HORNSBY GIRLS' HIGH SCHOOL

2008

TRIAL HIGHER SCHOOL CERTIFICATE

 EXAMINATION
Mathematics Extension 1

General Instructions

- Reading Time - 5 minutes
- Working Time - 2 hours
- Write using a black or blue pen
- Approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown for every question
- Begin each question on a fresh sheet of paper

Total marks (84)

- Attempt Questions 1-7
- All questions are of equal value

BLANK PAGE

Total Marks

Attempt Questions 1-7
All Questions are of equal value
Begin each question on a NEW SHEET of paper, writing your student number and question number at the top of the page. Extra paper is available.

Question 1 (12 marks) Use a SEPARATE sheet of paper.
(a) Find $\lim _{x \rightarrow 0} \frac{\sin 3 x}{2 x}$.
(b) Find the acute angle between the lines $y=2 x-9$ and $3 y=x+8$.
(c) Find $\frac{d\left(3^{x}\right)}{d x}$.
(d) State the domain and range of the function $y=2 \cos ^{-1} 3 x$.
(e) Use the substitution $u=\tan x$ to evaluate $\int_{\pi / 6}^{\pi / 6} \frac{d x}{\cos ^{2} x \tan x}$.
(f) Consider the function $y=x \cos ^{-1} x-\sqrt{1-x^{2}}$,
(i) Show that $\frac{d y}{d x}=\cos ^{-1} x$.
(ii) Hence, or otherwise, evaluate $\int_{0}^{1} \cos ^{-1} x d x$.
(a) Solve $x-5<\frac{14}{x}$.
(b) Find the general solution to $\tan 2 \theta=\sqrt{3}$.

Express your answer in terms of π.
(c) The polynomial $f(x)=2 x^{3}+a x^{2}+b x+6$ has a remainder of -6 when divided by $(x-1)$ and $f(-2)=0$.

Find the values of a and b.
(d) Find the exact value of $\int_{0}^{\frac{\pi}{4}} \cos ^{2}\left(\frac{1}{2} x\right) d x$.
(e)

Given that $P Q=P R$ and $A B$ is 2 a tangent to the circle $P Q R$ at P, prove that $R Q \| B A$.

Question 3 (12 marks) Use a SEPARATE sheet of paper.
(a) 8 people are to be seated at a round table
(i) How many seating arrangements are possible?
(ii) Two people, Sarah and Ken, can not sit together. How many seating arrangements are then possible?
(b) The function $f(x)=x^{3}+a x^{2}+b x+c$ has a relative maximum at $x=\lambda$ and a relative minimum $x=\beta$.
(i) Prove $\lambda+\beta=-\frac{2}{3} a$.
(ii) Show that a point of inflexion occurs at $x=\frac{\lambda+\beta}{2}$. (A check for concavity is not required.)
(c) A roast chicken has been taken from an oven and placed in a room of constant temperature $20^{\circ} \mathrm{C}$. At time t minutes its temperature T decreases according to the equation

$$
\frac{d T}{d t}=-k(T-20) \text { where } k \text { is a positive constant. }
$$

The initial temperature of the chicken is $80^{\circ} \mathrm{C}$ and cools to $50^{\circ} \mathrm{C}$ after 10 minutes.
(i) Verify that $T=20+A e^{-k t}$ is a solution of this equation where A is a constant.
(ii) Find the values of A and k.
(iii) How long will it take for the chicken to cool to $30^{\circ} \mathrm{C}$?

Give your answer to the nearest minute.
(a) A body is in Simple Harmonic Motion and its position at a time t is given by the equation

$$
x=R \cos (n t+\alpha)+1 .
$$

The period of motion is π seconds. Initially the body is at rest 3 units to the left of the origin.
(i) Find the values of R, n and α.
(ii) Find the velocity of the body when $t=\frac{\pi}{6}$.
(b) (i) Consider the equation $x \ln x-1=0$. Show that a solution of this equation lies between $x=1$ and $x=2$.
(ii) Using $x=2$ as a first approximation for a solution, apply Newton's method once to find a better approximation.
Give your answer to 1 decimal place.
(c) Prove the identity $\frac{2 \tan \theta}{1+\tan ^{2} \theta}=\sin 2 \theta$.
(d) A 'Wheel of Chance' has 9 equal compartments around its rim.

