STUDENT NUMBER: _____

STUDENT NAME: ____

THE HILLS GRAMMAR SCHOOL

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

2008

MATHEMATICS

EXTENSION 1

Teacher Responsible: Mrs P Singh

General Instructions:

- Reading time 5 minutes
- Working time 2 hours
- This paper contains 7 questions.
- ALL questions to be attempted.
- ALL questions are of equal value.
- ALL necessary working should be shown in every question in the booklets provided.
- Start each question in a new booklet.
- A table of standard integrals is supplied at the back of this paper.
- Marks may be deducted for careless, untidy or badly arranged work.
- Board approved calculators may be used.
- Hand up your paper in ONE bundle, together with this question paper.

Students are advised that this is a Trial Examination only and cannot in any way guarantee the content or the format of the Higher School Certificate Examination.

Trial Extension 1 – 2008

Question 1 (12 marks) Mar		
a)	The polynomial $P(x) = x^3 + ax^2 + 2x - 4$ has a remainder of -7 when divided by $x + 2$. Find the value of <i>a</i> .	1
b)	Differentiate $e^{2x} \sin x$	2
c)	Find the acute angle, to the nearest degree, between the lines $2x + y = 4$ and $x - y = 2$	2
d)	Evaluate $\int_{0}^{2} \frac{dx}{4+x^2}$	2
e)	Using the substitution $u = 2x + 1$ or otherwise, find $\int_{0}^{1} \frac{4x}{2x+1} dx$.	3
f)	Find the co-ordinates of the point <i>P</i> which divides the line joining $A(-3, 4)$ and $B(2, -8)$ externally in the ratio 2:5.	2

Question 2 (12 marks)

a) Prove the identity:
$$\frac{\cos x - \cos 2x}{\sin 2x + \sin x} = \csc x - \cot x$$
 3

b) Find all angles for
$$\theta$$
, where $0 \le \theta \le 2\pi$ for which $\sqrt{3} \cos \theta - \sin \theta = 1$. 4

c) The function
$$h(x)$$
 is given by $h(x) = \sin^{-1} x + \cos^{-1}(x)$ for $-1 \le x \le 1$.

i) show that
$$h'(x) = 0$$
 1

ii) sketch the graph of
$$y = h(x)$$
 2

d) Find
$$\frac{dy}{dx}$$
 if $y = \tan^{-1}(\sin x)$ 2

Question 3 (12 marks)

a)	A cu	A cup of hot cappuccino at temperature T^0 Celsius loses heat when			
	plac	placed in a cooler environment. It cools according to the law			
	$\frac{dT}{dt} = -k(T - T_0)$ where time, <i>t</i> is the time elapsed in minutes and				
	<i>T</i> ₀ i	s the temperature of the environment in degrees Celsius.			
	i)	Show that $T = T_0 + Ce^{-kt}$	1		
	ii)	A cup of cappuccino at $100^{\circ}C$ is placed in an environment at			
		$-20^{\circ}C$ for 3 minutes and then cools to $70^{\circ}C$. Find k, in exact			
		form.	2		
	iii)	The same cup of cappuccino at $70^{\circ}C$ is then placed in an			
		environment at $20^{\circ}C$, assuming k stays the same, find the			
		temperature, to the nearest degree, of the cappuccino after a			
		further 15 minutes.	4		
1.)	•	S_{1} and A_{2} is a second of $\frac{3}{2}$, $\frac{4}{2}$, S_{2}	1		
b)	1)	Show that $x = 2$ is a zero of $x^2 - 4x^2 + 8$	I		
	ii)	Hence find all the real zeros of $x^3 - 4x^2 + 8$, leaving your answers in exact form.	2		
		4			
	iii)	Hence solve the inequality: $\frac{4}{x-2} \le x$	2		

Question 4 (12 marks)

Solve

a)

THGS Mathematics Trial 2008 Extension

b) Find the coefficient of x^3 in $\left(3x^2 + \frac{1}{x}\right)^9$

c) A function is defined as
$$f(x) = 1 + e^{2x}$$
.

- i) Write down the range of f(x).
- ii) Given $f^{-1}(x)$ is the inverse function for f(x), show that

 $2^{2x+1} - 5(2^x) + 2 = 0$

$$f^{-1}(x) = \frac{1}{2} \ln (x-1)$$
 2

iii) On the same set of axes, sketch the graphs of y = f(x) and $y = f^{-1}(x)$, showing all key features. **3**

3

3

Question 5 (12 marks)

a) A particle moves in a straight line with Simple Harmonic Motion. At time *t* seconds, its displacement *x* metres from a fixed point *O*, is given by:

$$x = 5\,\sin\frac{\pi}{2}\left(t + \frac{1}{3}\right)$$

i) Show that $\ddot{x} = \frac{-\pi^2}{4} x$

- ii) State the period and the amplitude of the motion.
- b) The acceleration of a particle moving in a straight line is given by:

$$\frac{d^2x}{dt^2} = \frac{-72}{x^2},$$

where x metres is the displacement from the origin after t seconds. Initially the particle is 9 metres to the right of the origin with a velocity of 4m per second.

