\qquad
\qquad

THE HILLS GRAMMAR SCHOOL

Trial Higher School Certificate Examination 2015

MATHEMATICS EXTENSION 1

Time Allowed:
Weighting:
Outcomes:

Two hours (plus five minutes reading time)
40\%
H6, H7, H8, H9, HE1, HE2, HE4, HE7, HE9

General Instructions:

- Board-approved calculators may be used
- Attempt all questions
- Start all questions on a new sheet of paper
- The marks for each question are indicated on the examination
- Show all necessary working for Questions 11-14
- The diagrams are not drawn to scale
- A table of standard integrals is provided

Total Marks - 70
Section I Questions 1-10

10 Marks

Allow about 15 minutes for this section

Section II Questions 11-14
60 Marks
Allow about 1 hour and 45 minutes for this section

MCQ	Question 11	Question 12	Question 13	Question 14	TOTAL
10	15				

Section 1 Multiple Choice (10 Marks)

1 Given that $\tan \left(\frac{\theta}{2}\right)=t$, then $\sin \theta$ would be written as:
(A) $\frac{2 t}{1-t^{2}}$
(B) $\frac{1-t^{2}}{1+t^{2}}$
(C) $\frac{1+t^{2}}{1-t^{2}}$
(D) $\frac{2 t}{1+t^{2}}$

2 Which function best describes the following graph:

(A) $y=3 \sin ^{-1} 2 x$
(B) $y=\frac{3}{2} \sin ^{-1} 2 x$
(C) $y=3 \sin ^{-1} \frac{x}{2}$
(D) $y=\frac{3}{2} \sin ^{-1} \frac{x}{2}$

3 Evaluate $\sum_{n=3}^{10} 8+5 n$
(A) 283.5
(B) 324
(C) 567
(D) 648

4 The interval $A B$ is divided internally in the ratio 3:1 by the point $P(x, y)$. Given $A(-7,7)$ and $B(1,-5)$ then the values of x and y are:
(A) $x=-2$ and $y=2$
(B) $x=2.5$ and $y=2$
(C) $x=-1$ and $y=-2$
(D) $x=1$ and $y=-2$

5 Which expression is the correct factorisation of $x^{3}-27$?
(A) $(x-3)\left(x^{2}-3 x+9\right)$
(B) $(x-3)\left(x^{2}-6 x+9\right)$
(C) $(x-3)\left(x^{2}+3 x+9\right)$
(D) $(x-3)\left(x^{2}+6 x+9\right)$

6 The parametric equation of a function is:

$$
x=2 t^{2}, y=4-t
$$

The Cartesian equation is
(A) $x=4(2-y)^{2}$
(B) $\quad x=2(y-4)^{2}$
(C) $x=2(y+4)^{2}$
(D) $x=2(4-y)^{2}$

7 Evaluate $\lim _{x \rightarrow 0} \frac{x}{\sin 2 x}$:
(A) 0
(B) 0.5
(C) ∞
(D) 2

8 Which expression is equal to $\int \sin ^{2} 3 x d x$:
(A) $\frac{1}{2}\left(x-\frac{1}{3} \sin 3 x\right)+C$
(B) $\frac{1}{2}\left(x+\frac{1}{3} \sin 3 x\right)+C$
(C) $\frac{1}{2}\left(x-\frac{1}{6} \sin 6 x\right)+C$
(D) $\frac{1}{2}\left(x+\frac{1}{6} \sin 6 x\right)+C$

9 A particle is moving in simple harmonic motion with displacement x. Its velocity v is given by

$$
v^{2}=16\left(9-x^{2}\right)
$$

What is the amplitude, A, and the period, T, of the motion?
(A) $A=3$ and $T=\frac{\pi}{2}$
(B) $A=3$ and $T=\frac{\pi}{4}$
(C) $A=4$ and $T=\frac{\pi}{3}$
(D) $A=4$ and $T=\frac{2 \pi}{3}$

10 The polynomial $P(x)=x^{3}+a x^{2}+a x+1$ leaves a remainder of 3 when divided by $(x-2)$. The value of a is:
(A) 1
(B) -1
(C) -3
(D) 3

Section 2

BEGIN A NEW BOOKLET

Question 11 (15 marks)