When this wheel is spun a player can win $\$ 100$ on 1 designated compartment. Grace is given the opportunity to have 25 consecutive spins of the wheel. Find, giving your answer correct to 4 decimal places, the probability that she will win:
(i) exactly $\$ 200$,
(ii) at least $\$ 200$.
(a) Use the principle of mathematical induction to show that $1^{3}+2^{3}+\ldots+n^{3}=(1+2+\ldots+n)^{2}$ for all $n \geq 1$
(b)

The diagram shows a conical wheat flu. The flu is being filled with wheat at the rate of $2 \mathrm{~m}^{3}$ per minute. The height of wheat at time t minutes is h metres and the radius of the wheat's top surface is r metres.
(i) Show that $r=\frac{3 h}{10}$.
(ii) Find the rate at which the height is increasing when the height of the wheat is 8 m .

$$
\text { (Volume of cone } \left.=\frac{1}{3} \pi r^{2} h\right)
$$

(c) Solve $x^{3}-21 x^{2}+126 x-216$ given that the roots form 3 consecutive terms of a geometric series.
(d) Use Simpson's Rule with 3 function values to find an approximation to

$$
\int_{0}^{0.4} \sin ^{-1} x d x \text { to one decimal place. }
$$

Question 6 (12 marks) Use a SEPARATE sheet of paper.
(a) A stone is projected with a velocity of 10 metres per second at an angle of elevation of $\theta=\tan ^{-1}\left(\frac{3}{4}\right)$ from the top of a cliff 27 metres high overlooking a lake.

Assume that the equations of motion of the stone are

$$
\ddot{x}=0 \quad \ddot{y}=-10
$$

referred to the coordinate axes shown.
(i) Let (x, y) be the position of the stone at time t seconds after it was thrown, and before the stone hits the lake.

It is known that $x=8 t$.
Show that $y=-5 t^{2}+6 t+27$.
(ii) Calculate the time which elapses before the stone hits the lake and find the horizontal distance of the point of contact from the base of the cliff.
(iii) What is the maximum height reached by the stone?
(b) Find the coefficient of x^{7} in the expansion of $\left(x^{2}-\frac{1}{x}\right)^{12}\left(5-\frac{1}{x^{2}}\right)^{6}$.
(c) Find the Cartesian equation of a curve with the parametric equations

$$
x=t+\frac{1}{t} \text { and } y=t-\frac{1}{t} .
$$

Question 7 (12 marks) Use a SEPARATE sheet of paper.
(a) Let $(3+2 x)^{20}=\sum_{r=0}^{20} a_{r} x^{r}$
(i) Write down an expression for a_{r}.
(ii) Show that $\frac{a_{r+1}}{a_{r}}=\frac{40-2 r}{3 r+3}$.
(iii) Hence, or otherwise, find the value of the greatest coefficient in the expansion of $(3+2 x)^{20}$.
(b) Consider the function $f(x)=\frac{1}{1+x^{2}}$,
(i) Sketch the function $y=f(x)$, finding any asymptotes and stationary points.
(ii) Write down the largest domain that contains $x=-1$ for which $y=f(x)$ has an inverse function.
(iii) Find the inverse function $f^{-1}(x)$ for this domain and state the domain of $f^{-1}(x)$.
(iv) Find the area bounded by the curve $f(x)=\frac{1}{1+x^{2}}$, the x axis and the values $x=-1$ and $x=1$.
(v) Prove that the area between this curve and the x axis is always less than π units 2.

End of Examination

STANDARI INTEGRALS

$$
\begin{array}{ll}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1} \cdot n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, a \neq 0 \\
\int \sin a x d x & =-\frac{1}{a} \cos a x, a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \tan a x, a \neq 0 \\
\int \frac{\sec ^{2} a x \tan a x d x}{}=\frac{1}{a} \sec a x, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\frac{1}{a} \tan -1 \frac{x}{a}, a \neq 0 \\
\int \frac{1}{a^{2}-x^{2}} d x & =\sin -1 \frac{x}{a}, a>0,-a<x<a \\
\int \frac{1}{x^{2}-a^{2}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right) . x>a>0 \\
\int \frac{1}{\sqrt{x^{2}+a^{2}} d x}=\frac{\ln \left(x+\sqrt{2}+a^{2}\right)}{}
\end{array}
$$

