

The Hills Grammar School

Mathematics Extension 1

General Instructions

- Reading time - 5 minutes
- Working time - 2 hours
- Write using black or blue pen. Black pen is preferred.
- Board approved calculators may be used.
- A standard table of integrals is provided at the back of this paper.
- In Questions 11-14, show relevant mathematical reasoning and/or calculations.

Total marks - 70

Section I

10 marks

- Attempt Questions 1-10
- Answer on the Multiple Choice Answer Sheet provided.
- Allow about 15 minutes for this section.

Section II

60 marks

- Attempt Questions 11-14
- Answer in the writing booklets provided.
- Start a new booklet for each question.
- Allow about 1 hour and 45 minutes for this Section.

Section 1

10 marks

Attempt Questions 1-10

Allow approximately 20 min for this section

1. The graph of the function $f(x)=-x\left(x^{2}-1\right)\left(x^{2}+1\right)$ cuts the x-axis
A. five times
C. three times
B. twice
D. four times.
2. The solutions to the equation $2 \sin \frac{x}{2}=1$ over the domain $0 \leq x \leq 2 \pi$ are
A. $\frac{\pi}{12}$ and $\frac{5 \pi}{12}$
B. $\frac{2 \pi}{3}$ and $\frac{4 \pi}{3}$
C. $\frac{\pi}{3}$ and $\frac{5 \pi}{3}$
D. $\frac{8 \pi}{3}$ and $\frac{10 \pi}{3}$.
3. If $y=e^{4 x} \cos x$ then $\frac{d y}{d x}$ equals
A. $-4 e^{4 x} \sin x$
B. $4 e^{4 x} \cos x+e^{4 x} \sin x$
C. $4 e^{4 x} \sin x$
D. $e^{4 x}(4 \cos x-\sin x)$.
4. If $\int_{m}^{1}(1-x) d x=8$ and $m \geq 0$, then m is equal to
A. 7
B. 5
C. 0
D. -3 .
5. The displacement x, in metres, of a particle moving in a straight line is given by $x=\tan 3 t, \quad 0 \leq t \leq \frac{\pi}{6}$ where t represents time in seconds. The acceleration, a, of the particle is given by
A. $\quad a=9 \tan 3 t$
B. $\quad a=3 \sec ^{2} t$
C. $a=\frac{-2}{\cos ^{3} 3 t}$
D. $\quad a=18 \tan 3 t \cdot \sec ^{2} 3 t$.
6. A ball is dropped from a height. The acceleration $a \mathrm{~ms}^{-2}$ and the velocity $v \mathrm{~ms}^{-1}$ of the ball t seconds after it is dropped is given by $a=10-\frac{v}{20}$. An expression for t in terms of v could be obtained by simplifying:
A. $t=20 \int \frac{1}{200-v} d v$
B. $t=\int\left(10-\frac{v}{20}\right) d v$
C. $t=\int\left(\frac{v}{20}-10\right) d v$
D. $t=\int\left(\frac{1}{10}-\frac{20}{v}\right) d v$.
7. The graphs of $y=f(x)$ and $y=g(x)$ are shown below.

The area enclosed by these two graphs is given by:
A. $\int_{0}^{b}(g(x)-f(x)) d x$
B. $\int_{0}^{b}(g(x)+f(x)) d x$
C. $\int_{0}^{a}(g(x)) d x-\int_{0}^{b} f(x) d x$
D. $\quad \int_{0}^{a}(g(x)) d x-\int_{0}^{c} f(x) d x$.
8. Rhea made an error proving that $3^{2 n}-1$ is divisible by 8 (where n is an integer greater than 0) using mathematical induction. Part of the proof is shown below.

