

The Hills Grammar School

Founded 1982

2013 Higher School Certificate **Trial Examination**

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen. Black pen is preferred.
- Board approved calculators may be used.
- A standard table of integrals is provided at the back of this paper.
- In Questions 11-14, show relevant mathematical reasoning and/or calculations.

Total marks - 70

Section I

10 marks

- Attempt Questions 1-10
- Answer on the Multiple Choice Answer Sheet provided.
- Allow about 15 minutes for this section.

Section II

60 marks

- Attempt Questions 11-14
- Answer in the writing booklets provided.
- Start a new booklet for each question.
- Allow about 1 hour and 45 minutes for this Section.

Section 1 10 marks Attempt Questions 1-10 Allow approximately 20 min for this section

1.	The g	graph of the function $f(x) = -$	$x(x^2-1)$	1) $(x^2 + 1)$ cuts the x-axis
	А.	five times	C.	three times
	B.	twice	D.	four times.
2.	The s	olutions to the equation 2 sin	$\frac{x}{2} = 1$ of	over the domain $0 \le x \le 2\pi$ are
	А.	$\frac{\pi}{12}$ and $\frac{5\pi}{12}$	C.	$\frac{\pi}{3}$ and $\frac{5\pi}{3}$
	В.	$\frac{2\pi}{3}$ and $\frac{4\pi}{3}$	D.	$\frac{8\pi}{3}$ and $\frac{10\pi}{3}$.
3.	If y	$=e^{4x}\cos x$ then $\frac{dy}{dx}$ equals		
	А.	$-4e^{4x}\sin x$	C.	$4e^{4x}\sin x$
	В.	$4e^{4x}\cos x + e^{4x}\sin x$	D.	$e^{4x}(4\cos x - \sin x).$
4.	If \int_{m}^{1}	$(1-x) dx = 8$ and $m \ge 0$, then	m is eo	qual to
	А.	7	C.	0
	B.	5	D.	-3.

5. The displacement x, in metres, of a particle moving in a straight line is given by $x = \tan 3t$, $0 \le t \le \frac{\pi}{6}$ where t represents time in seconds. The acceleration, a, of the particle is given by

A.
$$a = 9 \tan 3t$$
 C. $a = \frac{-2}{\cos^3 3t}$

B.
$$a = 3\sec^2 t$$
 D. $a = 18\tan 3t \cdot \sec^2 3t$.

6.

A ball is dropped from a height. The acceleration $a \text{ ms}^{-2}$ and the velocity $v \text{ ms}^{-1}$ of the ball t seconds after it is dropped is given by $a = 10 - \frac{v}{20}$. An expression for t in terms of v could be obtained by simplifying:

A.
$$t = 20 \int \frac{1}{200 - v} dv$$

B. $t = \int (10 - \frac{v}{20}) dv$
C. $t = \int (\frac{v}{20} - 10) dv$
D. $t = \int (\frac{1}{10} - \frac{20}{v}) dv$.

7. The graphs of y = f(x) and y = g(x) are shown below.

The area enclosed by these two graphs is given by:

A.
$$\int_{0}^{b} (g(x) - f(x))dx$$

B. $\int_{0}^{b} (g(x) + f(x))dx$
C. $\int_{0}^{a} (g(x))dx - \int_{0}^{b} f(x)dx$
D. $\int_{0}^{a} (g(x))dx - \int_{0}^{c} f(x)dx$.

8. Rhea made an error proving that $3^{2n} - 1$ is divisible by 8 (where *n* is an integer greater than 0) using mathematical induction. Part of the proof is shown below.

Step 1: test for n = 1, $3^{2(1)} - 1 = 8$, therefore divisible by 8. Step 2: Assume the result true for n = k $3^{2k} - 1 = 8P$ where *P* is an integer. Line 1 Hence $3^{2k} = 8P + 1$ To prove the result is true for n = k + 1 $3^{2(k+1)} - 1 = 8Q$ where Q is an integer. Line 2 LHS = $3^{2(k+1)} - 1$ $=3^{2k} \times 3^2 - 1$ $=(8P+1)\times 3^2-1$ Line 3 =72P+1-1Line 4 =72P= 8(9P)=8Q= RHS

Which line did Rhea make an error?

A .	Line 1	C.	Line 2
B.	Line 3	D.	Line 4

9. A particle moving in simple harmonic motion starts from rest at distance 6 metres from the centre of oscillation. The period is 4π seconds. What is the minimum time taken to move to a point 3 metres from the origin?

A.
$$t = \frac{\pi}{3}$$
 C. $t = \frac{2\pi}{3}$

B.
$$t = \frac{\pi}{6}$$
 D. $t = \frac{5\pi}{6}$

10. A man makes a return trip along the same route by car from his home to a letter box.The velocity-time graph describing his trip is shown below.

