HORNSBY GIRLS HIGH SCHOOL

2011
 TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 1

General Instructions

- Reading Time - $\mathbf{5}$ minutes
- Working Time - 2 hours
- Write using a black or blue pen
- Approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown for every question
- Begin each question in a new booklet

Total marks (84)

- Attempt Questions 1-7
- All questions are of equal value

BLANK PAGE

Total Marks

Attempt Questions 1-7
All Questions are of equal value
Begin each question in a new booklet, writing your student number and question number in the boxes indicated. Extra writing booklets are available.

Question 1 (12 marks) Use a SEPARATE writing booklet.
(a) Evaluate $\lim _{x \rightarrow 0} \frac{8 x}{\sin 5 x}$
(b) The point $C(11,-5)$ divides the interval joining $A(-3,2)$ and B in the ratio 7:2 internally. Find the coordinates of B.
(c) Solve $\frac{2 x+1}{x-3}<3, x \neq 3$
(d) Evaluate $\int_{1}^{9} \frac{d x}{x+\sqrt{x}}$ using the substitution $x=u^{2}$.
(e) Find $\int(\tan x-1)^{2} d x$
(a) Evaluate $\int_{0}^{\frac{\pi}{4}} \cos ^{2} x d x$.

2
(b) Consider the function $f(x)=2 \cos ^{-1}\left(\frac{x}{3}\right)$.
(i) Evaluate $f(0)$.
(ii) State the domain and range of $y=f(x)$.
(iii) Sketch $y=f(x)$.
(c) A class consists of 12 girls and 10 boys.
(i) A committee of 4 is to be chosen from the class. How many ways can this be done?
(ii) How many ways could the committee be chosen if it is to be made up of 3 girls and 2 boys?
(d) $\quad P T$ is a tangent to the circle $P R Q$ and $Q R$ is a chord produced to intersect $P T$ at T.

(i) Prove that $\triangle P R T$ and $\triangle Q P T$ are similar.
(ii) Hence, prove that $P T^{2}=Q T \times R T$.
(a)

NOT TO
SCALE

A vertical tower of height h metres stands on horizontal ground. From a point P, on the ground due east of the tower, the angle of elevation of the top of the tower is 45°. From a point Q, on the ground due south of the tower, the angle of elevation of the top of the tower is 30°. If the distance $P Q$ is 40 metres, find the exact height of the tower.
(b) A particle P is moving along the x-axis with acceleration $-16 x$, where x is the displacement of the particle from the origin. Initially, the particle is at the origin, moving with a velocity of 24 units per second.
(i) By using integration, show that the displacement is given by $x=6 \sin 4 t$, where t is time in seconds.
(ii) State the maximum distance from the origin that the particle reaches.
(iii) What is the period of the motion?
(iv) Sketch the graph of displacement, x, against time, t, for the first π seconds.
(v) Calculate the average speed of the particle during the first π seconds.
(a) (i) Given that $x^{2}+4 x+5 \equiv(x+a)^{2}+b^{2}$, show that $a=2$ and $b= \pm 1$.
(ii) Hence, find $\int \frac{1}{x^{2}+4 x+5} d x$.
(b) At Phillips High School in NSW there are 3 Science teachers. The probability that in a NSW a Science teacher is female is 0.6 . The probability that in NSW a Science teacher (male or female) is 50 years or older is 0.2 .
(i) What is the probability that at Phillips High School there is at least one female Science teacher?
(ii) What is the probability that at Phillips High School all 3 Science teachers are female and younger than 50 years.
(c) Two points $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ lie on the parabola $x^{2}=4 a y$, where $a>0$. The chord $P Q$ passes through the focus, S.

