STUDENT NUMBER: _____

TEACHER: _____

THE HILLS GRAMMAR SCHOOL

Trial Higher School Certificate Examination 2015

MATHEMATICS EXTENSION 1

Time Allowed:

Two hours (plus five minutes reading time)

Weighting:

Outcomes:

H6, H7, H8, H9, HE1, HE2, HE4, HE7, HE9

<u>General Instructions</u>:	Total Marks – 70
 Board-approved calculators may be used Attempt all questions Start all questions on a new sheet of paper The marks for each question are indicated on the examination Show all necessary working for Questions 11-14 The diagrams are not drawn to scale 	Section I Questions 1-10 10 Marks Allow about 15 minutes for this section Section II Questions 11-14 60 Marks
 A table of standard integrals is provided 	Allow about 1 hour and 45 minutes for this section

МСQ	Question 11	Question 12	Question 13	Question 14	TOTAL
10	15	15	15	15	70

40%

Section 1 Multiple Choice (10 Marks)

1 Given that
$$tan(\frac{\theta}{2}) = t$$
, then $sin \theta$ would be written as:

(A) $\frac{2t}{1-t^2}$ (B) $\frac{1-t^2}{1+t^2}$ (C) $\frac{1+t^2}{1-t^2}$ (D) $\frac{2t}{1+t^2}$

2 Which function best describes the following graph:

- (A) $y = 3\sin^{-1} 2x$
- (B) $y = \frac{3}{2}\sin^{-1}2x$
- (C) $y = 3\sin^{-1}\frac{x}{2}$

(D)
$$y = \frac{3}{2}\sin^{-1}\frac{x}{2}$$

3 Evaluate
$$\sum_{n=3}^{10} 8 + 5n$$

(A) 283.5 (B) 324
(C) 567 (D) 648

4 The interval *AB* is divided internally in the ratio 3:1 by the point P(x, y). Given A(-7, 7) and B(1, -5) then the values of x and y are:

- (A) x = -2 and y = 2
- (B) x = 2.5 and y = 2
- (C) x = -1 and y = -2
- (D) x = 1 and y = -2
- 5 Which expression is the correct factorisation of $x^3 27$?
 - (A) $(x-3)(x^2-3x+9)$ (B) $(x-3)(x^2-6x+9)$ (C) $(x-3)(x^2+3x+9)$
 - (D) $(x-3)(x^2+6x+9)$
- 6 The parametric equation of a function is:

$$x=2t^2, y=4-t.$$

The Cartesian equation is

- (A) $x = 4(2-y)^2$ (B) $x = 2(y-4)^2$
- (C) $x = 2(y+4)^2$ (D) $x = 2(4-y)^2$

7 Evaluate $\lim_{x\to 0} \frac{x}{\sin 2x}$:

- (A) 0 (B) 0.5
- (C) ∞ (D) 2

8 Which expression is equal to $\int \sin^2 3x \, dx$:

(A)
$$\frac{1}{2}\left(x - \frac{1}{3}\sin 3x\right) + C$$

(B) $\frac{1}{2}\left(x + \frac{1}{3}\sin 3x\right) + C$
(C) $\frac{1}{2}\left(x - \frac{1}{6}\sin 6x\right) + C$
(D) $\frac{1}{2}\left(x + \frac{1}{6}\sin 6x\right) + C$

9 A particle is moving in simple harmonic motion with displacement x. Its velocity v is given by

$$v^2 = 16(9 - x^2)$$

What is the amplitude, *A*, and the period, *T*, of the motion?