NOTE: $\ln x=\log _{e} x, \quad x>0$

2008 HGHS Extension 1 Trial Solns $\sqrt{\sqrt{2}}$
QUESTIO.

$$
\text { (a) } \begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sin 3 x}{2 x} \\
= & \lim _{x \rightarrow 0} \frac{3}{2} \frac{53 x}{3 x} \\
= & \frac{3}{2}
\end{aligned}
$$

b)

$$
\text { b) } \begin{aligned}
y & =2 x-9 \\
y & =\frac{1}{3} x+\frac{\theta}{3} \\
\text { Ctan } \theta & =\frac{2-\frac{1}{3}}{1+2 \times \frac{1}{3}} \\
& =\frac{5}{3} \times \frac{3}{5} \\
& =1 \\
\theta & =45^{\circ}
\end{aligned}
$$

c)

$$
\begin{aligned}
\frac{d\left(3^{x}\right)}{d x} & =\frac{d e^{x \ln 3}}{d x} \\
& =\ln 3 e^{x \ln 3} \\
& =3^{x} \ln 3
\end{aligned}
$$

$$
\begin{aligned}
& R=-\frac{1}{3} \leq x \leq \frac{1}{3} \\
& R: 0 \leq y \leq 2 \pi
\end{aligned}
$$

e) $I=\int_{\pi / 6}^{\pi / 3} \frac{d x}{\cos ^{2} x \tan x}$

$$
=\int_{-\pi / 3}^{\pi / 2} \frac{\sec ^{2} x d x}{\operatorname{tin} x}
$$

6et $u=\tan x$
when $x=\pi / 6, u=\frac{1}{\sqrt{3}}$
f) i)

$$
=1
$$

d)

$$
d u=\sec ^{2} x d x
$$

Question 2
a)

$$
\begin{aligned}
& \text { a) } x-5<\frac{14}{x} \\
& x^{2}(x-5)<14 x \\
& x^{2}(x-5)-14 x<0 \\
& x\left(x^{2}-5 x-14\right)<0 \\
& x(x-7)(x+2)<0 \\
& \therefore x<-2,0<x<7
\end{aligned}
$$

$$
\begin{aligned}
y & =x \cos ^{-1} x-\sqrt{1-x^{2}} \\
\frac{d y}{d x} & =\cos ^{-1} x-\frac{x}{\sqrt{1-x^{2}}}+\frac{1}{2}\left(1-x^{2}\right)^{-1 / 2} 2 x \\
& =\cos ^{-1} x-\frac{x}{\sqrt{1-x^{2}}}+\frac{x}{\sqrt{1-x^{2}}} \\
& =\cos ^{-1} x
\end{aligned}
$$

ii) $\int_{0}^{1} \cos ^{-1} x d x=\left[x \cos ^{-1} x-\sqrt{1-x^{2}}\right]_{0}^{1}$

$$
=\cos ^{-1}(1)-0-0+1
$$

$$
\text { i) } \begin{array}{r}
f(x)=2 x^{3}+a x^{2}+b x+6 \\
f(1)=2+a+b+6=-6 \\
a+b=-14 \\
f(-2)=-16+4 a-2 b+6=0 \\
4 a-2 b=10 \\
4 \times(1)-(5) \Rightarrow 6 b=-66 \tag{2}\\
b=-11 \\
\therefore a=-3
\end{array}
$$

d)

$$
\begin{aligned}
\tan 2 \theta & =\sqrt{3} \\
& =\tan \pi / 3 \\
2 \theta & =n \pi+\pi / 3 \\
0 & =\frac{1}{2} n \pi+\pi / 6 .
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{\pi / 4} \cos ^{2}\left(\frac{x}{2}\right) d x=\frac{1}{2} \int_{0}^{\pi / 4} \cos x+1 d x \\
& =\frac{1}{2}[\sin x]_{0}^{\pi / 4}=\frac{1}{2}[\sin x+x]_{0}^{\pi / 4} \\
& =\frac{1}{2 \sqrt{2}}=\frac{1}{2}\left(\frac{1}{\sqrt{2}}+\frac{\pi}{4}\right) \\
& =\frac{1}{2 \sqrt{2}}+\frac{\pi}{8}=\frac{2 \sqrt{2}+\pi}{8}
\end{aligned}
$$