(ii) Show that the length of chord $P Q$ is $a\left(p+\frac{1}{p}\right)^{2}$.
(a) A pig farm has 100 pigs. The number of pigs, N, infected with a disease at time t days is given by $N=\frac{100}{1+c e^{-t}}$, where c is a constant.
(i) Show that eventually all the pigs will be infected.
(ii) Initially, one pig is infected. After how many days will 70 pigs be infected?
(b) Prove by mathematical induction that $\sum_{k=1}^{n} k \times 2^{k-1}=1+(n-1) 2^{n}$
(c) Find the roots of the equation $x^{3}-12 x^{2}+30 x+8=0$, given that they are consecutive terms in an arithmetic series.
(d) The population P of a country has an annual growth rate, $\frac{d P}{d t}=0.06 P$. How long will it take the population of this country to double?
(a) A particle, P, is fired from the ground at $t=0$. The particle is projected from the origin at an angle of θ to the horizontal, with a velocity of V.
The horizontal equation of motion for the particle is

$$
x_{p}=V t \cos \theta . \quad \text { DO NOT PROVE THIS. }
$$

NOT TO
SCALE
(i) Prove that the vertical equation of motion for the particle is

$$
y_{P}=V t \sin \theta-\frac{1}{2} g t^{2}
$$

(ii) Show that the horizontal range of the projectile, R_{P}, is given by

$$
R_{P}=\frac{V^{2} \sin 2 \theta}{g} .
$$

A second particle, Q , is fired back towards the origin from the ground at a distance of l metres to the right of the origin at time $t=0$, with an angle of $(180-\theta)^{\circ}$ to the positive direction of the x-axis, with velocity V.

NOT TO
SCALE

The equations of motion of this particle are:

$$
x_{Q}=-V t \cos \theta+l \text { and } y_{Q}=V t \sin \theta-\frac{1}{2} g t^{2} . \text { DO NOT PROVE THESE. }
$$

(iii) Show that if the particles collide, it will occur when $t=\frac{l}{2 V \cos \theta}$.
(iv) For the particles to collide, it must occur while the particles are

Prove that, for the particles to collide in the air, $0<l<\frac{4 v^{2} \cos \theta \sin \theta}{g}$.

Question 6 (continued)
(b) Consider $f(x)=x^{3}-3 x^{2}-9 x$ in the domain $x \leq-1$.
(i) Find the point(s) of intersection of $y=x$ and $y=f(x)$ in this domain
(ii) Hence, find the gradient of the inverse $f^{-1}(x)$ at this point.

End of Question 6

(a) It is known that $\sin ^{-1} x, \cos ^{-1} x$ and $\sin ^{-1}(1-x)$ are acute angles.
(i) Show that $\sin \left(\sin ^{-1} x-\cos ^{-1} x\right)=2 x^{2}-1$.
(ii) Hence or otherwise, solve the equation $\sin ^{-1} x-\cos ^{-1} x=\sin ^{-1}(1-x)$.
(b)

NOT TO SCALE

Two circles of unequal radii intersect at A and B. The tangent to the smaller circle at A cuts the larger circle at P, with $P B$ produced cutting the smaller circle at C. The line $C A$ produced cuts the larger circle at D.

If $\angle C A Q=\alpha$ and $\angle B A P=\beta$, show giving reasons, that $\angle A D B=\alpha-\beta$.
(c) A projector screen on the front wall of a classroom is 2 metres high and its lower edge is 1 metre above the eye level of a seated student as indicated in the diagram. The horizontal distance of the student from the screen is x metres, the angle of elevation to the bottom of the screen is α and the viewing angle is θ. The "best" viewing angle is when θ is a maximum.

(i) Show that $\alpha=\tan ^{-1}\left(\frac{1}{x}\right)$.
(ii) Show that when θ is expressed as a function of x,

$$
\theta=\tan ^{-1}\left(\frac{2 x}{3+x^{2}}\right)
$$

(iii) Hence or otherwise determine how far from the front of the room the student should sit in order to have the "best" view of the projector screen.