- (A) A = 3 and $T = \frac{\pi}{2}$ (B) A = 3 and $T = \frac{\pi}{4}$ (C) A = 4 and $T = \frac{\pi}{3}$ (D) A = 4 and $T = \frac{2\pi}{3}$
- 10 The polynomial $P(x) = x^3 + ax^2 + ax + 1$ leaves a remainder of 3 when divided by (x-2). The value of *a* is: (A) 1
 - (B) -1
 - (C) -3
 - (D) 3

END OF SECTION 1

Section 2

BEGIN A NEW BOOKLET Question 11 (15 marks)

(a) Find
$$\frac{d^2}{dx^2}e^{x^2}$$
. 2

(b) Find k such that
$$\int_{1}^{k} (3 - \frac{1}{x^2}) dx = 0$$
. 3

(c) Use the substitution $u = 1 + e^x$ to evaluate $\int_0^{\ln 2} \frac{e^x}{(e^x + 1)^2} dx.$ 4

(d) Let
$$I = \int_{0}^{\frac{\pi}{2}} \cos^2 x \, dx$$
.
(i) Find, by integration, the exact value of *I*. 2
(ii) Use Simpson's rule with 3 function values to approximate *I*. 2

(e) i) Show that
$$e^{x \ln 2} = 2^x$$
. **1**

ii) Hence find
$$\frac{d}{dx}2^x$$
 1

Marks

2

2

Question 12 (15 marks) BEGIN A NEW BOOKLET

(a) In the diagram the points P and Q lie on a circle and the tangents to the circle at P and Q meet at S.

R is a point on the circle so that *RP* is parallel to *QS*.

Copy or trace the diagram into your writing book.

i) Explain why ΔPSQ is isosceles,	2
ii) Show that ΔPQR is isosceles,	2
iii) Deduce that $QP = QR$.	1

(b) Detective Angela Baker is called to a murder scene at 3:27a.m. She measures the victim's body temperature at that time to be $27^{\circ}C$ and one hour later it has dropped to $25^{\circ}C$. The cooling rate of the body is proportional to the difference between the room temperature $21^{\circ}C$ and the temperature *T*, of the body. That is, *T* satisfies the equation

 $\frac{dT}{dt} = -k(T - 21)$ where k is a positive constant, and t is the number of hours after 3:27a.m.

(i) Verify that $T = 21 + Ae^{-kt}$ is a solution of this equation, where A is a constant. 1

- (ii) Find the exact values of *A* and *k*.
- (iii) Assuming that the victim's body temperature was $37^{\circ}C$ at the time of death, when was the murder committed? Give your answer to the nearest minute.

Question 12 continued

- (c) If α , β , and γ are the roots of the equation $2x^3 x^2 5x + 6 = 0$ find the value of $\alpha^2 + \beta^2 + \gamma^2$.
- (d) Use mathematical induction to show that for all integers $n \ge 1$,

$$\frac{1}{1\times 2} + \frac{1}{2\times 3} + \frac{1}{3\times 4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}.$$
3

Question 13 (15 marks) BEGIN A NEW BOOKLET

(a)	(i) l	Prove, using calculus, that the equation $x^3 + 2x + 4 = 0$ has only one real root α .	2
	(ii)	Show that $-2 < \alpha < -1$.	1
	. ,	Starting with an initial approximation of $\alpha = -1$, use one application of Newton's method to find a further approximation for α .	2
(b)	-	rticle is moving in simple harmonic motion along the <i>x</i> - axis. Its velocity <i>v</i> , is given by $v^2 = 24 - 8x - 2x^2$.	
	(i)	Find all values of x for which the particle is at rest.	2
	(ii)	Find an expression for the acceleration of the particle, in terms of <i>x</i> .	1
	(iii)	Find the maximum speed of the particle.	2

2

Question 13 continued

(c) A man who is standing on top of a vertical cliff throws a stone into the air at an angle θ to the horizontal. The top of the cliff is 175 metres above a flat sea.

The initial velocity of the stone is $20ms^{-1}$. Acceleration due to gravity is $-10ms^{-2}$. The path of the stone is given by the parametric equations

 $x = 20t \cos \theta$ and $y = 20t \sin \theta - 5t^2 + 175$

The angle of projection of the stone to the horizontal is 30° .

- (i) Find the time it takes for the stone to hit the water. 3
- (ii) Find the speed at which the stone hits the water.

Question 14 (15 marks) BEGIN A NEW BOOKLET

(a) (i) Write
$$\cos x - \sqrt{3} \sin x$$
 in the form $R \cos(x + \alpha)$ where $R > 0$ and $0 \le \alpha \le \frac{\pi}{2}$, 2

(ii) Hence, or otherwise, solve the equation
$$\cos x - \sqrt{3} \sin x = 1$$
 for $0 \le x \le 2\pi$.

