\qquad
\qquad

THE HILLS GRAMMAR SCHOOL

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

2008

MATHEMATICS
 EXTENSION 1

Teacher Responsible: Mrs P Singh

General Instructions:

- Reading time - 5 minutes
- Working time - 2 hours
- This paper contains 7 questions.
- ALL questions to be attempted.
- ALL questions are of equal value.
- ALL necessary working should be shown in every question in the booklets provided.
- Start each question in a new booklet.
- A table of standard integrals is supplied at the back of this paper.
- Marks may be deducted for careless, untidy or badly arranged work.
- Board approved calculators may be used.
- Hand up your paper in ONE bundle, together with this question paper.

[^0]
Trial Extension 1-2008

Question 1 (12 marks)
a) The polynomial $P(x)=x^{3}+a x^{2}+2 x-4$ has a remainder of -7 when divided by $x+2$. Find the value of a.

Question 2 (12 marks)

a) Prove the identity: $\frac{\cos x-\cos 2 x}{\sin 2 x+\sin x}=\operatorname{cosec} x-\cot x$
b) Find all angles for θ, where $0 \leq \theta \leq 2 \pi$ for which $\sqrt{3} \cos \theta-\sin \theta=1$.
c) The function $h(x)$ is given by $h(x)=\sin ^{-1} x+\cos ^{-1}(x)$ for $-1 \leq x \leq 1$.
i) show that $h^{\prime}(x)=0$
ii) sketch the graph of $y=h(x)$
d) Find $\frac{d y}{d x}$ if $y=\tan ^{-1}(\sin x)$
a) A cup of hot cappuccino at temperature T^{0} Celsius loses heat when placed in a cooler environment. It cools according to the law $\frac{d T}{d t}=-k\left(T-T_{0}\right)$ where time, t is the time elapsed in minutes and T_{0} is the temperature of the environment in degrees Celsius.
i) Show that $T=T_{0}+C e^{-k t}$
ii) A cup of cappuccino at $100^{\circ} \mathrm{C}$ is placed in an environment at $-20^{\circ} \mathrm{C}$ for 3 minutes and then cools to $70^{\circ} \mathrm{C}$. Find k, in exact form.
iii) The same cup of cappuccino at $70^{\circ} \mathrm{C}$ is then placed in an environment at $20^{\circ} \mathrm{C}$, assuming k stays the same, find the temperature, to the nearest degree, of the cappuccino after a further 15 minutes.
b) i) Show that $x=2$ is a zero of $x^{3}-4 x^{2}+8$
ii) Hence find all the real zeros of $x^{3}-4 x^{2}+8$, leaving your answers in exact form.
iii) Hence solve the inequality: $\frac{4}{x-2} \leq x$
a) Solve $2^{2 x+1}-5\left(2^{x}\right)+2=0$ 3
b) Find the coefficient of x^{3} in $\left(3 x^{2}+\frac{1}{x}\right)^{9}$
c) A function is defined as $f(x)=1+e^{2 x}$.
i) Write down the range of $f(x)$.
ii) Given $f^{-1}(x)$ is the inverse function for $f(x)$, show that

$$
f^{-1}(x)=\frac{1}{2} \ln (x-1)
$$

iii) On the same set of axes, sketch the graphs of $y=f(x)$ and $y=f^{-1}(x)$, showing all key features.
a) A particle moves in a straight line with Simple Harmonic Motion. At time t seconds, its displacement x metres from a fixed point O, is given by:

$$
x=5 \sin \frac{\pi}{2}\left(t+\frac{1}{3}\right)
$$

i) Show that $\ddot{x}=\frac{-\pi^{2}}{4} x$
ii) State the period and the amplitude of the motion.
b) The acceleration of a particle moving in a straight line is given by:

$$
\frac{d^{2} x}{d t^{2}}=\frac{-72}{x^{2}}
$$

where x metres is the displacement from the origin after t seconds. Initially the particle is 9 metres to the right of the origin with a velocity of 4 m per second.
i) Show that the velocity v of the particle in terms of x is $v=\frac{12}{\sqrt{x}}$.