Step 1: test for $n=1,3^{2(1)}-1=8$, therefore divisible by 8 .
Step 2: Assume the result true for $n=k$
$3^{2 k}-1=8 P$ where P is an integer. Line 1
Hence $3^{2 k}=8 P+1$
To prove the result is true for $n=k+1$
$3^{2(k+1)}-1=8 Q$ where Q is an integer. Line 2

$$
\begin{array}{rlr}
\text { LHS } & =3^{2(k+1)}-1 & \\
& =3^{2 k} \times 3^{2}-1 & \\
& =(8 P+1) \times 3^{2}-1 & \text { Line 3 } \\
& =72 P+1-1 & \text { Line } 4 \\
& =72 P & \\
& =8(9 P) & \\
& =8 Q & \\
& =\text { RHS } &
\end{array}
$$

Which line did Rhea make an error?
A. Line 1
C. Line 2
B. Line 3
D. Line 4
9. A particle moving in simple harmonic motion starts from rest at distance 6 metres from the centre of oscillation. The period is 4π seconds. What is the minimum time taken to move to a point 3 metres from the origin?
A. $t=\frac{\pi}{3}$
B. $t=\frac{\pi}{6}$
C. $t=\frac{2 \pi}{3}$
D. $t=\frac{5 \pi}{6}$
10. A man makes a return trip along the same route by car from his home to a letter box. The velocity-time graph describing his trip is shown below.

The initial acceleration of the car is $2 \mathrm{~m} / \mathrm{s}^{2}$.
The values of a and b respectively are
A. $\quad 10$ and -20
B. 10 and -25
C. 20 and -20
D. 20 and -30 .

End of Section 1

Section 11

60 marks

Attempt Questions 11-14
Allow approximately $\mathbf{1}$ hour $\mathbf{4 0}$ minutes for this section
Answer each question in a separate writing booklet.
Show all necessary working.
Diagrams are not drawn to scale.

Question 11 (15 marks)
Marks
(a) Find $\int \frac{e^{x}}{1+e^{x}} d x$.
(b) State the domain and range of $y=3 \sin ^{-1}\left(\frac{x}{2}\right)$. 2
(c) The remainder when $P(x)$ is divided by $x^{2}-1$ is $3 x-4$. What is the remainder when $P(x)$ is divided by $x+1$?
(d) Differentiate with respect to $x: y=\ln \left(x^{3} \sqrt{x^{2}+1}\right)$.
(e) Find $\lim _{x \rightarrow 0} \frac{\sin 2 x}{\tan 3 x}$ showing appropriate working.
(f) Solve the inequality $x \geq \frac{6}{x-1}$.
(g) Write $\sqrt{3} \cos x-\sin x$ in the form $R \cos (x+\alpha)$ and hence find the general solution of the equation $\sqrt{3} \cos x-\sin x=1$3

Question 12 (15 marks)
(a) $\quad P(x)=2 x^{3}-4 x^{2}+3 x-10$ has zeros α, β and γ. Determine the value of:
(i) $\alpha^{2}+\beta^{2}+\gamma^{2} \quad 2$
(ii) $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$
(b) The function defined by $f(x)=x^{3}-\ln (x+1)$ has one real root.
(i) Show that this root lies between $x=0.8$ and $x=0.9$.
(ii) Use the halving the interval method to approximate this root correct to two decimal places.
(c) Evaluate $\int_{1}^{2} \sqrt{4-x^{2}} d x$ using the substitution $x=2 \sin \theta$.
(d) Find the area between the curve $y=2 \tan ^{-1}\left(\frac{x}{2}\right)$ and the lines $x=0, x=2$ and the x axis.

Question 13 (15 marks)
(a) Consider the curve given by $y=\frac{x^{2}+9}{x}$.
(i) Find any stationary points on the curve and determine their nature.
(ii) Find the vertical and oblique asymptotes of the curve.
(iii) Sketch the curve showing the above features.
(b) Find the greatest coefficient in the expansion of $(7+3 x)^{18}$. Leave your answer in factor form.
(c) The coefficient of x^{k} in $(1+x)^{n}$, where n is a positive integer, is denoted by $c_{k}\left(\right.$ where $\left.c_{k}={ }^{n} C_{k}\right)$.

Show that

$$
c_{0}+2 c_{1}+3 c_{2}+\ldots+(n+1) c_{n}=(n+2) 2^{n-1} .
$$

(Hint you will need to differentiate)
(d) Prove using mathematical induction that $n^{3}-n$ is divisible by 6 for all integers $n \geq 1$.