(a) Find $\frac{d^{2}}{d x^{2}} e^{x^{2}}$.
(b) Find k such that $\int_{1}^{k}\left(3-\frac{1}{x^{2}}\right) d x=0$.
(c) Use the substitution $u=1+e^{x}$ to evaluate $\int_{0}^{\ln 2} \frac{e^{x}}{\left(e^{x}+1\right)^{2}} d x$.
(d) Let $I=\int_{0}^{\frac{\pi}{2}} \cos ^{2} x d x$.
(i) Find, by integration, the exact value of I.
(ii) Use Simpson's rule with 3 function values to approximate I.
(e) i) Show that $e^{x \ln 2}=2^{x}$.
ii) Hence find $\frac{d}{d x} 2^{x}$

Question 12 (15 marks) BEGIN A NEW BOOKLET

(a) In the diagram the points P and Q lie on a circle and the tangents to the circle at P and Q meet at S.
R is a point on the circle so that $R P$ is parallel to $Q S$.

Copy or trace the diagram into your writing book.
i) Explain why $\triangle P S Q$ is isosceles, 2
ii) Show that $\triangle P Q R$ is isosceles, 2
iii) Deduce that $Q P=Q R$.
(b) Detective Angela Baker is called to a murder scene at 3:27a.m. She measures the victim's body temperature at that time to be $27^{\circ} \mathrm{C}$ and one hour later it has dropped to $25^{\circ} \mathrm{C}$. The cooling rate of the body is proportional to the difference between the room temperature $21^{\circ} \mathrm{C}$ and the temperature T, of the body. That is, T satisfies the equation

$$
\begin{array}{ll}
\frac{d T}{d t}=-k(T-21) & \text { where } k \text { is a positive constant, and } t \text { is the number of hours } \\
& \text { after 3:27a.m. }
\end{array}
$$

(i) Verify that $T=21+A e^{-k t}$ is a solution of this equation, where A is a constant.
(ii) Find the exact values of A and k.
(iii) Assuming that the victim's body temperature was $37^{\circ} \mathrm{C}$ at the time of death, when was the murder committed?
Give your answer to the nearest minute.

Question 12 continued

(c) If α, β, and γ are the roots of the equation $2 x^{3}-x^{2}-5 x+6=0$

$$
\text { find the value of } \alpha^{2}+\beta^{2}+\gamma^{2} .
$$

(d) Use mathematical induction to show that for all integers $n \geq 1$,

$$
\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\ldots \ldots+\frac{1}{n(n+1)}=\frac{n}{n+1} .
$$

Question 13 (15 marks) BEGIN A NEW BOOKLET

(a) (i) Prove, using calculus, that the equation $x^{3}+2 x+4=0$ has only one real root α.
(ii) Show that $-2<\alpha<-1$.
(iii) Starting with an initial approximation of $\alpha=-1$, use one application of Newton's method to find a further approximation for α.
(b) A particle is moving in simple harmonic motion along the x - axis. Its velocity v, at x, is given by $v^{2}=24-8 x-2 x^{2}$.
(i) Find all values of x for which the particle is at rest.
(ii) Find an expression for the acceleration of the particle, in terms of x.
(iii) Find the maximum speed of the particle.

Question 13 continued

(c) A man who is standing on top of a vertical cliff throws a stone into the air at an angle θ to the horizontal. The top of the cliff is 175 metres above a flat sea.

The initial velocity of the stone is $20 \mathrm{~ms}^{-1}$. Acceleration due to gravity is $-10 \mathrm{~ms}^{-2}$. The path of the stone is given by the parametric equations

$$
x=20 t \cos \theta \quad \text { and } \quad y=20 t \sin \theta-5 t^{2}+175
$$

The angle of projection of the stone to the horizontal is 30°.
(i) Find the time it takes for the stone to hit the water.
(ii) Find the speed at which the stone hits the water.

Question 14 (15 marks) BEGIN A NEW BOOKLET

(a) (i) Write $\cos x-\sqrt{3} \sin x$ in the form $R \cos (x+\alpha)$ where $R>0$ and $0 \leq \alpha \leq \frac{\pi}{2}$,
(ii) Hence, or otherwise, solve the equation $\cos x-\sqrt{3} \sin x=1$ for $0 \leq x \leq 2 \pi$.