Explain why v is always positive for the given initial conditions.
ii) Find an expression for t in terms of x. 3
a) i) Show that the equation of the tangent to the parabola $x^{2}=16 y$ at
any point $P\left(8 t, 4 t^{2}\right)$ on it is $y=t x-4 t^{2}$.

2
ii) Show that the equation of the line r through the focus S of the parabola which is perpendicular to the focal chord through P is

$$
\begin{equation*}
\left(t^{2}-1\right) y+2 t x=4\left(t^{2}-1\right) \tag{2}
\end{equation*}
$$

iii) Prove that the locus of the point of intersection of the line r and the tangent at P is a horizontal line.
b) $\quad A B$ and $C D$ are two towers of equal height (h). $C D$ is due north of $A B$. From a point P on the same horizontal plane as the feet B and D of the towers, and bearing due east of the tower $A B$, the angles of elevation of A and C, the tops of the towers, are 47° and 31° respectively. If the distance between the towers is 88 m , find the height of the towers to the nearest metre.
a) Prove by mathematical induction that
$1.2^{0}+2.2^{1}+3.2^{2}+\ldots .+n .2^{n-1}=1+(n-1) 2^{n}$ for $n \geq 1$.
b) During a soccer tournament, Juan is standing 25m away from the goal line. He kicks a soccer ball off the ground at an angle of 30° to the horizontal with an initial velocity of $V \mathrm{~m}$ per sec. The ball hits the top bar which is 2.4 m directly above the goal line. Neglecting air resistance and assuming that acceleration due to gravity is $10 \mathrm{~m} / \mathrm{s}^{2}$, find:
i) The horizontal and vertical components of displacement of the ball in terms of the initial velocity V.
ii) The Cartesian equation of the motion for the path of the ball.
iii) The initial velocity of the ball, correct to 1 decimal place.

END OF EXAMINATION

THas soen Tial 2008 ExTI
Q 1 (L2maks)
(a)

$$
\begin{gather*}
-8+4 a-4-4=-7 \\
4 a=a \\
\therefore a=6 / 4 \tag{1}
\end{gather*}
$$

(b)

$$
\begin{align*}
y & =e^{2 x^{n}} \sin x \\
y^{\prime} & =e^{2 x} \cos x+\sin x 2 e^{26} \\
& =e^{2 x}(\cos x+2 \sin x) \tag{2}
\end{align*}
$$

(C)

$$
\begin{aligned}
& y=-2 x+4 \quad \therefore m_{1}=-2 \\
& y=x-2 \quad m_{2}=1
\end{aligned}
$$

$$
\begin{align*}
\therefore \tan \alpha & =\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right| \\
\tan a & =131 \\
\therefore a & =-72^{\circ} \tag{2}
\end{align*}
$$

d.) $\int_{0}^{2} \frac{d x}{4+x^{2}}=\left[\frac{1}{2} \tan ^{-1} \frac{x}{2-}\right]_{0}^{2}$

$$
\begin{align*}
& =\frac{1}{2} \tan ^{-1}(1)-\frac{1}{2} \tan ^{-1}(0) \\
& =\frac{1}{2} \times \frac{\pi}{4}-\frac{1}{2} \times 0 \\
& =\frac{\pi}{8} \tag{2}
\end{align*}
$$

(2)
de) $\int_{0}^{1} \frac{4 x}{2 x+1}$

$$
u=2 x+1 \quad \Rightarrow 2 x=c 1-1
$$

$$
\begin{aligned}
& =\int_{1}^{3} \frac{u-1}{u} d u \\
& =\int_{1}^{3} 1-\frac{1}{4} d u \\
& =\left[u-\log _{e} u\right]_{1}^{3} \\
& =\left(3-\log _{e^{3}}\right)-\left(1-\log _{e^{1}}\right) \\
& =2-\log _{e} 3
\end{aligned}
$$

$$
d u=2 d x
$$

$$
\text { when } r=1, \quad u=3
$$

$$
x=0, u=1
$$

(f). $\quad P\left(\frac{-2 \times 2+5 x-3}{-2+5}, \frac{-2 x-8+5 \times 4}{-2+5}\right)$

$$
\begin{aligned}
& =\left(-\frac{19}{3}, \frac{36}{3}\right) \\
& =\left(-6 \frac{1}{3}, 12\right)
\end{aligned}
$$