Question 14 (15 marks)
(a)
(i) Evaluate $\int_{-2 \sqrt{3}}^{2} \frac{1}{4+x^{2}} d x$.
(ii) Prove: $\tan ^{-1} a-\tan ^{-1} b=\tan ^{-1}\left(\frac{a-b}{1+a b}\right)$.
(b) A particle P is moving in simple harmonic motion about the origin. The particle is initially at rest a units to the right of the origin. If v is the velocity, x is the displacement and $\frac{2 \pi}{n}$ is the period of the motion of the particle P at time t :
(i) Show that $v^{2}=n^{2}\left(a^{2}-x^{2}\right)$. $\quad 2$
(ii) Hence show that $x=a \cos n t \quad 2$
(iii) Hence find an expression for v in terms of t. 1
(iv) Find the greatest speed of the particle P. $\mathbf{1}$
(v) Find the greatest magnitude of the acceleration of the particle P. $\mathbf{1}$
(c) The circle inscribed in triangle $A B C$ has centre O and meets the sides of the triangle $A B C$ at P, Q and R. The circumcircle (ie. the circle that passes through each of the vertices of the triangle ABC) meets $A O$ produced at X.

Let $\angle \mathrm{OAP}=\alpha$ and $\angle \mathrm{OBR}=\beta$.
Prove that:
(i) $\triangle O P A \equiv \triangle O Q A$
(ii) X is the midpoint of $\operatorname{arc} B C$.

STANDARD INTEGRALS

$$
\begin{array}{ll}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; \quad x \neq 0, \quad \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, \quad x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, \quad a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, \quad a \neq 0 \\
\int \sin a x d x & =-\frac{1}{a} \cos a x, \quad a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \tan a x, \quad a \neq 0 \\
\int \sec a x \tan a x d x & =\frac{1}{a} \sec a x, \quad a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\sin { }^{-1} \frac{x}{a}, \quad a \neq 0 \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{array}
$$

NOTE: $\ln x=\log _{e} x, \quad x>0$

ANSWER SHEET FOR MULTIPLE CHOICE SECTION

Student Exam number:
Teacher:
1.

$$
\mathbf{A} \bigcirc \mathbf{B} \bigcirc
$$

$$
\mathbf{C O}
$$

$$
\mathbf{D} \bigcirc
$$

2. $\mathbf{A} \bigcirc \mathbf{B} \bigcirc$ $\mathrm{C} \bigcirc$ D
3.

A
B
$\mathrm{C} \bigcirc$
D
4. $A \bigcirc B$ B $\mathrm{C} \bigcirc$
D \bigcirc
5. $\quad \mathbf{A} \bigcirc \mathbf{B} \bigcirc$ C
D
6. $\quad \mathrm{A} \bigcirc$ B C D \bigcirc

7.

$A \bigcirc \mathbf{B} \bigcirc$
\mathbf{C}
D
8. $\quad A \bigcirc B \bigcirc$ $\mathbf{C} \bigcirc \mathbf{D} \bigcirc$
9. $\mathbf{A} \bigcirc \mathbf{B} \bigcirc$ $\mathbf{C} \bigcirc \mathbf{D} \bigcirc$
10. $\mathbf{A} \bigcirc \mathbf{B} \bigcirc \mathbf{C} \bigcirc \mathbf{D} \bigcirc$

Year 12 Ext 1 Trial 2013
MC Q

$1, C$	6,	A
2,	C	7,
3,	D	8,
4,	B	9
5,	D	C
	10,	D

0811
(a) $\int \frac{e^{x}}{1+e^{x}} d x=x \cos \left(1+e^{x}\right)+c$
(b)

$$
\begin{aligned}
& y=3 \sin ^{-1}\left(\frac{x}{2}\right) \\
& \text { Domann }-1 \leq \frac{x}{2} \leq 1 \\
& \cdots \quad-2 \leq x \leq 2
\end{aligned}
$$

Davge $\frac{-3 \pi}{2} \leq y=\frac{3 \pi}{2}$
(c) Froun in far.