End of paper

BLANK PAGE

Yeer 12 Extl HaHS Solns.
$\lim _{x \rightarrow 0} \frac{8 x}{\sin 5 x}$

```
(a)
```

b)

$$
\begin{array}{ll}
A(-3,2) & B(x, y) \\
C(11,-5) & 7=2 \\
& \frac{m}{m} \\
11=\frac{7 x+2(-3)}{9} \\
99=7 x-6 \\
7 x=105 \\
x=15 .
\end{array}
$$

$$
-5=\frac{7 y+2(2)}{9}
$$

$$
-45=7 y+4
$$

$$
-49=7 y
$$

$$
y=-7
$$

$$
\therefore B(15,-7)
$$

(c) $\frac{2 x+1}{x-3}<3$

$$
\begin{aligned}
& (2 x+1)(x-3)<3(x-3)^{2} \\
& (2 x+1)(x+3)-3(x-3)^{2}<0 \\
& (x-3)[2 x+1-3 x+9]<0 \\
& (x-3)(10-x)<0
\end{aligned}
$$

(d)
 $x=9, u=3$.
$\therefore I=\int_{1}^{3} \frac{2 u \cdot d u}{u^{2}+u}$
$=\int_{1}^{3} \frac{-2}{u+1} d u$
$=2[\ln (\mu+1)]_{1}^{3}$
$=2(\ln 4-\ln 2)$

$$
=2 \ln 2
$$

b) $f(x)=2 \cos ^{-1}\left(\frac{x}{3}\right)$

$$
=\ln 4
$$

(e) $\begin{aligned} & \int(\tan x-1)^{2} d x \\ = & \int \tan ^{2} x-2 \tan x+1 d x \\ = & \int\left(\sec ^{2} x-2 \tan x\right) d x \\ = & \tan x+2 \ln (\cos x)+C .\end{aligned}$
(i)

$$
\doteqdot 11386 \ldots\left(3 d_{p}\right)
$$

$$
\begin{aligned}
f(0) & =2 \cos ^{-1} 0 \\
& =2(\pi / 2)^{3} \\
& =\pi
\end{aligned}
$$

(ii)

D:

$$
=\int \tan ^{2} x-2 \tan x+1 d x
$$

$R: \quad 0 \leq \frac{y}{2} \leq \pi$

$$
=\int\left(\sec ^{2} x-2 \tan x\right) d x
$$

$$
\begin{aligned}
& -1 \leq \frac{x}{3}<1 \\
& -3 \leq x \leq 3 \\
& 0 \leq y \leq \pi \\
& 0 \leq y^{2} \leq 2 \pi
\end{aligned}
$$

$$
=\tan x+2 \ln (\cos x)+c .
$$

iii

(c) (i) ${ }^{22} \mathrm{C}_{4}=7315$ way.
(ii) ${ }^{12} C_{3} \times{ }^{10} C_{2}=9900$ way
(1) In $\triangle P R T$ and $\triangle \triangle P T$,
$\angle R T P=\angle P T Q$ (cocanon ondt
$\angle T P R=\angle T Q P$ (angle in alteras segnent)
\therefore APRTIIIAQPT (equingulal
(ii)

$$
\begin{aligned}
& \frac{P T}{Q T}=\frac{R T}{P T} \text { (curoponding } \\
& Q T i l i n \text { of AxeTh } \\
& P T^{2}=Q T \cdot R T \text {. }
\end{aligned}
$$

Question 3.
a) $\tan 45=\frac{h}{O P} \quad \operatorname{ta} 30=\frac{h}{O Q}$

$$
\begin{aligned}
O P & =h \quad O Q=h \sqrt{3} \\
\therefore \quad 40^{2} & =h^{2}+3 h^{2} \\
h & =20
\end{aligned}
$$

b) i) $\ddot{x}=-16 x$

$$
\begin{aligned}
& \frac{d\left(\frac{1}{2} v^{3}\right)}{d x}=-16 x \\
& \frac{1}{2} v^{2}=-16 / x d x \\
& r^{2}=-16 x^{2}+c
\end{aligned}
$$