Q2. 12 maks
(a)

$$
L_{H S}=\frac{\cos x-\cos 2 x}{\sin 2 x+\sin x}
$$

$$
=\frac{\cos x+2 \cos ^{2} x+1}{2 \sin x \cos x+\sin x}
$$

$$
=\frac{(1+2 \cos x)(1-\cos x)}{\sin x(2 \cos x+1)}
$$

$$
=\frac{1-\cos x}{\sin x}
$$

$$
=\frac{1}{\sin x}-\frac{\cos x}{\sin x}
$$

$$
=\operatorname{cosec} x-\cot x
$$

(b) $\sqrt{3} \cos \theta-\sin \theta=r \cos (\cos +\infty)$

$$
\begin{array}{rlrl}
& =r \cos c \cos \alpha-r \sin \alpha \sin \alpha \\
r \cos \alpha & =\sqrt{3} & r \sin \alpha=1 \\
\tan \alpha & =\frac{1}{\sqrt{3}} & r^{2}=(\sqrt{3})^{2}+1^{2} \\
\therefore \alpha=\pi & &
\end{array}
$$

$$
\begin{gathered}
\therefore \underbrace{\alpha=\pi / 6} \\
\therefore \quad 2 \cos \left(\theta+\frac{\pi}{6}\right)=1 \\
\cos \left(\theta+\frac{\pi}{6}\right)=\frac{1}{2} \\
\theta=\frac{\pi}{3}-\frac{\pi}{6}, \frac{\pi}{3}-\frac{\pi}{6} \\
=\frac{\pi}{6} \text { or } \frac{9 \pi}{2}
\end{gathered}
$$

(d) Let $u=\sin x$ $d y=\cos x$.
when $x=0 \quad-\quad,(x)=\frac{\pi}{2}$

$$
\therefore h(x)=\frac{\pi}{2} \quad h(x)=\sin ^{-1}(x)+\cos ^{-1}(x)
$$

$$
\begin{aligned}
& \therefore y=\tan ^{-1} u \quad \therefore \frac{d y}{d x}=\cos x x-\frac{1}{1+\operatorname{tin}^{2} x} \\
& y^{\prime}=\frac{1}{1+4^{2}}
\end{aligned}
$$

Soln Trial 2008 ExT1.

$$
\text { Question } 3 \quad 12-m-a(c-s)
$$

3(c) $(1) \frac{d T}{d t}=-B C e^{-b t} \quad$ but $\frac{d T}{d t}=-b\left(T-T_{0}\right)$

$$
\begin{align*}
\therefore & \quad t^{\prime}\left(\tau-T_{0}\right) \tag{1}\\
& \therefore \quad I=T_{0}+c e^{-k t}
\end{align*}
$$

(ii) At $t=3, T=70$

$$
\begin{align*}
& 70=-20+120 e^{3 k} \\
& e^{3 k}=\frac{9}{12} \\
& \therefore k=\frac{1}{3} \ln 3 / 4 \tag{2}
\end{align*}
$$

$$
\begin{aligned}
T_{0} & =-20 \\
a t t & =0, T=100 \\
\therefore 100 & =-20+A \\
\therefore A & =120
\end{aligned}
$$

(iii) let $t=0$ in hen cut is placed in enviro at $20^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& T=20+B e^{B t} \\
& \text { at } t=0, T=70^{\circ} \\
& 70=20+B e^{\circ} \\
& \therefore B=50 \\
& \therefore T=20+50 e^{6 t} \\
& \therefore T\left.=20+50 e^{15\left(\frac{1}{3} \ln 3\right.} 4\right) \\
& \therefore 31.86^{\circ} \\
& \simeq 32^{\circ} C
\end{aligned}
$$