$$
\begin{align*}
P(x) & =\left(x^{2}-1\right) \propto(x)+3 x-4 \tag{1}\\
\text { Rem } & =P(-1)=-7 \\
(d) y & =\operatorname{Qu}\left(x^{3} \sqrt{x^{2}+1}\right) \\
& =\operatorname{Cic}+\operatorname{lu}\left(x^{2}+1\right)^{1 / 2} \\
y^{\prime} & =\frac{3}{x}+\frac{2 x}{x^{2}+1} \\
& =\frac{3\left(x^{2}+1\right)+x^{2}}{x^{2}\left(x^{2}+1\right)} \\
& =\frac{x x^{2}+3}{x\left(x^{2}+1\right)}
\end{align*}
$$

(e)

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin 2 x}{\tan 3 x} & =\frac{2}{3} \cdot \lim _{x \rightarrow 0} \frac{3 x}{\tan 3 x} \lim \sin _{x \rightarrow 0} \frac{2 x}{2 x} \\
& =\frac{2}{3} .1 \\
& =33
\end{aligned}
$$

Q11cont.
(g) $\sqrt{3} \cos x-\sin x=1$

$$
\left.\begin{array}{l}
2=\sqrt{3+1}=2 \\
2 \cos (x+x)=1 \\
\cos x=\frac{\sqrt{3}}{2}, \sin x=\frac{1}{2} \\
\therefore \tan x=\frac{1}{\sqrt{3}} \quad-x=\frac{\pi}{6}
\end{array}\right\}
$$

$Q 12$
(a) i) $P(x)=2 x^{3}-4 x^{2}+3 x-10$

$\alpha^{2}+\beta^{2}+\gamma^{2}=(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\beta \gamma+\gamma \alpha)$

$$
=4-3
$$

$$
\text { (c) } I=\int_{1}^{2} \sqrt{4-x^{2} d x} \quad x=2 \sin \theta
$$

$$
=1
$$

$$
\text { (ii) } \begin{aligned}
\frac{1}{x}+\frac{1}{\beta}+\frac{1}{\gamma} & =\frac{\beta \gamma+\alpha \gamma+\alpha \beta}{\alpha \beta \gamma} \\
& =\frac{3 / 2}{-10 / 2} \\
& =3 / 10
\end{aligned}
$$

.

$$
\therefore I=\int_{\frac{\pi}{6}}^{2} \frac{1}{4-4 \sin ^{2} c \cdot} \cdot 2 \cos d \text { sulast. }
$$

$$
=\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} 2 \cos \theta \cdot 2 \cos \theta d \theta
$$

$$
\begin{aligned}
\text { (b) }(i) f(x) & =x^{3}-\ln (x+1) \\
f(0.8) & =-0.075 \cdot 20 \\
f(0.9) & =0.087 \quad>0
\end{aligned}
$$

$$
\begin{aligned}
& =4 \int_{\frac{\pi}{6}}^{6} \cos ^{2} \theta d \theta \\
& =2 \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} 1+\cos 2 \theta d \theta=2\left[\theta+\frac{1}{2} \sin 2 \theta\right]^{\frac{\pi}{6}}
\end{aligned}
$$

Since signs opp root lies bet

$$
=2\left[\left(\frac{\pi}{2}+\frac{1}{2} \sin \pi\right)-\left(\frac{\pi}{6}+\frac{1}{2} \sin \frac{\pi}{3}\right)\right]
$$ 0.8 and 0.9.

$$
=2\left[\frac{\pi}{2}-\frac{\pi}{6}-\frac{1}{2} \cdot \frac{\sqrt{3}}{2}\right]
$$