- i) Show that the velocity v of the particle in terms of x is $v = \frac{12}{\sqrt{x}}$. Explain why v is always positive for the given initial conditions.
- ii) Find an expression for *t* in terms of *x*.

2

2

Question 6 (12 marks)

a) i) Show that the equation of the tangent to the parabola $x^2 = 16y$ at any point $P(8t, 4t^2)$ on it is $y = tx - 4t^2$.

ii) Show that the equation of the line r through the focus S of the parabola which is perpendicular to the focal chord through P is

$$(t2 - 1) y + 2tx = 4(t2 - 1)$$
²

- iii) Prove that the locus of the point of intersection of the line r and the tangent at P is a horizontal line.
- b) *AB* and *CD* are two towers of equal height (*h*). *CD* is due north of *AB*. From a point *P* on the same horizontal plane as the feet *B* and *D* of the towers, and bearing due east of the tower *AB*, the angles of elevation of *A* and *C*, the tops of the towers, are 47° and 31° respectively. If the distance between the towers is 88m, find the height of the towers to the nearest metre.

2

5

Question 7 (12 marks)

Marks

a)	Prov 1.2°	e by mathematical induction that + $2 \cdot 2^{1} + 3 \cdot 2^{2} + \dots + n \cdot 2^{n-1} = 1 + (n-1)2^{n}$ for $n \ge 1$.	4
b)	Duri kicks initia abov due t	In a soccer tournament, Juan is standing 25m away from the goal line. He is a soccer ball off the ground at an angle of 30° to the horizontal with an all velocity of <i>V</i> m per sec. The ball hits the top bar which is 2.4 m directly is the goal line. Neglecting air resistance and assuming that acceleration o gravity is 10 m/s ² , find:	
	i)	The horizontal and vertical components of displacement of the ball in terms of the initial velocity V .	4
	ii)	The Cartesian equation of the motion for the path of the ball.	1
	iii)	The initial velocity of the ball, correct to 1 decimal place.	3

END OF EXAMINATION

<u></u>	Solu Wal 2008 ExTI	<u>Q3</u>
	Question 3 12 marles)	b. (iii) 4 (>
		X-2
3 (2)	$\int \frac{dT}{dT} = -\mathcal{R}Ce^{-\mathcal{R}T} + dT = -\mathcal{R}(T-T_{0})$	
<u></u> (2)	dt	$- + (x-2) - (x-2)^{-1}$
÷		$\frac{4(x-2) - x(x-2)^{2}}{4(x-2)} \leq 0$
	$-\frac{1}{2}(T-T_0) = -\frac{1}{2}(e^{-\frac{1}{2}})$	$(x-2)(4-x^2+2x) \leq 0$
	$T = To + Ce^{-Et}$	$(x-2)(-x^2+2x+4) \leq 0$ from (1)
(in	$14t + = 3 T = 70 \qquad \qquad \overline{T} = -20$	
<u>\"</u>	10 - 10 + 10 4 8 3 12	
	$\frac{10 - 10}{28}$	1-15 145
	$e^{2k} = \frac{1}{12}$ $100 = -20 + 4$	SS= 202 202 1415
	$\frac{1}{12} k = \frac{1}{3} ln^{\frac{3}{4}} - \frac{1}{4} A = 120$ (2)	1 - (E + 2 + 2) (2)
(iii)	left=0 in here with its + laced in purlia at 20°C	
	the providence of the placed in enotion of the	
	13204 68	
	$at t=0$, $T=70^{\circ}$	
	70 = 20 + Be°	
	B = 50	
	.'. T = 20150 e E	
1	$(\pm a, 3)$	
· .	1563kn (4)	
	4 21010	
	<u> </u>	
<u> </u>		
<u>(b)</u>	()P(+2) = 8-16+8=0 -1, azero, (1)	
	$x^2 - 2x - 4$	
	$ y_{2x-2} _{x^{2}-4x^{2}+7} = P(x) - (x-2)(x^{2}-2x-4)$	
	$-\chi^{3} - 2 \approx c^{2}$	
	$\sum_{n=2}^{\infty} \sum_{j=2}^{\infty} \frac{j_{j}}{2} = \frac{j_{j}}{2} + j_$	
	-4x	
	(-) $(-)$	
	-4x +8 -	
	$(-) - \frac{-4}{2} = \frac{-4}{12} =$	·