Question 14 continued

(b) The point $P\left(2 a p, a p^{2}\right)$ lies on the parabola $x^{2}=4 a y$.
(i) Show that the equation of the tangent to $x^{2}=4 a y$ at P is $p x-y-a p^{2}=0$.
(ii) The tangent at P cuts the x axis at X. Find the coordinates of X.
(iii) Show that $P X$ is perpendicular to $S X$, where S is the focus of the parabola.
(iv) A circle is drawn through the points S, X, and P. Show that the coordinates of the centre of the circle are given by

$$
C=\left(a p, \frac{a\left(1+p^{2}\right)}{2}\right) .
$$

Justify your answer.

Question 14 continued

(c) From a point P due south of a vertical tower, the angle of elevation of the top of the tower is 20° and from a point Q due east of the tower it is 35°. The distance from P to Q is 40 metres.

(i) Find an expression for $P X$ in terms of h.
(ii) Find an expression for $Q X$ in terms of h.
(iii) Calculate the height of the tower to the nearest metre.

ANSWER SHEET FOR MULTIPLE CHOICE SECTION

Student Exam number: \qquad
Teacher:

1. $\mathbf{A} \bigcirc \mathbf{B} \bigcirc \mathbf{C} \bigcirc \mathbf{D} \bigcirc$
2. $\mathbf{A} \bigcirc \mathbf{B} \bigcirc \mathbf{C} \bigcirc \mathbf{D} \bigcirc$
3. $\quad \mathbf{A} \bigcirc \mathbf{B} \bigcirc \mathbf{C} \bigcirc \mathbf{D} \bigcirc$
4. $\quad \mathbf{A} \bigcirc \mathbf{B} \bigcirc \mathbf{C} \bigcirc \mathbf{D} \bigcirc$
5. $\quad \mathbf{A} \bigcirc \mathbf{B} \bigcirc \mathbf{C} \bigcirc \mathbf{D} \bigcirc$
6. $\quad \mathbf{A} \bigcirc \mathbf{B} \bigcirc \mathbf{C} \bigcirc \mathbf{D} \bigcirc$
7. $\quad \mathbf{A} \bigcirc \mathbf{B} \bigcirc \mathbf{C} \bigcirc \mathbf{D} \bigcirc$
8.

A B
C
D
9.
$\mathbf{A} \bigcirc \mathbf{B} \bigcirc$
$\mathbf{C O}$ D
10. $\mathbf{A} \bigcirc \mathbf{B} \bigcirc \mathbf{C} \bigcirc \mathbf{D} \bigcirc$

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, \quad x>0$

Section 1 Multiple Choice (10 Marks)

1 Given that $\tan \left(\frac{\theta}{2}\right)=t$, then $\sin \theta$ would be written as:
(A) $\frac{2 t}{1-t^{2}}$
(B) $\frac{1-t^{2}}{1+t^{2}}$
(C) $\frac{1+t^{2}}{1-t^{2}}$
(D) $\frac{2 t}{1+t^{2}}$

2 Which function best describes the following graph:

(A) $y=3 \sin ^{-1} 2 x$
(B) $y=\frac{3}{2} \sin ^{-1} 2 x$
(C) $y=3 \sin ^{-1} \frac{x}{2}$
(D) $y=\frac{3}{2} \sin ^{-1} \frac{x}{2}$

3 Evaluate $\sum_{n=3}^{10} 8+5 n$
(A) 283.5
(B)
(D) 648

4 The interval $A B$ is divided internally in the ratio 3:1 by the point $P(x, y)$. Given $A(-7,7)$ and $B(1,-5)$ then the values of x and y are:
(A) $x=-2$ and $y=2$
(B) $x=2.5$ and $y=2$
(C) $x=-1$ and $y=-2$
(D) $x=1$ and $y=-2$

5 Which expression is the correct factorisation of $x^{3}-27$?
(A) $(x-3)\left(x^{2}-3 x+9\right)$
(B) $(x-3)\left(x^{2}-6 x+9\right)$
(C) $(x-3)\left(x^{2}+3 x+9\right)$
(D) $(x-3)\left(x^{2}+6 x+9\right)$

6 The parametric equation of a function is:

$$
x=2 t^{2}, y=4-t \text {. }
$$

The Cartesian equation is
(A) $x=4(2-y)^{2}$
(B) $x=2(y-4)^{2}$
(C) $x=2(y+4)^{2}$
(D) $x=2(4-y)^{2}$