Question 14 continued

- (b) The point $P(2ap, ap^2)$ lies on the parabola $x^2 = 4ay$.
 - (i) Show that the equation of the tangent to $x^2 = 4ay$ at *P* is $px y ap^2 = 0$. 2
 - (ii) The tangent at *P* cuts the *x* axis at *X*. Find the coordinates of *X*. 1
 - (iii) Show that *PX* is perpendicular to *SX*, where *S* is the focus of the parabola. 2
 - (iv) A circle is drawn through the points *S*, *X*, and *P*. Show that the coordinates of the centre of the circle are given by

$$C = (ap, \frac{a(1+p^2)}{2}).$$

Justify your answer.

2

Question 14 continued

(c) From a point *P* due south of a vertical tower, the angle of elevation of the top of the tower is 20° and from a point *Q* due east of the tower it is 35°.
The distance from *P* to *Q* is 40 metres.

(i)]	Find an expression for PX in terms of h .	1
(ii)	Find an expression for QX in terms of h .	1
(iii)	Calculate the height of the tower to the nearest metre.	2

END OF ASSESSMENT TASK

ANSWER SHEET FOR MULTIPLE CHOICE SECTION

Student Exam number:_____ Teacher:

- $1. \quad A \bigcirc B \bigcirc C \bigcirc D \bigcirc$
- $2. \quad A \bigcirc B \bigcirc C \bigcirc D \bigcirc$
- 3. $A \bigcirc B \bigcirc C \bigcirc D \bigcirc$
- $4. \quad A \bigcirc B \bigcirc C \bigcirc D \bigcirc$
- 5. $A \bigcirc B \bigcirc C \bigcirc D \bigcirc$
- $6. \quad A \bigcirc B \bigcirc C \bigcirc D \bigcirc$
- 7. $A \bigcirc B \bigcirc C \bigcirc D \bigcirc$
- 8. $A \bigcirc B \bigcirc C \bigcirc D \bigcirc$
- 9. $A \bigcirc B \bigcirc C \bigcirc D \bigcirc$
- 10. $A \bigcirc B \bigcirc C \bigcirc D \bigcirc$

STANDARD INTEGRALS

 $\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$ $\int \frac{1}{x} dx = \ln x, \quad x > 0$ $\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$ $\int \cos ax \, dx \qquad = \frac{1}{a} \sin ax, \quad a \neq 0$ $\int \sin ax \, dx = -\frac{1}{a} \cos ax, \quad a \neq 0$ $\int \sec^2 ax \, dx \qquad = \frac{1}{a} \tan ax, \quad a \neq 0$ $\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \quad a \neq 0$ $\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$ $\int \frac{1}{\sqrt{2}a^2} dx = \sin^{-1}\frac{x}{a}, a > 0, -a < x < a$ $\int \frac{1}{\sqrt{x^2 - a^2}} \, dx = \ln\left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$ $\left(\frac{1}{\sqrt{x^2 + a^2}}dx\right) = \ln\left(x + \sqrt{x^2 + a^2}\right)$ NOTE: $\ln x = \log_e x$, x > 0

Section 1 Multiple Choice (10 Marks)

1 Given that
$$tan(\frac{\theta}{2}) = t$$
, then $sin\theta$ would be written as:

(A) $\frac{2t}{1-t^2}$ (B) $\frac{1-t^2}{1+t^2}$ (C) $\frac{1+t^2}{1-t^2}$ (D) $\frac{2t}{1+t^2}$

2 Which function best describes the following graph:

4 The interval *AB* is divided internally in the ratio 3:1 by the point P(x, y). Given A(-7, 7) and B(1, -5) then the values of x and y are:

- (A) x = -2 and y = 2(B) x = 2.5 and y = 2(C) x = -1 and y = -2(D) x = 1 and y = -2
- 5 Which expression is the correct factorisation of $x^3 27$?
 - (A) $(x-3)(x^2-3x+9)$ (B) $(x-3)(x^2-6x+9)$ (C) $(x-3)(x^2+3x+9)$ (D) $(x-3)(x^2+6x+9)$

6 The parametric equation of a function is:

 $x = 2t^2, y = 4 - t$.