The initial acceleration of the car is $2m/s^2$.

The values of *a* and *b* respectively are

A.	10 and -20	C.	20 and -20
B.	10 and -25	D.	20 and -30.

End of Section 1

Marks

Section 11

60 marks Attempt Questions 11-14 Allow approximately 1 hour 40 minutes for this section

Answer each question in a **separate writing booklet**. Show all necessary working. Diagrams are not drawn to scale.

Question 11 (15 marks)

(a) Find
$$\int \frac{e^x}{1+e^x} dx$$
. 1

- (b) State the domain and range of $y = 3\sin^{-1}\left(\frac{x}{2}\right)$. 2
- (c) The remainder when P(x) is divided by $x^2 1$ is 3x 4. What is the remainder when P(x) is divided by x+1? **2**

(d) Differentiate with respect to x:
$$y = \ln(x^3\sqrt{x^2+1})$$
. 2

(e) Find
$$\lim_{x\to 0} \frac{\sin 2x}{\tan 3x}$$
 showing appropriate working. 2

- (f) Solve the inequality $x \ge \frac{6}{x-1}$. 3
- (g) Write $\sqrt{3}\cos x \sin x$ in the form $R\cos(x+\alpha)$ and hence find the general solution of the equation $\sqrt{3}\cos x \sin x = 1$

Question 12 (15 marks)

Marks

(a) $P(x) = 2x^3 - 4x^2 + 3x - 10$ has zeros α , β and γ . Determine the value of:

(i)
$$\alpha^2 + \beta^2 + \gamma^2$$
 2

(ii)
$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$$
 2

(b) The function defined by $f(x) = x^3 - \ln(x+1)$ has one real root.

(i) Show that this root lies between
$$x = 0.8$$
 and $x = 0.9$. 1

(c) Evaluate
$$\int_{1}^{2} \sqrt{4-x^2} dx$$
 using the substitution $x = 2\sin\theta$. 4

(d) Find the area between the curve $y = 2 \tan^{-1} \left(\frac{x}{2} \right)$ and the lines x = 0, x = 2 and the x axis.

Question 13 (15 marks)

Marks

(a) Consider the curve given by
$$y = \frac{x^2 + 9}{x}$$
.

(i)	Find any stationary points on the curve and determine their nature.	2
(ii)	Find the vertical and oblique asymptotes of the curve.	2
(iii)	Sketch the curve showing the above features.	2
Find tl	the greatest coefficient in the expansion of $(7+3x)^{18}$. Leave your answer	

(c) The coefficient of x^k in $(1+x)^n$, where *n* is a positive integer, is denoted by c_k (where $c_k = {}^nC_k$).

Show that

in factor form.

(b)

$$c_0 + 2c_1 + 3c_2 + ... + (n+1)c_n = (n+2)2^{n-1}.$$

(Hint you will need to differentiate) 3

(d) Prove using mathematical induction that $n^3 - n$ is divisible by 6 for all integers $n \ge 1$.

3

Question 14 (15 marks)

(a)

(i) Evaluate
$$\int_{-2\sqrt{3}}^{2} \frac{1}{4+x^2} dx$$
.

(ii) Prove:
$$\tan^{-1} a - \tan^{-1} b = \tan^{-1} \left(\frac{a-b}{1+ab} \right).$$
 2

(b) A particle *P* is moving in simple harmonic motion about the origin. The particle is initially at rest *a* units to the right of the origin. If *v* is the velocity, *x* is the displacement and $\frac{2\pi}{n}$ is the period of the motion of the particle *P* at time *t*:

(i) Show that
$$v^2 = n^2(a^2 - x^2)$$
. 2

(ii)Hence show that
$$x = a \cos nt$$
2(iii)Hence find an expression for v in terms of t.1(iv)Find the greatest speed of the particle P.1(v)Find the greatest magnitude of the acceleration of the particle P.1

Marks

(c) The circle inscribed in triangle *ABC* has centre *O* and meets the sides of the triangle *ABC* at *P*, *Q* and *R*. The circumcircle (ie. the circle that passes through each of the vertices of the triangle ABC) meets *AO* produced at *X*.

Let $\angle OAP = \alpha$ and $\angle OBR = \beta$.

Prove that:

(i) $\Delta OPA \equiv \Delta OQA$ 2

(ii) X is the midpoint of arc BC.