7 Evaluate $\lim _{x \rightarrow 0} \frac{x}{\sin 2 x}$:
(A) 0
(B) 0.5
(C) ∞
(D) 2

8 Which expression is equal to $\int \sin ^{2} 3 x d x$:
(A) $\frac{1}{2}\left(x-\frac{1}{3} \sin 3 x\right)+C$
(B) $\frac{1}{2}\left(x+\frac{1}{3} \sin 3 x\right)+C$
(C) $\frac{1}{2}\left(x-\frac{1}{6} \sin 6 x\right)+C$
(D) $\frac{1}{2}\left(x+\frac{1}{6} \sin 6 x\right)+C$

9 A particle is moving in simple harmonic motion with displacement x. Its velocity v is given by

$$
v^{2}=16\left(9-x^{2}\right)
$$

What is the amplitude, A, and the period, T, of the motion?
(A) $A=3$ and $T=\frac{\pi}{2}$
(B) $A=3$ and $T=\frac{\pi}{4}$
(C) $A=4$ and $T=\frac{\pi}{3}$
(D) $A=4$ and $T=\frac{2 \pi}{3}$

10 The polynomial $P(x)=x^{3}+a x^{2}+a x+1$ leaves a remainder of 3 when divided by $(x-2)$.
The value of a is:
(A) 1
(B) -1
(C) -3
(D) 3

Suggested Solutions, Marking Scheme and Markers' comments

Suggested solution(s) MULTIPLE CHOICE

1. (D)
2. (c) since for $y=\sin ^{-1} x$
$-1 \leqslant x \leqslant 1 \quad,-\pi / 2 \leqslant y \leqslant \pi / 2$
3. (B)
4. (c)
5. (c)
b. (D)
6. (B)
7. (C)
8. (A)
9. (B)

QuEstion 11

a) $\frac{d}{d x}\left(e^{x^{2}}\right)=e^{x^{2}} \cdot 2 x$

$$
\begin{align*}
\frac{d^{2}}{d x^{2}}\left(e^{x^{2}}\right) & =\frac{d}{d x}\left(e^{x^{2}} \cdot 2 x\right) \\
& =e^{x^{2}} \cdot 2+2 x \cdot e^{x^{2}} \cdot 2 x \tag{2}\\
& =2 e^{x^{2}}\left(1+2 x^{2}\right)
\end{align*}
$$

b) k
b) $\int\left(3-\frac{1}{x^{2}}\right) d x=0$
$\therefore\left[3 x+x^{-1}\right]^{k}=0$
$3 k+\frac{1}{k}-(3+1)=0$

$$
\begin{equation*}
3 k^{2}+1-4 k=0 \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
& 3 k^{2}+1-4 k=0 \\
& 3 k^{2}-4 k+1=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { good attempt here. } \\
& \text { poorly done by tos } \\
& \text { many students. } \\
& \text { failure to recogise } \\
& \text { product. }
\end{aligned}
$$

comments

$$
1
$$

$$
(3 k-1)(k-1)=0
$$

$$
\therefore \quad k=1 \text { or } k=1 / 3
$$

Suggested Solutions, Marking Scheme and Markers' comments

Suggested Solutions, Marking Scheme and Markers' comment

Suggested Solutions, Marking Scheme and Markers' comments

Reasonably well done

Suggested Solutions, Marking Scheme and Markers' comments

Suggested Solutions, Marking Scheme and Markers' comments

Suggested Solutions, Marking Scheme and Markers' comments

Suggested Solutions, Marking Scheme and Markers' comments

Suggested Solutions, Marking Scheme and Markers' comments

Suggested solution(s) QuEstion it continue).	comments
$\left.\begin{array}{rl} m(p x) & =\frac{a p^{2}-0}{2 a p-a p} \\ & =p \\ m(s x) & =\frac{a-0}{0-a p} \\ & =\frac{a}{-a p} \end{array}\right\} \text { Swa } p x-\frac{1}{p}=-1,$ $=-\frac{1}{1}$ (1) mank $=-\frac{1}{p}$ (1) mank iv) $P S$ in dirmmeter as $\angle P X S=90^{\circ}$ (amgli in (anicuici) \therefore Centre of circle $C=$ coorels of muponit $\begin{aligned} & =\left(\frac{2 a p}{2}, \frac{a p^{2}+a}{2}\right)(1 \operatorname{man} 2 \\ \therefore C & =\left(a p, \frac{a\left(p^{2}+1\right)}{2}\right) \end{aligned}$	Sone stredents did not realive ps must be diameter. Not mary attencpat made at thed eacy quation.

Suggested Solutions, Marking Scheme and Markers' comments