(b)

$$
\begin{aligned}
& (1 P(+2)=8-16+8=0 \quad \therefore \text { a zere. } \\
& \text { (V) } \begin{array}{rl}
x-2 \sqrt{x^{3}-4 x^{2}+2 x-4} 8 & \therefore P(x) \\
-\frac{x^{2}-2 x^{2}}{}-2 x^{2} & x=2 \pm\left(x^{2}-2 x-4\right) \\
-2 & =\frac{2 \pm+16}{2}
\end{array} \\
& (-)-2 x^{2}+4 x \\
& -4 x+8 \\
& \text { (-) }-4 x+8 \quad \therefore x=2,1 \pm \sqrt{5}
\end{aligned}
$$

$\therefore \operatorname{cosf} 1$ of x^{3}

$$
\Rightarrow
$$

$$
18-3=3
$$

$$
\text { icoeff }=
$$

$$
=9 C_{5} \times 3^{4-5}
$$

$$
3-2=15
$$

$$
=\quad 13 \times 3^{4}
$$

$$
z=s^{5}
$$

$$
=1+206
$$

(c)

$$
\begin{align*}
& f(x)=1+e^{2 x} \\
& \text { (} y>1 \tag{1}\\
& \text { (i) } x=1+e^{y} \\
& x-1=e^{x y} \tag{3}
\end{align*}
$$

$\ln (x-1)=2 y$

$$
\because y=\frac{1}{2} \ln (x-1)
$$

(iii)

at $2^{2 x+1}-5\left(2^{x}\right)+2=0$

$$
2\left(2^{2 x}\right)=5\left(2^{x}\right)+2=0
$$

hex $u=2 x-5 u+2=0$

$$
(2 u-1)(u-2)=0
$$

$$
u=\frac{1}{2}, \quad u=2
$$

$\therefore x=-1,1$.

$$
\begin{align*}
& 24 \text { (12mancs) } \\
& T_{k+1}={ }^{a} C_{8}\left(3 x^{2}\right)^{a-1}\left(\frac{1}{x}\right)^{k} \\
& =a^{a} \cdot 3^{a-x} x^{18-2 p} x^{-8} \\
& =9 c^{2} \cdot 3^{9-2} \cdot x^{-18-3 k} \tag{3}
\end{align*}
$$

(a)

$$
\text { (i) } \begin{align*}
x & =5 \sin \frac{\pi}{2}\left(t+\frac{1}{3}\right) \\
\dot{x} & =\frac{5 \pi}{2} \cos \frac{\pi}{2}\left(t+\frac{1}{3}\right) \\
\ddot{x} & =-\frac{5 \pi^{2}}{4} \sin \frac{\pi}{2}\left(t+\frac{1}{3}\right) \\
\therefore \dot{x} & =-\frac{\pi^{2}}{4} \tag{2}
\end{align*}
$$

(ii) Ampe $=5$, period $=\frac{2 \pi}{7 / 2}=4$.
(b)

$$
\begin{aligned}
& \left(1 \frac{d^{2} r}{d t^{2}}=\frac{-72}{x^{2}} \quad t=0, x=9, v=4\right. \\
& \frac{d \frac{1}{2} v^{2}}{d x}=\frac{-72}{x^{2}} \\
& \frac{1}{2} v^{2}=\frac{-72 x}{-1}+c_{1} \\
& \frac{1}{\frac{1}{2}} v^{2}=\frac{72}{x}+c_{1} \\
& x=9 \\
& \begin{aligned}
& x=4 \frac{1}{2}(16)=\frac{72}{9}+c_{1} \\
& \therefore c_{1}=0 \\
& \therefore \frac{1}{2} \\
& v^{2}=1
\end{aligned} \\
& v^{2}=144 / x
\end{aligned}
$$

$$
v= \pm \frac{-\frac{12}{D c}}{n}
$$

But paikle staits at of t is tavelling to fee right at $4 \mathrm{~m} / \mathrm{s} \therefore$ velocity is tve as $x=\frac{12}{\sqrt{x}}$. y is never $0 \Rightarrow \frac{D}{6 x} \neq 0$ as $x \neq 0$