QuESTiON 3.
a) i) $7!=5040$
ii) $7^{\prime}-66^{\prime} \times 2=3600$
6):

$$
\begin{aligned}
f(x) & =x^{3}+a x^{2}+b x+c \\
f^{\prime}(x) & =3 x^{2}+2 a x+b \\
f^{\prime \prime}(x) & =6 x+2 a
\end{aligned}
$$

now $3 \lambda^{2}+2 a \lambda+b=0$
and $3 \beta^{2}+2 a \beta+b=0$

$$
\begin{aligned}
& \therefore \quad 3 \lambda^{2}+2 a \lambda=3 \beta^{2}+2 a \beta \\
& \lambda^{2}-\beta^{2}=\frac{2}{3} a \beta-\frac{2}{3} a \lambda \\
&(\lambda-\beta)(\lambda+\beta)=-\frac{2}{3} a(\lambda-\beta)
\end{aligned}
$$

on $\lambda+\beta$ are both roots

$$
\therefore \alpha+\beta=-\frac{2}{3} a
$$ of $f^{\prime}(x)$

$\therefore \lambda+\beta=-\frac{2 a}{3}$ sim of the roots.
ii) pt of in fexion when $f^{\prime \prime}(x)=0$

$$
\begin{aligned}
f^{\prime \prime}(x) & =6 x+2 a \\
& =6\left(\frac{\lambda+\beta}{2}\right)+2 a \\
& =3\left(-\frac{2}{3} a\right)+2 a \\
& =-2 a^{3}+2 a \\
& =0
\end{aligned}
$$

c)

$$
\text { i) } \begin{aligned}
T & =20+A e^{-k t} \\
\frac{d T}{d t} & =-k A \epsilon^{-k t} \\
& =-k(T-20)
\end{aligned}
$$

ii) when $t=0, T=80$

$$
\begin{aligned}
\therefore \quad 80 & =20+A \\
A & =60
\end{aligned}
$$

when $t=10, T=50$

$$
\therefore 50=20+60 e^{-10 k}
$$

Question 4
a) i)
ii)

$$
\begin{aligned}
f^{\prime}(x) & =\ln x+1 \\
f^{\prime}(2) & =\ln 2+1 \\
& =1.693
\end{aligned}
$$

iii) $T=20+60 e^{-0.0653 t}$
whin $T=30$

$$
\begin{aligned}
30 & =20+60 e^{-0.0693 t} \\
10 & =60 e^{-0.0693 t} \\
e^{x .0693 t} & =1 / 6 \\
-0.0693 t & =10(1 / 6) \\
t & =25.86 \mathrm{~min} \\
& =26 \mathrm{~min}
\end{aligned}
$$

when $t=0 \quad \frac{d x}{d t^{t}}=0$

$$
\therefore x=1.8
$$

$$
\begin{aligned}
\therefore \quad 0 & =-2 R \sin \alpha . \\
\alpha & =0 \\
\therefore \quad x & =R \cos (2 t)+1
\end{aligned}
$$

$$
\text { c) } L \cdot H S=\frac{2 \tan \theta}{1+\tan ^{2} \theta}
$$

when $t=0, x=-3$

$$
=\frac{2 \sin \theta}{\cos \theta} \times \cos ^{2} \theta .
$$

$$
\begin{aligned}
-3 & =R+1 \\
R & =-4 \\
\therefore \quad R & =-4 \\
n & =2 \\
\alpha & =0
\end{aligned}
$$

$$
=2 \sin \theta \cos \theta
$$

$$
=\delta 2 \theta
$$

$$
=\text { R.H.S. }
$$

d) 1) ${ }^{25} C_{2}\left(\frac{1}{9}\right)^{2}\left(\frac{8}{9}\right)^{23}=0.2467$
ii)

$$
\begin{aligned}
V & =8 \sin \left(2 \times \frac{\pi}{6}\right) \\
& =8 \frac{\sqrt{3}}{2} \\
& =4 \sqrt{3}^{2}
\end{aligned}
$$

$$
\text { ii) } 1-{ }^{25} c_{0}\left(\frac{5}{9}\right)^{25}-{ }^{25} C_{1}\left(\frac{1}{9}\right)^{1}\left(\frac{5}{9}\right)^{24}
$$

$$
=1-005262-0.16445
$$

$$
=0.7829
$$

b) Ct

$$
\begin{aligned}
f(x) & =x \ln x-1 \\
f(1) & =1 \ln 1-1 \\
& =-1 \\
f(2) & =2 \ln 2-1 \\
& =0.4
\end{aligned}
$$

\therefore sulu lies between $x=1,2$.