2

END OF ASSESMENT

STANDARD INTEGRALS

 $\int x^n \, dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \quad \text{if } n < 0$ $\int \frac{1}{x} dx$ $= \ln x, \quad x > 0$ $\int e^{ax} dx = -\frac{1}{a}e^{ax}, \quad a \neq 0$ $\int \cos ax \, dx \qquad = \frac{1}{a} \sin ax, \quad a \neq 0$ $\int \sin ax \, dx \qquad = -\frac{1}{a} \cos ax, \quad a \neq 0$ $\int \sec^2 ax \, dx \qquad = \frac{1}{a} \tan ax, \quad a \neq 0$ $\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \quad a \neq 0$ $\int \frac{1}{a^2 + x^2} \, dx \qquad = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$ $\int \frac{1}{\sqrt{a^2 - x^2}} dx \qquad = \sin^{-1} \frac{x}{a}, \quad a \neq 0$ $\int \frac{1}{\sqrt{x^2 - a^2}} \, dx \qquad = \ln\left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$ $\int \frac{1}{\sqrt{x^2 + a^2}} dx \qquad = \ln\left(x + \sqrt{x^2 + a^2}\right)$

NOTE:
$$\ln x = \log_e x$$
, $x > 0$

ANSWER SHEET FOR MULTIPLE CHOICE SECTION

Student Exam number:_____

Teacher:

1.	$A \bigcirc B \bigcirc C \bigcirc D \bigcirc$
2.	$A \bigcirc B \bigcirc C \bigcirc D \bigcirc$
3.	$A \bigcirc B \bigcirc C \bigcirc D \bigcirc$
4.	$A \bigcirc B \bigcirc C \bigcirc D \bigcirc$
5.	$\mathbf{A} \bigcirc \mathbf{B} \bigcirc \mathbf{C} \bigcirc \mathbf{D} \bigcirc$
6.	$A \bigcirc B \bigcirc C \bigcirc D \bigcirc$
6. 7.	$A \bigcirc B \oslash C \oslash D \oslash$ $A \oslash B \oslash C \oslash D \oslash$
7.	$A \bigcirc B \bigcirc C \bigcirc D \bigcirc$

Year 12 Ext 1 Trial 2013 MCQ i, C 2, C 3, D 4, B 5, D 6, A 7, A 8, D 9, 10, $\frac{C}{D}$

$$\frac{(3)}{(4)} \int \frac{e^{x}}{1+e^{x}} dt = k_{1} (1+e^{x}) + c$$

$$(4) \int \frac{e^{x}}{1+e^{x}} dt = k_{1} (1+e^{x}) + c$$

$$(5) \int \frac{1}{1+e^{x}} -1 \leq \frac{x}{2} \leq 1$$

$$(6) \int \frac{1}{1+e^{x}} -1 \leq \frac{x}{2} \leq 2$$

$$(7) \int \frac{1}{2} \leq x \leq 2$$

$$(8) \int \frac{1}{2} + \frac{1}{2$$

$$\begin{array}{l} \left| 1 \right| \ cont \\ \left| 2 \right| \ \overline{3} \left(cos x - sin x - 1 \right) \\ \left| 2 - \overline{13} + 1 \right| &= 2 \\ 2 \left(cos \left(x + x \right) = 1 \right) \\ cos \left(x + x \right) = 1 \\ cos x &= \overline{13} \\ \cdot \ fan x = \overline{13} \\ \cdot \ f$$

$$\begin{array}{l} \underbrace{\operatorname{Siz}}_{1} & \underbrace{\operatorname{Siz}}_{1} & \underbrace{\operatorname{Siz}}_{1} & \underbrace{\operatorname{Siz}}_{2} & \underbrace{\operatorname{Siz}}_{1} & \underbrace{\operatorname{Siz}}_{2} & \underbrace{\operatorname{Si$$