(ii) $x_{1}=\frac{0.8+0.9}{2}=0.85$

$$
=2\left[\frac{\pi}{3}-\frac{\sqrt{3}}{4}\right]
$$

(1) $15 t$
0 stop

$$
=\frac{2 \pi}{3}-\frac{\sqrt{3}}{2}
$$

\& root bel 0.85 and 0.91 method

$$
\therefore x_{4}=\frac{0.85+0.8625}{2}=0.85625
$$

$$
\begin{aligned}
& \left(\frac{x}{2}\right) \div 2+\tan \frac{y}{2}=x \\
& A \operatorname{Aea}=A \operatorname{corect}-\int_{0}^{\frac{\pi}{2}} x d y(1) \\
& \\
& -2 \cdot \frac{\pi}{2} \int_{0}^{\frac{\pi}{2}} 2 \tan \frac{y}{2} d y \\
& = \\
& =\pi+4\left[e_{n}\left(\cos \frac{9}{2}\right)\right]_{0}^{\frac{\pi}{2}} \\
& =
\end{aligned}
$$

$$
f(0.85625)=0.600921>0
$$

$$
\begin{aligned}
& x_{2}=\frac{0.85+0.9}{2}=0.875 \\
& \text { f(0.875) }=0.0413 .>0 \\
& \text { rect lies bet } 0.875+0.85 \\
& \therefore x_{3}=\frac{0875+0.85}{2}=0.8625 \\
& f(0.8625)=0.0196 \\
& \therefore \text { voc bet } 0.85 \text { and } 0.6625 \text {. }
\end{aligned}
$$

\therefore root hes bet $0.85+0.8925$
$\therefore \frac{0.85+0.86525}{2}=0.851325+(0.851325)=0.001 \therefore$ not between 0.85 and 0.851

Solutions TRIAL THGS 2013 zunit Extl
$13 a \sqrt{6}$
（1）

$$
\begin{aligned}
& y=x+\frac{9}{x} \\
& y^{\prime}=1-\frac{9}{x^{2}} \\
& y^{\prime}=0 \\
& \therefore x= \pm 3
\end{aligned}
$$

$(3,6),(-3,-6)$

$$
y^{\prime \prime}=\frac{18}{x^{3}}
$$

$$
x=3, y^{\prime \prime}>0 \cup_{\text {min }}
$$

$$
\begin{aligned}
& x=3, y>0 \\
& x=-3, y^{\prime \prime}<0 \cap \max
\end{aligned}
$$

（iI）vertical：$x=0$
oblique：$y=x$ y
（iii）

$$
\text { (b) } \begin{aligned}
& \frac{t_{k+1}}{t_{k}}=\frac{{ }^{18} C_{k+1}(7)^{17-k}(3)^{k+1}}{{ }^{k+1} C_{k}(7)^{8-k}(3)^{k}} \\
&=\frac{\frac{18!}{(k!(17-k)!} 3}{\frac{18!}{k!(18-k)!} 7} \\
&=\frac{\frac{18-k}{k+1}}{1 k} \cdot \frac{3}{7} \\
& \therefore \frac{54-3 k}{7 k+7}>1 \\
& \therefore k<4.7 \\
& \text { fo } k=4
\end{aligned}
$$

Thoose the 5th

$$
A_{n s}={ }^{18} C_{5} 7^{13} 3^{5}
$$

（c）$/ 3$

$$
\begin{equation*}
(1+x)^{n}=c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{n} x^{n} \tag{1}
\end{equation*}
$$

Difforntiating：C
保 $n(1+x)^{n-1}=\quad c_{1}+2 c_{2} x+\cdots+n c_{n} x^{n-1}$
\ln（1） $\operatorname{sub} x=1$
应 $2^{n}=c_{0}+c_{1}+c_{2}+\cdots+c_{n}$
\ln（2）sub $x=1$

$$
\begin{equation*}
n 2^{n-1}=\quad c_{1}+2 c_{2}+\cdots+n c_{n} \text { (4) } \tag{3}
\end{equation*}
$$