The Cartesian equation is

(A) $x = 4(2-y)^2$ (B) $x = 2(y-4)^2$

(C)
$$x = 2(y+4)^2$$
 (D) $x = 2(4-y)^2$

7 Evaluate $\lim_{x\to 0} \frac{x}{\sin 2x}$:

(A) 0 (B) 0.5 (C) ∞ (D) 2

8 Which expression is equal to $\int \sin^2 3x \, dx$:

(A)
$$\frac{1}{2}\left(x - \frac{1}{3}\sin 3x\right) + C$$

(B)
$$\frac{1}{2}\left(x + \frac{1}{3}\sin 3x\right) + C$$

(C)
$$\frac{1}{2}\left(x - \frac{1}{6}\sin 6x\right) + C$$

(D)
$$\frac{1}{2}\left(x + \frac{1}{6}\sin 6x\right) + C$$

9 A particle is moving in simple harmonic motion with displacement x. Its velocity v is given by

$$v^2 = 16(9 - x^2)$$

What is the amplitude, A, and the period, T, of the motion?

(A)
$$A = 3$$
 and $T = \frac{\pi}{2}$
(B) $A = 3$ and $T = \frac{\pi}{4}$
(C) $A = 4$ and $T = \frac{\pi}{3}$
(D) $A = 4$ and $T = \frac{2\pi}{3}$

10 The polynomial $P(x) = x^3 + ax^2 + ax + 1$ leaves a remainder of 3 when divided by (x-2). The value of a is:

(A) 1

- (C) -3
- (D) 3

END OF SECTION 1

2015 EXTENSION 1 TRIAL PAPER SOLUTIONS. THOSE Exam Feedback

Feedback

THGS Exam Feedback

Suggested Solutions, Marking Scheme and Markers' comments

Suggested solution(s) MULTIPLE CHOICE.	comments
(<i>D</i>)	
2.(C) since for y=sin'X	
$-1 \le x \le 1$, $-1/2 \le y \le 1/2$	
3. (B)	
4. (c)	
5. (1)	
6. (D)	
7. (B)	
8. (C)	
9. (A)	
10. (B)	
QUESTION 11	
a) $d_x(e^{x^2}) = e^{x^2} \cdot 2x$	good attempt here.
$\frac{d^2}{dx^2} \left(e^{\chi^2} \right) = \frac{d}{dx} \left(e^{\chi^2} 2 \chi \right)$	poorly done by too
UL	
$=e^{\chi^{2}}2 + 2\chi \cdot e^{\chi^{2}}2\chi$ (2)	failure to recognise a
$= 2e^{\chi^2} (1+2\chi^2)$	product.
b) $\int \left(3 - \frac{1}{\chi^2}\right) dx = 0$	
$(3\kappa + \kappa^{-1})^{k} = 0$	
	- difficulty in dealing
$3k + \frac{1}{k} - (3+1) = 0$ $3k^{2} + 1 - 4k = 0$	
3k2-4k+1 =0	Faire 10
(3K - 1)(K - 1) = 0	
. K=1 or K= 1/3	