Quesiton 5
a) - Prove truectar $n=1$

$$
\begin{aligned}
& \angle H S=1^{3}=1 \\
& R H S=1^{2}=1
\end{aligned}
$$

\therefore True for $n=1$

- Assume true for $n=k$
ie $i^{3}+2^{3}+\cdots+k^{3}=(1+2+3+\cdots+k)^{2}$
- Prove true for $n=k+1$
ie $i^{3}+2^{3}+\cdots+k^{3}+(k+1)^{3}=(1+2+\cdots+k+(k+1))^{2}$

$$
L H S=(1+2+\cdots+k)^{2}+(k+1)^{3}
$$

$$
=\left[\frac{k}{2}(k+1)\right]^{2}+(k+1)^{3}
$$

$$
=(k+1)^{2}\left(\frac{k^{2}}{4}+k+1\right)
$$

$$
=(k+1)^{2}\left(k^{2}+4 k+4\right)
$$

$$
=\frac{(k+1)^{2}(k+2)^{2}}{4}
$$

$$
\text { R.H.S }=\left[\frac{k+1}{2}(k+1+1)\right]^{2}
$$

$$
=\frac{(k+1)^{2}(k+2)^{2}}{4}
$$

$$
=\mathrm{L} \cdot \mathrm{H} \cdot \mathrm{~S}
$$

\therefore True for $n=k+1$

Question 5
b)

$$
\begin{aligned}
& \frac{r}{3}=\frac{h}{10} \text { similar a's } \\
& r=\frac{3 h}{10}
\end{aligned}
$$

ii)

$$
\begin{aligned}
& \frac{d v}{d t}=2 \\
& v=\frac{\pi r^{2} h}{3}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{\text { a }}=\frac{\pi \cdot 9 h^{2}}{300} \cdot h \\
& =\frac{9 \pi h^{3}}{300} \\
& \frac{d v}{d h}=\frac{27 \pi h^{2}}{300} \\
& \therefore \frac{d h}{d t}=\frac{d h}{d v} \times \frac{d v}{d t} \\
& =\frac{100}{9^{\pi h^{2}}} \times 2 \\
& =\frac{200}{9 \pi h^{2}}
\end{aligned}
$$

when $h=8$

$$
\begin{aligned}
\frac{d h}{d t} & =\frac{100}{\pi \times 8^{2}} \\
& =0-1105 \\
& =\frac{25}{22 \pi}
\end{aligned}
$$

c) LAt roots be $\frac{a}{r}, a$, $a r$

$$
\frac{a}{r}+a+a r=21
$$

$$
a^{3}=216
$$

$$
a=6
$$

$$
\therefore \frac{1}{r}+1+r=\frac{7}{2}
$$

$$
7 r=2+2 r+2 r^{2}
$$

$$
2 r^{2}-5 r+2=0
$$

$$
(2 r-1)(r-2)=0
$$

$$
\therefore r=1 / 2,2
$$

\therefore roots are, $3,6,12$

$$
\text { d) } \begin{aligned}
\int_{0}^{0.4} \sin ^{-1} x d x & =\frac{0.4}{6}\left[0+4 \times 0.201 t^{0.44}\right. \\
& =0.081 \\
& =0.1
\end{aligned}
$$