 $\frac{Q4}{D} \left(\frac{12 \text{ marks}}{3 \text{ s}^2 + \frac{1}{2}}\right)^{q}$ $T_{\mathcal{R}+1} = C_{\mathcal{R}} \left(3x^{2}\right)^{q-\mathcal{R}} \left(\frac{1}{x}\right)^{\mathcal{R}}$ $= {}^{9}C_{e} \cdot {}^{3^{-\kappa}} \times {}^{1^{s-2}e} \times {}^{2^{-e}}$ $= {}^{q}C_{R}, {}^{q-R} - {}^{1}S-3R$ - coeff of x3 __> 18-3 R = 3 1, coeff = 7(5x3" $3 - E = 15^{\circ}$ = 1526 × 3 ్ సంజంకా $(G) = f(G) = 1 + e^{2\chi}$ () = () = ()7 Ficu $x-1 = e^{2y}$ $e_{1}(x-y) = 2y$ (3) -' y = - then (sc-1) $QU 2^{2x+1} - 5(5^{2}) + 2 = 0$ $2(2^{2x}) - c(2^{x}) + 2 = 0$ here a = 2x . 202- 5u+2 =0 (2u-i)(u-2) = 0u=12, u=2 (3) ン.x=-1,1

(0) (i) $X = 5 \sin \frac{\pi}{2} (5+\frac{\pi}{2})$ $\dot{s}\dot{c} = \frac{5\pi}{2} \cos \frac{\pi}{2} (5+\frac{1}{3})$ $\ddot{c} = -\frac{5\pi}{2} \sin \frac{\pi}{2} (5+\frac{1}{3})$ (2) (1) Ampl = 5 , period = 7/2 = 4. (2)(b) $(1 d^2 y) = -72 = t = 0, x = 9, v = 4$ dt 2 <u>d±v2 - -72</u> $\frac{1}{2}v^2 = \frac{-72x}{-1} + C_1$ 1 v= = = + c1 $x = q 2 \frac{1}{2} (16) = \frac{72}{q} + c_1$ $1.\frac{1}{2}v^2 = \frac{7^2}{2}$ $v^2 = 144/x$ v = + +2 But particle starts at q + is havelling to be right at 4m|s ... velocity is the as $x = \frac{12}{Vz}$. Y is never $0 \Rightarrow \frac{12}{52} \pm 0$ as $x \pm a$ (5) $(1) \frac{dx}{dt} = \frac{12}{5c}$ at t = 0, x = 9dt = 5c/2 3^{2} . $0 = \frac{q^{3/2}}{18} + C_{2}$ $t = \frac{x^{3/2}}{18} + C_{2}$:. C2 = -3/2 $t = \frac{2c^{3}/2}{12} - \frac{3}/2}{12}$ (2) $b = \frac{12^3}{18} - \frac{3}{2}$

('5) ('5)

•..

Q 7. (12 marks) R Rove Z $r. 2^{r-1} = 1 + (n-1) 2^{n}$ Vatical (1) taizoutal. 2.4 m 4 = -10 le prove 1.2° + 2.2' + 3.2° + ... + 1 2"= 1+ (n-1)2" y' = -10++c when t=0, $y=\frac{3t}{2}$ === x = 13= Step 1 Rove the for n=1 · ý = - 501 + - 2 $\therefore x = 3x$ LHS = 1.20 =1 y = -st2 + 1/2 + c >c = 13 vt +c Etts 1+0.2'=1 when $t = 0^{2} = 0$ when t=0 y=0 ン= 星イト $y = -st^2 + \frac{vt}{2}$.". twe for n=1 (4) (1) t = 13V Step2 Assume the form= B $y = -5\left(\frac{2x}{13}\right)^2 + \frac{\sqrt{2x}}{2}\left(\frac{3x}{13}\right)$ $y = -\frac{205c^2}{2V^2} + \frac{1}{3}$ ic 1.2°+22'+... & 2 = 1+(2-1)2 111, when x = 25, y=2.4 step 3 Rove hue for 11= 2+1 $2.4 = -\frac{20 \times 25^2}{3 \times 2} + \frac{2573}{3}$ ic $1.2^{\circ} + \cdots + \mathcal{E}_{2}^{2} + (\mathcal{B}_{+})_{2}^{2}$ 7.2 V2= -12500 +25 13 V2 = 1 + - e, 2 e+1 V2 = 12500 2513-7.2 $L_{HS} = 1 + (B - 1) 2^{E} + (B + 1) 2^{E}$ = 346.248 $= 1 + k \cdot 2^{k} - 2^{k} + k 2^{k} + 2^{k}$ 2, v = 18.6mlc. = 1 + 2 - 2 - 2= 1+-2,2'22 = 1+ R. 2 Et1 $= 12^{++5}$. the for n= R+1 if me for n= t. Step 4 canel. Ve have proved Stand due for n= = = + 1 ef the fan= ? But stand is the for n=1 . The for n=2,34, hEJ