c) Let $u = 1 + e^{X}$ when $X = 0$, $u = 2$ $du = e^{X} dx$ $ X = ln2, u = 3$ Some issues with h^{2} $\int \frac{e^{X}}{(e^{X} + 1)^{2}} dx = \int \frac{du}{u^{2}}$ $= \left[-\frac{1}{u}\right]_{2}^{3}$ (4) $= -\frac{1}{3} + \frac{1}{2} = \frac{1}{b}$	setup
$du = e^{-dx} 1 \qquad x = 1$ $\int_{0}^{\infty} \frac{e^{x}}{(e^{x} + 1)^{2}} dx = \int_{0}^{\infty} \frac{du}{u^{2}} $ $= \left[-\frac{1}{u} \right]_{2}^{3} \qquad (4)$	and !
$= \left[-\frac{1}{u}\right]_{2}^{3}$	
$= \left[-\frac{1}{u}\right]_{2}^{3}$	
$= -\frac{1}{3} + \frac{1}{2} = \frac{1}{6}$	
d) i) $I = \int_{-\infty}^{10} \cos^2 x dx$ where $\cos^2 x = \frac{1}{2} (\cos 2x + 1)$	
Lailue to recog	puise
= 11 /2 the need for doi	the
$= \frac{1}{2} \left[\frac{1}{2} \sin 2x + z \right]_{0}^{\sqrt{2}} \qquad (2)$	
$= \frac{1}{2} \left[\frac{1}{2} \times 0 + \frac{1}{72} \right] = \frac{1}{74} = \frac{1}{74} $ exact form.	
1 X O 174 1/2 Table of this for cos2x 1 1/2 O is very helpful	
i Cosix 1 1/2 0 is very helpful	1 ×
0 7/6 7/4 173 7/2 ×	
$A \doteq \frac{h}{3} \left[d_{F} + 4 d_{M} + d_{L} \right]$	- d
$\frac{OR}{2} \doteq \frac{b-a}{6} \left[f(a) + 4f(\frac{a+b}{2}) + F(b) \right].$ Some students to learner the fai	mla
$= \frac{1}{6} \left[f(a) f(a) f(a) \right]$	
$= \frac{7}{12} \left[1 + 4(\frac{1}{2}) + 0 \right].$	
= 37/2 OR 1/4 1	

THGS Exam Feedback

Suggested Solutions, Marking Scheme and Markers' comments

.

Suggested solution(s) QUESTION 12 continued.	comments
c) $2x^3 - x^2 - 5x + 6 = 0$.	
$ + \beta + Y = -(-1) $	- These need to be
$= \frac{1}{2}$	learned.
$\alpha\beta+\beta\gamma+\alpha\gamma=-5\frac{1}{2}$	- ditto
$\alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \alpha\gamma)^2$) - careful subst'n neded.
$=\left(\frac{1}{2}\right)^2-2\left(-\frac{5}{2}\right)$	
$=$ $\frac{1}{7}$ $+$ \geq	
= 54	
d) Prove: $\frac{1}{1\times 2} + \frac{1}{2\times 3} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$	
Test $n=1$. Lits = $\frac{1}{1(2)}$ Rits = $\frac{1}{2}$	
LITS = RTTS.	
the for n=1.	
assume true for n= K.	
$\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \cdots + \frac{1}{k(\mu+1)} = \frac{1}{k+1} - \chi(\mu+1) = $	
Prove for n=k+1.	(and the second s
$ie prove \frac{1}{1*2} + \frac{1}{2\times3} + \dots + \frac{1}{k(k+1)} + \frac{1}{(k+1)(k+2)} =$	K-1 Some rocky presentations
$LH5 = \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \dots + \frac{1}{(1 \times 1)} + \frac{1}{(1 \times 1)}$	J here.
$= \frac{12}{12+1} + \frac{1}{(12+1)(12+2)}$	
$= \frac{k(k+2) + 1}{(k+1)(k+2)} = \frac{(k^2+2k+1)}{(k+1)(k+2)}$	
$= \frac{(1+1)^{2}}{(1+1)^{2}}$	
$\frac{(12+1)(12+2)}{= 12+1}$	rt.
$= \frac{K+1}{K+2} = RI$	• 61

THGS Exam Feedback

Suggested solution(s)	comments
If the for n=k, then the for n=k+1.	
. Statement is true for n=1, 2, 3,	
and all positive integral n.	
QUESTION 13.	2 merks suggests
(a) i) $y = x^3 + 2x + 4$	2 steps or 2 reason
$\frac{dy}{dx} = 3x^2 + 2 > 0 \text{ for all } x.$	1 Stationery 3 Some comment about
in No stationary pts and f(n) (), is always increasing.	work shape of cubic.
is always increasing.	Eg Incheosing
: which will buly have are read	
root a. Dmark.	
ii) $P(-2) = (-2)^3 + 2(-2) + 4 = -8$	
$P(-1) = (-1)^3 + 2(-1) + 4 = 1$	Well done
hence, -2 < a <-1 () want	
	10
as the function values alterna	
i sign.	
(11) $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$	Well done.
where xo =-1.	altution
$x_1 = -1 - \frac{1}{5}$ ()maple com	nect
= - 1.2 () mark	
	·