Question 6
a) 1)

$$
\begin{array}{rlrl}
\ddot{y} & =-10 & \text { c) } x=t+\frac{1}{t} \\
y & =-10 t+10 \sin \theta & y=t-\frac{1}{t} \\
& =-10 t+\frac{10 \times 3}{5} & y & y \\
& =-10 t+6 & x^{2}=t^{2}+2+\frac{1}{t^{2}} \\
y & =-\frac{10 t^{2}}{2}+6 t+27 & & y^{2}=t^{2}-2+\frac{1}{t^{2}} \\
& =-5 t^{2}+6 t+27 & & x^{2}-y^{2}=4 .
\end{array}
$$

ii) when $y=0$

$$
\begin{aligned}
& 5 t^{2}-6 t-27=0 \\
& (5 t+9)(t-3)=0 \\
& \therefore t=3
\end{aligned}
$$

when $t=3, x=8 \times 3$

$$
=24
$$

iii) max hught when $\dot{y}=0$
i. $-10 t+6=0$

$$
t=\frac{6}{10}
$$

when $t=0.6, y=-5(0.6)^{2}+6(0.6)+27$

$$
=28.8
$$

b) $\sum_{a=0}^{12} c_{a} c^{2}\left(x^{2}\right)^{1 / k}(-1)^{k}\left(x^{-1}\right)^{k} \cdot \sum_{r=0}^{6} c_{r}^{6}{ }^{5-r} \cdot(-1)^{1} \cdot\left(x^{-2}\right)^{1}$
$\therefore x^{2 \pi-2 k-k-2 r}=x^{24-3 k-2 r}$
$\therefore 24-3 k-2 r=7 \quad \therefore$ cocffis $={ }^{12} c_{5}(-1)^{5} \cdot{ }^{6} c_{1} 5^{5}(-1)^{\prime}$
$3 k+2 r=17$

k	r	$3 k+2 r$
5	1	17
3	4	17

Question 7
a)
ii)

$$
\begin{align*}
\frac{a_{r+1}}{a_{r}} & =\frac{{ }^{20} c_{r+1} \cdot 3^{r r-r} \cdot 2^{r+1}}{{ }^{20}\left(r \cdot 3^{20-r}\right.} \cdot 2^{r} \tag{1}\\
& =\frac{20!}{(r+1)!(19-r)!} \times \frac{r!(20-r)!}{20!} \times \frac{2}{3} \tag{2}\\
& =\frac{20-r}{r+1} \times \frac{2}{3} \\
& =\frac{40-2 r}{3 r+3}
\end{align*}
$$

iii) $\frac{40-2 r}{3 r+3} \geqslant 1$

$$
\begin{gathered}
40-2 r \geqslant 3 r+3 . \\
5 r \leqslant 37 \\
r \leqslant 7 / 5 \\
\therefore r=7
\end{gathered}
$$

$$
\begin{aligned}
\therefore a_{14}=a_{8} & ={ }^{20} c_{8} \cdot 3^{12} \cdot 2^{8} \\
& =1.11 \times 10^{\prime 3}
\end{aligned}
$$

QUESTION 7
b) i) $f(x)=\frac{1}{1+x^{2}}$
v) $A<2 \lim _{\text {max }} \int_{a \rightarrow \infty}^{a} \frac{1}{1+x^{2}} d x$.

$$
\begin{aligned}
& f^{\prime}(x)=-\left(1+x^{2}\right)^{-2} \cdot 2 x \\
&=\frac{-2 x}{\left(1+x^{2}\right)^{2}} \\
& \lim _{x \rightarrow \infty} \frac{1}{1+x^{2}}=0^{+} \\
& \lim _{x \rightarrow-\infty} \frac{1}{1+x^{2}}=0^{+}
\end{aligned}
$$

$$
<2 \lim _{a \rightarrow \infty}\left[\tan ^{-1} x\right]_{0}^{a}
$$

$$
22 \lim _{a \rightarrow \infty}\left(\tan ^{-1} a-0\right)
$$

$$
<2 \times \frac{\pi}{2}
$$

stat pt whew. $\begin{aligned}-2 x & =0 \\ x & =0\end{aligned}$ $<\pi$.
when $x=0, y=1$.

ii) $x \leqslant 0$
iii)

$$
\begin{aligned}
x & =\frac{1}{1+y^{2}} \\
1+y^{2} & =\frac{1}{x} \\
y^{2} & =\frac{1}{x}-1 \\
y & =-\sqrt{\frac{1-x}{x}}
\end{aligned}
$$

Domain $0<x \leqslant 1$

$$
\text { (v) } \begin{aligned}
A & =\int_{-1}^{1} \frac{1}{1+x^{2}} d x \\
& =\left[\tan ^{-1} x\right]_{-1}^{-1} \\
& =\frac{\pi}{4}+\frac{\pi}{4} \\
& -\pi
\end{aligned}
$$