Lhen $x=0, v=24$

$$
\begin{aligned}
24^{2} & =c \\
c & =\frac{576}{V} \\
\therefore \frac{\sqrt{576-16 x^{2}}}{d x} & =\frac{1}{\sqrt{516-16 x^{2}}} \\
& =\frac{1}{4 \sqrt{36-x^{2}}} \\
t & =\frac{1}{4} \int \frac{1}{\sqrt{36-x^{2}}} d x \\
t & =\frac{1}{4} \sin ^{-1}\left(\frac{x}{6}\right) \\
4 t & =\sin \left(\frac{x}{6}\right) \\
\frac{x}{6} & =\sin 4 t \\
x & =6 \sin 4 t
\end{aligned}
$$

v) Speed $=\frac{D}{7}$
ii) 6
iii) $-\frac{\pi}{2}$

$$
=\frac{48}{\pi}
$$

$$
=15.3
$$

iv)

Queston 4.
(a) (i) $x^{2}+4 x+4 x 1 \equiv(x+2)^{2}+1$
$a=3, \quad b^{2}=1$

$$
\therefore b= \pm 1 .
$$

ii) $\int \frac{d x}{x^{2}+4 x+5}=\int \frac{d x}{(x+2)^{2}+1}$

$$
=\tan ^{-1}(x+2)+c
$$

b) (1) $P($ at tont are finde $)=1-P($ none $)$
$\begin{aligned} \text { science teachs } & =1-(0.4)^{3} \\ & =1-(1)\end{aligned}$

$$
=0.936
$$

ii)

$$
\begin{aligned}
P(3 \text { enale, e50) } & =(0.6)^{3} \times(0.8)^{3} \\
& \doteq 0.11(2 d p)
\end{aligned}
$$

c) (i) Chod $P Q$:

$$
\frac{y-a p^{2}}{x-2 a p}=\frac{a q^{2}-a p^{2}}{2 a q-2 a p}
$$

$S(0, a)$ satisfies equation

$$
\begin{aligned}
& \frac{a-a p^{2}}{-2 a p}=\frac{a(q-p)(q+p)}{2 a(q-p)} \\
& \frac{1-p^{2}}{-2 p}=\frac{q+p}{2} \\
& 21-p^{2}=-p q-p^{2} \\
& -p q=1 \\
& -p q=-1
\end{aligned}
$$

$$
\begin{aligned}
& \text { (ii) } a_{p q}=\sqrt{(2 a q-2 a p)^{2}+\left(a q^{2}-a p^{2}\right)^{2}} \\
& =\sqrt{4 a^{2}(q-p)^{2}+a^{2}(q-p)^{2}(q+p)^{2}} \\
& =a \sqrt{4(q-p)^{2}+(q-p)^{2}(q-p)^{2}} \\
& =a \sqrt{(q-p)^{2}\left[4+q^{2}+2 p q+p^{2}\right]} \\
& =a \sqrt{\left(\frac{p 1-p}{p}\right)^{2}\left[4+\left(\frac{1}{p}\right)^{2}-2+p^{2}\right.} \\
& =a \sqrt{\left(p+\frac{1}{p}\right)^{2}\left(p^{2}+2 \times p^{2}+\left(\frac{1}{p}\right)^{2}\right.} \\
& =a \sqrt{(p+1)^{4}} \\
& =a\left(\left(p+\frac{1}{p}\right)^{2} .\right.
\end{aligned}
$$