13 a) 6 $(1+\chi)^{2} = C_{0} + C_{1}\chi + C_{2}\chi^{2} + \dots + C_{n}\chi^{n}$ (1) $y = x + \frac{9}{r}$ Differn trating : C $y' = 1 - \frac{9}{2}$ $\bigcup_{i=1}^{n} n(1+)i)^{n-i} = c_i + 2c_i x + \dots + nc_n x^{n-i} @$ y'=0① $\ln 0 \quad \sup_{2^{n}} x = 1$ $2^{n} = c_{0} + c_{1} + c_{2} + \dots + c_{n} \quad (3)$ (3,6),(-3,-6) $\ln (2) \sup_{n \ge 1} x_{2} = c_{1} + 2c_{2} + \cdots + nc_{n} (4)$ $y'' = \frac{18}{r^3}$ x = 3, y'' > 0 Umin x = -3, -y'' < 0 Max U^{-1} - 0- 3 + E $n \lambda^{n-1} + 2 \lambda^{n-1} = c_1 + 2c_2 + 3c_3 + \dots + (n+1)c_n$ ie (n+2). $\lambda^{n-1} = c_1 + 2c_2 + 3c_3 + \dots + (n+1)c_n$ (11) vertical: x = 0 \$\$ as required. oblique: y=x -Q= $\overline{3}(d)$ Try n=1: 1-1=0 Which is divisible by 6: True Assume true for n=k ie $k^{3}-k = 6M$, (MEI) 6 Prove true for n=k+1 10. (K+1) = 6N; show NEI (in**)** $LHS = (k+1)^{3} - (k+1)$ -3 3 GF shape GF sufficient la belling $= k^{3} + 3k^{2} + 3k + 1 - k - 1$ Q $= k^{3} \cdot k + 3k^{2} + 3k$ $= 6M + 3(k^2 + k)$: If k is odd, $= 6 \left[M + \frac{K'+K}{2} \right]$ k'is cold = 6 N, provided K+k is even. the sum of Zocla is Orden ERHS $\frac{t_{K+1}}{t_{K}} = \frac{\frac{{}^{\prime \circ}C_{K+1}(7)}{{}^{\prime}}}{{}^{\prime}C_{K}(7)^{\prime s-k}(3)^{k}}$ $\frac{18}{2}C_{k+1}(7)^{1-k}(3)^{k+1}$. If k is been Q : True for n=k+1 k' is even the sum of 2 evens Since true for n=1 it will be true for is even nez, and n=3 and so on. Honce true for all integers n > 1 : let + k is ove $= \frac{18-k}{K+1} \cdot \frac{3}{7}$ for all k. $\therefore \frac{54-3k}{7k+7} > 1$ Æ, -C- structure of proof 1. K < 4.7 So k = 4. Choose the 5th $Ans = {}^{18}C_5 7 {}^{13}3^5$ C

Schutions

-b) continued 14 a) [4] (111) V = -nasinnt D $(1) \frac{1}{2[\tan^{-1} x]^2} = \sqrt{1-2}$ $=\frac{1}{2}\left[t_{un}^{2}\frac{2}{2}-t_{un}^{2}\frac{2}{2}\right]$ (iv) greatest speed : na -M= $= \overline{2} [tun]$ $= \frac{1}{2} \left[\frac{\pi}{4} + \frac{\pi}{3} \right]$ $= \frac{1}{2} \left[\frac{\pi}{4} + \frac{\pi}{3} \right]$ (v) greatest accel : n°a (j. (1) To prove $\tan^{-1}a - \tan^{-1}b = \tan^{-1}\left(\frac{a-b}{1+cb}\right)$ c) 4 (1) various methods first take tangents of both sides eg SSS or RHS or SAS So prove tan[tan'a-tan'b] = a-b Qpotential ingredients: OP=00 equal radic LHS = $\frac{\tan(\tan'a) - \tan(\tan'b)}{1 + \tan(\tan'a) \cdot \tan(\tan'b)}$ (fin)= $\frac{a \cdot b}{1 + ab}$ AP= AQ equal tangents from external point 019 common Angles at P, Q being right Ls = R141 Ũ, making headway b) $f = 0, v = 0, \mathbf{x} = a$ -Q- complete proof. (i) $\frac{d}{dx}(\frac{1}{2}v^2) = -n^2 n$ $\frac{1}{2}v^2 = -n^2 x^2 + C$ Ù-(1) < PAO = 4QAO Consuperating Ls in congruent 215) Sub $x = a, V = 0 \Rightarrow C = \frac{n^2 a^2}{2}$ $\frac{1}{2}\sqrt{2} = -\frac{n^2}{2}\sqrt{2} + \frac{n^2}{2}\sqrt{2}$ $y^{L} = -n^{2}x^{L} + n^{2}a^{L}$ So BX, XC subtend equal angles C= at circumference $v^2 = n^2(a^2-x^2)$ $v^{2} = n^{2}(a^{2} - n^{2})$ $\therefore BX = XC$ (n) $\frac{1}{V} = n\sqrt{a^2 - \lambda^2} \quad \left(V \text{ might be } + \sigma r^2 \right)$:. X is michoint of BC $\frac{dx}{dt} = -n\sqrt{a^2 - x^2}$ $\frac{dt}{dx} = -n\sqrt{a^2 - x^2} \qquad (1).$ $t = \frac{1}{n} \int \frac{-1}{\sqrt{a^2 - x^2}} dx$ $=\frac{1}{n}\cos^{-1}\frac{2}{a}+c$ Sub t=C, x=C => C=O $t = \frac{1}{h} \cos^{-\frac{1}{a}}$ $cosnt = \frac{x}{a}$: x = acosnt