袋（3＋＋

$$
n 2^{n-1}+22^{n-1}=c_{1}+2 c_{2}+3 c_{3}+\cdots+(n+1) c_{n}
$$

ie $(n+2) \cdot 2^{n-1}=c_{1}+2 c_{2}+3 c_{3}+\cdots+(n+1) c_{n}$
a）required．
T3（d）Try $n=1: 1-1=0$ which is divisibleby $6 \therefore$ True Assumetrue for $n=k$ ie $k^{3}-k=6 M, \quad(M \in I)$
Prove tive for $n=k+1$ 1e．$(k+1)^{3}-(k+1)=6 N$ ；show $N \in i$ LHS $=(k+1)^{3}-(k+1)$

$$
=k^{3}+3 k^{2}+3 k+1-k-1
$$

$$
=k^{3}+k+3 k^{2}+3 k
$$

$=2=6 m+3\left(k^{2}+k\right)$
$=6\left[m+\frac{k^{2}+k}{2}\right]$
$=6 \mathrm{~N}$ ，provited $\mathrm{K}_{\mathrm{k} k}^{2}$ is even．
：RHS
\therefore True for $n=k+1$
Sincetive for $n=11+$ will be ture for $n=2$ ，and $n=3$ and so on． Hence true for all integes $n \geqslant 1$ k^{2} is oold the sum of locle is quten
．If k oven $\begin{gathered}k^{2} \text { ij even }\end{gathered}$
the sum of 2 evens is even
$\therefore k^{2}+k$ is cu for all k．

我－stiveture of proof

$$
\text { Solutions MHES } 2013 \text { TRIAL ZUNIT EXT } 1
$$

14 a) 4

$$
\text { (1) } \begin{align*}
& \frac{1}{2}\left[\tan ^{-1} \frac{x}{2}\right]_{-2 \sqrt{3}}^{2} \\
= & \frac{1}{2}\left[\tan ^{-1} \frac{2}{2}-\tan ^{-1}\left(\frac{-2 \sqrt{3}}{2}\right)\right] \\
= & \frac{1}{2}\left[\frac{\pi}{4}+\frac{\pi}{3}\right] \\
= & \frac{7 \pi}{24}
\end{align*}
$$

(ii) To prove $\tan ^{-1} a-\tan ^{-1} b=\tan ^{-1}\left(\frac{a-b}{1+a b}\right)$ first take tangents of both sides

So prove $\tan \left[\tan ^{-1} a-\tan ^{-1} b\right]=\frac{a-b}{1+a b}$

$$
\begin{align*}
L H S & =\frac{\tan \left(\tan ^{-1} a\right)-\tan \left(\tan ^{-1} b\right)}{1+\tan \left(\tan ^{-1} a\right) \tan \left(\tan ^{-1} b\right)} \\
& =\frac{a b}{1+a b} \\
& =R 145
\end{align*}
$$

b) 7

$$
t=0, x=0, x=a
$$

(i) $\frac{d}{d x}\left(\frac{1}{2} r^{2}\right)=-n^{2} x$

$$
\begin{align*}
\frac{1}{2} v^{2} & =\frac{-n^{2} x^{2}}{2}+C \tag{1}\\
\operatorname{suh} x=a, v & =0 \Rightarrow C=\frac{n^{2} a^{2}}{2} \\
\cdots \frac{1}{2} v^{2} & =-\frac{n^{2} x^{2}}{2}+\frac{n^{2} a^{2}}{a} \tag{i}\\
v^{2} & =-n^{2} x^{2}+n^{2} a^{2} \\
v^{2} & =n^{2}\left(a^{2}-x^{2}\right)
\end{align*}
$$

Y

(I)

$$
\begin{align*}
v^{2} & =n^{2}\left(a^{2}-x^{2}\right) \\
\therefore v & =n \sqrt{a^{2}-x^{2}} \quad\left(v \text { might } b e^{+} d^{-}\right) \\
\frac{d x}{d t} & =-n \sqrt{a^{2}-x^{2}} \\
\frac{d t}{d x} & =\frac{1}{-n \sqrt{a^{2}-x^{2}}} \tag{1}\\
t & =\frac{1}{n} \int \frac{-1}{\sqrt{a^{2}-x^{2}}} d x \\
& =\frac{1}{n} \cos ^{-1} \frac{x}{a}+c
\end{align*}
$$

Sub $t=c, x=0 \Rightarrow c=0$

$$
\begin{aligned}
t & =\frac{1}{n} \cos ^{-1} \frac{x}{a} \\
\cos n t & =\frac{x}{a} \quad \therefore \quad x=a \cos n t
\end{aligned}
$$

