl. B<br>Qz. D | Erc<br>Choice<br>Q3.<br>Q4. | Answers<br>C      | Q15<br>Q5.<br>Q6. | C<br>D              | Q7.<br>28.           | в<br>в. | Q7.<br>Wo-  | ß      |
| Multiple (<br>Q). B<br>Q2. D | Erc<br>Choice<br>Q3.<br>Q4. | Answers<br>C<br>C | Q15<br>Q5.<br>Q6. | C<br>D              | Q7.<br>28.           | в<br>в. | Q7.<br>Ub.  | 6<br>D |
| Multiple (<br>Q1. B<br>Q2. D | Ero<br>Choice<br>Q3.<br>Q4. | Answers<br>C<br>C | Q15<br>Q5<br>Q6.  | C<br>D              | Q7.<br>Q8.           | в.      | Q7.<br>Ulo. | ß<br>D |
| Multiple (<br>Q). B<br>Q2. D | Erc<br>Choice<br>Q3.<br>Q4. | Answers<br>C<br>C | Q15<br>Q5.<br>Q6. | C<br>D              | Q7.<br>28.           | в<br>в. | Q7.<br>Ulo_ | ß      |
| Multiple (<br>Q1. B<br>Q2. D | Ero<br>Choice<br>23.<br>24. | Answers<br>C<br>C | Q15<br>Q5<br>Q6.  | C<br>D              | Q7.<br>28.           | в.      | Q7.<br>Ub.  | ß      |
| Multiple (<br>Q1. B<br>Q2. D | Ero<br>Choice<br>Q3.<br>Q4. | Answers<br>C<br>C | Q15<br>Q5.<br>Q6. | C<br>D              | Q7.<br>28.           | в<br>в. | Q7.<br>Ulo- | ß      |
| Multiple (<br>Q). B<br>Q2. D | Erc<br>Choice<br>23.<br>24. | Answers<br>C<br>C | Q15<br>Q5<br>Q6.  | C<br>D              | Q7.<br>28.           | в<br>в. | Q7.<br>Ulo- | ß      |