$$
\begin{array}{lr}
\text { (i1) } \frac{d x}{d t}=\frac{-12}{\sqrt{x}} & \text { at } t=0, x=9 \\
\frac{d t}{d x}=\frac{\sqrt{x} / 12}{d x} & \therefore \quad 0=\frac{9^{3 / 2}}{18}+c_{2} \\
t=\frac{x^{3 / 2}}{18}+c_{2} & \therefore c_{2}=-3 / 2 \\
& \therefore t=\frac{x^{3 / 2}}{18}-3 / 2 \\
& \\
& \\
& =\frac{\sqrt{x^{3}}}{18}-3 / 2
\end{array}
$$

let height of towere be R
$B P=h \cot 47^{\circ}$
$P D=\operatorname{lot} 3 i^{\circ}$
Fin $\triangle B D F$,
$\operatorname{ha}^{2} \cot ^{2} 31^{\circ}=88^{2}+e^{2} \cot ^{2} 47^{\circ}$

$$
h^{2}\left(\cot ^{2} 31^{\circ}-\cot ^{2} 47^{\circ}\right)=88^{2}
$$

$$
-h^{2}=\frac{88^{2}}{\cot ^{2} 31^{0}-\cot ^{2} 47^{0}}
$$

$$
=88^{\circ}
$$

$$
=\frac{88^{\circ}}{\tan ^{2} 59^{\circ}-\tan ^{2} 43^{\circ}}
$$

$$
\Rightarrow \quad 4075: 2708
$$

$$
: \ddot{\mu}=
$$

$$
63.837
$$

heiged
of

$$
\begin{align*}
& \text { Q6: }(12 \text { mavis }) \\
& \text { (i) } \begin{aligned}
x^{2} & =16 y \\
2 x & =16 \frac{d y}{d x}
\end{aligned} \\
& \text { 2) } \begin{aligned}
2 x & =16 \frac{d y}{d x} \\
\frac{d y}{d x} & =\frac{x}{8} \\
& =\frac{8 t}{8} \\
& =t .
\end{aligned} \\
& \text { Ein of tan: } \\
& \begin{array}{l}
y=4 t^{2}=t(x-8 t) \\
y=t x-8 t^{2}+4 t^{2} \\
y=t x-4 t^{2}
\end{array} \tag{2}\\
& \text { (2) } \\
& \text { ir) } \begin{aligned}
s(0,4) & p\left(8 t, 4 t^{2}\right. \\
\text { grod } s p & =\frac{4 t^{2}-4}{5 t} \\
= & \frac{t^{2}-1}{2 t}
\end{aligned} \tag{5}
\end{align*}
$$

$$
\begin{align*}
& \text { equ: } y-4=\frac{-2 t x}{t^{2}-1} \\
& \begin{array}{l}
t^{2} y+4-4 t^{2}-y=-2 t x \\
\left(t^{2}-1\right) y+2 t x=4 t^{2}-4
\end{array} \\
& R:\left(t^{2}-1\right) y=2 t x=4\left(t^{2}-1\right)-2 \\
& \text { (ii) sub (T) in }(2 \\
& \left(t^{2}-1\right)\left(t x-4 t^{2}\right)+2 t x=4 t^{2}-4 \\
& t^{3} x-4 t^{4}-t x+4 t^{2}+2 t x=4 t^{2}-4 \\
& \begin{array}{l}
\quad \begin{array}{l}
t^{3} x+t x=4 t^{4}-4 \\
x= \\
x\left(t^{3}+t\right)=4 t^{4}-4 \\
t\left(t^{2}+1\right)
\end{array}=\frac{4\left(t^{2}-1\right)\left(t^{2}\right.}{t\left(t^{2}+1\right)}=\frac{4\left(t^{2}-1\right)}{t}
\end{array} \\
& \text { (isub) } \left.\begin{array}{c}
\text { can eliminad } \\
x+\operatorname{sub} \\
g+i 0 y=z
\end{array}\right] \\
& \text { (3) } \\
& \begin{aligned}
\sin \operatorname{in}(1) y & : t \cdot \frac{1\left(t^{2}-i\right)}{t}-4 t^{2} \\
& =4 t^{2}-4-4 t^{2} \\
& =-4
\end{aligned} \\
& \therefore \text { locus is line } y=-4
\end{align*}
$$

[^0]: Students are advised that this is a Trial Examination only and cannot in any way guarantee the content or the format of the Higher School Certificate Examination.