Question 5
a). i) $\lim _{t \rightarrow \infty} e^{-t}=0$
c) Let roots be $a-\alpha, a, a+d$

$$
\begin{aligned}
\therefore \lim _{t \rightarrow \infty} \frac{100}{1+1 e^{-}} & =\frac{100}{1+0} \\
& =100
\end{aligned}
$$

ii). when $t=0, N=1$

$$
\begin{aligned}
\therefore 1 & =\frac{100^{\prime}}{1+2} \\
c & =99
\end{aligned}
$$

when $N=70$

$$
\begin{array}{r}
\text { sui roots }=a-d+a+a+d=12 \\
a=4 \\
\text { prod roots }=(4-d)(4+\alpha) \times 4=-8 \\
16-d^{2}=-2 \\
d^{2}=18 \\
d=3 \sqrt{2}
\end{array}
$$

$$
\therefore \text { roots are } 4,4=3 \sqrt{2}
$$

$$
\begin{aligned}
70 & =\frac{100}{1+99 e^{-t}} \\
e^{-t} & =\frac{1}{23!} \\
t & =\ln (231) \\
& =5.44
\end{aligned}
$$

$$
\begin{aligned}
& \text { d) } \frac{d P}{d t}=0.06 P \\
& \therefore P=P_{0} e^{0.06 t}
\end{aligned}
$$

$$
\text { when } 2 P_{0}=P_{0} e^{0.06 t}
$$

$$
2=e^{0.06 t}
$$

b) $1 \times 2^{0}+2 \times 2^{1}+3 \times 2^{2}+\ldots+n \times 2^{n-1}=1+(n-1)=2^{N}$

- Prove true for $a=1$.
$L .1+5=1 \times 2^{\circ}=1$
R.H.S $=1+0=1$
\therefore True for $n=1$
- Assume true for $a=k+1$
i. $1 \times 2^{0}+2 \times 2^{1} \times 3 \times 2^{2}+\cdots+0 \times 2^{A-1}=1+(R-1)$
\therefore Prove true for $n=k+1$
ie. $1 * 2^{0}+2^{2} \times 2^{1}+\cdots+k \times 2^{k-1}+(k+1) \times 2^{k}=1+k \cdot 2^{k+1}$

$$
\begin{aligned}
4 \cdot \text { H. } & =1+(k-1) \cdot 2^{k}+(k+1) \times 2^{k} \\
& =1+k \cdot 2^{k}-2^{k}+k \cdot 2^{k}+2^{k} \\
& =1+2 k \cdot 2^{k} \\
& =1+k \cdot 2^{k M} \\
& =\text { RHOS }
\end{aligned}
$$

etc.

Question: 6
a) (1) $\ddot{y} \dot{p}=-g$

when $t=0$

$V / \sin \theta=c$
$\therefore \dot{y}_{p}=-g t+V \sin \theta$

$$
y p=-g t^{2}+v+\sin \theta+d
$$

when $t=0, y=0$

$$
\begin{aligned}
& \therefore d=0 \\
& \therefore y_{p}=-g t^{2}+1+\sin \theta
\end{aligned}
$$

ii) Let $y_{p}=0$

$$
\begin{aligned}
& 0=-g t^{2}+v t \sin \theta \\
& 0=-t(g t-\sqrt{\sin \theta)} \\
& \therefore \quad(t \neq 12) \\
& \frac{g}{2}=\sqrt{2} \sin \\
& t=\frac{2 r \sin \theta}{g} .
\end{aligned}
$$

Sub ito x

$$
=\frac{v^{2} \sin 2 \theta}{\frac{y}{f}}
$$

iii) P and Q have some y-values at trine t. Need $x_{q}=x_{p}$ at sane time-

$$
\begin{gathered}
l-v+\cos \theta=v+\cos \theta \\
l=2 v+\cos \theta \\
t=\frac{l}{2 v \cos \theta}
\end{gathered}
$$

(iv) [There ene a fou siethods] hone at fight is $\frac{23 \sin Q}{2}$
Need collicuiture to be leo then this.