Suggested Solutions, Marking Scheme and Markers' comments

Suggested solution(s) QUESTION 13	comments
$by v^2 = 24 - 3x - 2x^2$	
i) atrest $\rightarrow v=0$ (1) wank $2(12-4x-x^2)=0$ (1) wank $x^2+4x-12=0$ (x+6)(x-2)=0 $\therefore x=-6 \text{ or } x=2$ (1) monte.	Well done
ii) $\frac{d}{d\kappa}(\frac{1}{2}v^{2}) = \frac{d}{d\kappa}(12 - 4x - x^{2})$ ie $a = -4 - 2\kappa$ (1) mark	Some students unawave of $\frac{1}{2} = \frac{d}{doc} (\frac{1}{2}v^2)$ Some confirmed
(iii) For max speed, $\alpha = 0$ $\therefore -4 - 2x = 0$ $x = -2$ \bigcirc mag	de with du dt
Y ² = 24 + 16 - 8	
= 32 : v = ± √32 = ± 4√2 i move speed in 4√2 () maple	
i) $\chi = 20t \cos \theta$ $y = 20t \sin \theta - 5t$	=2-175
when t=0, $v = 20$, $\theta = 30^{\circ}$. $\therefore x = 10\sqrt{3}t$ $y = 10t - 5t^{2} + 175^{\circ}$ i) when $y = 0$, $5t^{2} - 10t - 175 = 0$ () when $y = 0$, $5(t^{2} - 2t - 35) = 0$	instead of O as shown
5(t-7)(t+5)=0 t=7 or t=-5 But, t >0, :-t=7 seconds. (1) me	detain equations for se and is to enable use of
ii) $i = 10.53$ $\frac{2000}{V^2} = (i:)^2 + (i)^2$ $i = 10 - 10t$ $= (10.53)^2 + (-00)^2$	$v^2 = \tilde{x}^2 + \tilde{y}^2 0$
when $t=7$, $y=-60 = 300 + 3600$ $y^2= 3900 \rightarrow y=10\sqrt{3}$	marke Imis.

Suggested Solutions, Marking Scheme and Markers' comments

Suggested solution(s) QUESTION 14 comments a) i) $\cos x - \sqrt{3} \sin x = R \cos(x + \alpha)$ Well done = Roosx cosd - Reininx sind. $R^{2} = 1 + (\sqrt{5})^{2} \qquad R\cos d = 1 \qquad R + \cos d = 1 \qquad R + \cos d = 1 \qquad R + \cos d = \sqrt{5} \qquad R + \cos d$ 12, cosx-J3 sinx = 2 cos(x + 173) ii) $2\cos(x+\pi_3) = 1$ () mark. $\cos(x+\pi_3) = \frac{1}{2}$ and $0 \le x \le 2\pi$ $\sin 7_3 \le x+\pi_3 \le 2\pi + \pi_3$. Aid not $\sin 7_3 \le x+\pi_3 \le 2\pi + \pi_3$. Aid not $\sin 7_3 \le x+\pi_3 \le 2\pi + \pi_3$. Aid not $\sec 2\pi + \pi_3 = \pi_3$ or π_3 or π_3 $\sin 7_3 = \pi_3$ or π_3 or π_3 $\sin 7_3 = \pi_3$ or π_3 or π_3 b) $\chi^2 = 4ay \rightarrow y = \frac{\chi^2}{4a}$, $y' = \frac{2\chi}{4a}$ i) at P, x = 2ap, $y' = \frac{4ap}{4a} = p$. O wark Well done by Eqn of tangent at P is $y - ap^2 = p(x - 2ap)$ (I mank attempted it, $y - ap^2 = px - 2ap^2$:. px -y - ap2 =0. ii) X(-,0). Put y=0. $\therefore px = ap^{\perp}$ x = ap $(x \times i)(ap, 0)$ () mark

32

Suggested Solutions, Marking Scheme and Markers' comments