$$
0<\frac{l}{2 \cdot \cdot \cos \theta}<\frac{2 v \sin \theta}{\theta}
$$

K $l>0$, since l sing ht of origen].
(b) $f(x)=x^{3}-3 x^{2}-9 x$
bet $x=x^{3}-3 x^{2}-9 x$

$$
0=x^{3}-3 x^{2}-10 x
$$

$$
0=x\left(x^{2}-3 x-10\right)
$$

$$
0=x(x-5)(x+2)
$$

$$
\therefore x=0, x=-2, x=5
$$

But $x \leqslant-1$
\therefore Pt of intespectio ic o $(-2$.
(ii)

$$
\begin{aligned}
f^{\prime}(x) & =3 x^{2}-6 x-9 \\
f^{\prime}(-2) & =3(-2)^{2}-6(-2)-9 \\
& =15
\end{aligned}
$$

$\therefore f^{-1}(x)$ hor gradient $\frac{1}{15}$ of thin point.

Q7a) let $\sin ^{-1} x=\alpha$

$$
\cos ^{-1} x=\beta
$$

i)

$$
\begin{aligned}
\sin (\alpha-\beta) & =\sin \alpha \cos \beta-\cos \alpha \sin \beta \\
& =x \cdot x-\sqrt{1-x^{2}} \cdot \sqrt{1-x^{2}} \\
& =x^{2}-\left(1-x^{2}\right) \\
& =2 x^{2}-1
\end{aligned}
$$

ii) $\sin ^{\left(\sin ^{-1} x-\cos ^{-1} x\right)}=\sin \left(\sin ^{-1}(1-x)\right)$

$$
\begin{aligned}
& 2 x^{2}-1=1-x \\
\therefore & 2 x^{2}+x-2=0 \\
& x=\frac{-1 \pm \sqrt{1-4(2)(-2)}}{2(2)} \\
\therefore & x=\frac{-1 \pm \sqrt{17}}{4} \quad\left(x=\frac{-1+\sqrt{17}}{4}, x>0\right)
\end{aligned}
$$

b) $\angle C A Q=\alpha$
$=\angle A B C$ (Angle in abtemate segment)

$$
\angle B A P=B
$$

- $\angle B C A$ (Angle in alternote segment)
$\angle A P B=\angle A D B$ (Angles on same arc $A B$)

$$
\angle A B C=\angle B A P+\angle A P B \text { (exterior } \angle \text { of } \triangle A B P \text {) }
$$

$$
=\angle B A P+\angle A D B
$$

$$
\therefore \angle A D B=\angle A B C-\angle B A P=\alpha-\beta
$$

c) i)

$$
\begin{aligned}
& \tan \alpha=\frac{1}{x} \\
& \therefore \alpha=\tan ^{-1}\left(\frac{1}{x}\right)
\end{aligned}
$$

ii) $\tan (\theta+\alpha)=\frac{3}{x}$

$$
\begin{array}{r}
\therefore \frac{\tan \theta+\tan \alpha}{1-\tan \theta \tan \alpha}=\frac{3}{x} \\
\tan \alpha=\frac{1}{x} \therefore x\left(\tan \theta+\frac{1}{x}\right)=3-\frac{3}{x} \tan \theta \\
\\
\quad x^{2} \tan \theta+3 \tan \theta=2 x
\end{array}
$$

$$
\begin{aligned}
& \tan \theta=\frac{2 x}{x^{2}+3} \\
& \text { ie } 0-L^{-1}\left(\frac{2 x}{3}\right)
\end{aligned}
$$

i) iii) $\quad \frac{d \theta}{d x}=\frac{1}{1+\left(\frac{2 x}{3+x^{2}}\right)^{2}} \times \frac{2\left(3+x^{2}\right)-2 x \cdot 2 x}{\left(3+x^{2}\right)^{2}}$
$=0$ when $6+2 x^{2}-4 x^{2}=0$
ie $\quad 6-2 x^{2}=0$

$$
\therefore \quad x=\sqrt{3}, \quad x>0
$$

\qquad

