

Mathematics Extension 1

Year 12 Higher School Certificate
 Trial Examination Term 32018

STUDENT NUMBER:

General Instructions

- Reading Time -5 minutes.
- Working Time - 2 hours.
- Write using black or blue pen. Black pen is preferred.
- NESA-approved calculators and drawing templates may be used.
- A reference sheet is provided separately.
- In Questions $11-14$, show relevant mathematical reasoning and/or calculations.
- Marks may be deducted for untidy and poorly arranged work.
- Do not use correction fluid or tape.
- Do not remove this paper from the examination room.

Total marks - 70

Section I Pages 3-6
10 marks
Attempt Questions 1-10
Answer on the Objective Response Answer Sheet provided.

Section II Pages 7-14

60 marks
Attempt Questions 11 - 14.
Start each question in a new writing booklet.
Write your student number on every writing booklet.

Question	1-10	11	12	13	14	Total
Total						
	110	115	/15	$/ 15$	/15	170

Section I

10 marks

Attempt Questions 1 - 10

Allow about 15 minutes for this section

Use the Objective Response answer sheet for Questions 1 - 10
$1 A, B$ and C lie on a circle with $A C=B C, D E$ is a tangent to the circle at C.
The size of $\angle A C B=50^{\circ}$. What is the size of $\angle A C D$?

NOT TO
SCALE
(A) 50°
(B) 60°
(C) 65°
(D) 80°

2 Which expression is equal to $\sqrt{3} \sin x-\cos x$?
(A) $2 \sin \left(x-\frac{\pi}{6}\right)$
(B) $2 \sin \left(x+\frac{\pi}{6}\right)$
(C) $\sqrt{10} \sin \left(x-\frac{\pi}{6}\right)$
(D) $\sqrt{10} \sin \left(x+\frac{\pi}{6}\right)$

3 What is the domain of the function $y=3 \sin ^{-1}(2-x)$?
(A) $0 \leq x \leq 2$
(B) $3 \leq x \leq 9$
(C) $1 \leq x \leq 3$
(D) $-3 \leq x \leq-1$

4 What is the value of the obtuse angle between the lines $5 x+2 y-3=0$ and $y=2 x-1$?
(A) $48^{\circ} 22^{\prime}$
(B) $175^{\circ} 14^{\prime}$
(C) $150^{\circ} 21^{\prime}$
(D) $131^{\circ} 38^{\prime}$

5 Which group of three numbers could be the roots of the polynomial equation below?

$$
x^{3}+k x^{2}-17 x-60=0
$$

(A) $-2,5,6$
(B) $1,2,-30$
(C) $-3,4,-5$
(D) $-1,1,60$

6 What is the derivative of $4 \tan ^{-1} \frac{x}{2}$?
(A) $\frac{4}{4+x^{2}}$
(B) $\frac{8}{4+x^{2}}$
(C) $\frac{16}{1+x^{2}}$
(D) $\frac{16}{4+x^{2}}$

7 The inverse function of $y=\frac{4}{x^{2}}, x>0$, is:
(A) $y=\frac{2}{\sqrt{x}}$
(B) $y=\frac{2}{x}$
(C) $y=-\frac{2}{x}$
(D) $y= \pm \frac{2}{\sqrt{x}}$

8 A committee of six is to be formed from 7 boys and 5 girls. The committee has to contain at least 3 girls. In how many ways can the committee be chosen?
(A) 210
(B) 350
(C) 462
(D) 924

9 When $P(x)=x^{4}+6 x^{3}-5 x^{2}+7$ is divided by $x^{2}-1$, the remainder is $6 x+k$. What is the value of k ?
(A) $\quad-9$
(B) -3
(C) 3
(D) 6

10 Given $4 \sin ^{2} 18^{\circ}+1=\sqrt{A}$, what is the value of $\cos 36^{\circ}$ in terms of A ?
(A) $\frac{3-\sqrt{A}}{2}$
(B) $\frac{1-A}{2}$
(C) $\frac{\sqrt{A}+1}{4}$
(D) $\frac{\sqrt{A}}{4}-1$

End of Section I

Section II

60 marks

Attempt Questions 11 - 14
Allow about 1 hour and 45 minutes for this section

Answer each question in a new writing booklet. Extra writing booklets are available.

In Questions $11-14$, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Start a new writing booklet
(a) Solve $\frac{x^{2}}{x+12} \leq 1$.
(b) Sketch the graph $y=2 \tan ^{-1} x+\pi$, clearly indicating all asymptotes.
(c) Evaluate $\int_{0.5}^{1.5} \frac{1}{\sqrt{2 x-x^{2}}} d x$, using the substitution $x=u+1$, giving your answer
in simplest exact form.
(d) Differentiate $\frac{x \log _{e} x}{e^{x}}$.
(e) Find $\lim _{x \rightarrow 1} \frac{1-\frac{1}{x^{3}}}{1-\frac{1}{x^{2}}}$.
(f) Solve for $x: \frac{1}{x-1}-2=\frac{-3}{x+1}$.

End of Question 11

Question 12 (15 marks) Start a new writing booklet
(a) Evaluate $\lim _{x \rightarrow 0} \frac{\sin 4 x}{7 x}$.

1
(b) Find the volume of the solid of revolution formed when the area bounded by the curve $y=\sin 2 x$ and the x-axis is rotated about the x-axis from $x=0$ to $x=\frac{\pi}{4}$.
(c) The velocity of a particle is $v=5 x+3 \mathrm{~ms}^{-1}$.

If the initial displacement is 2 m , to the right of the origin, show that the displacement as a function of time is $x=\frac{1}{5}\left(13 e^{5 t}-3\right)$.
(d) A dinner party is arranged for 16 people. The people will be seated along two sides of a rectangular table with 8 chairs on each side. Four people wish to sit on one particular side and a couple wishes to sit on the other side next to each other.

In how many ways can the 16 people be seated?

Question 12 continues on page 9

Question 12 (continued)
(e) A particle is moving in simple harmonic motion about the origin, with displacement x metres. The displacement is given by $x=2 \cos \left(3 t+\frac{\pi}{3}\right)$.
(i) What is the total distance travelled by the particle when it first reaches the origin?
(ii) Find the maximum speed of the particle.
(f) A tub of ice cream taken out of the freezer has a temperature of $-18^{\circ} \mathrm{C}$. It is placed in a room of constant temperature $23^{\circ} \mathrm{C}$.

After t minutes the temperature, $T^{\circ} \mathrm{C}$ of the ice cream is given by:

$$
T=23-A e^{-0.04 t}
$$

where A is a positive constant.

How long does it take for the ice cream to reach a temperature of $-12^{\circ} \mathrm{C}$ which is considered to be the ideal temperature for serving ice cream?

End of Question 12

Question 13 (15 marks) Start a new writing booklet.
(a) Use mathematical induction to prove that $n^{3}+2 n$ is divisible by 3 for all integers $n \geq 1$.
(b) Tom, on horizontal ground, is looking at an aeroplane P through a telescope T.

The aeroplane is approaching at a speed of $200 \mathrm{~ms}^{-1}$ at a constant altitude of 1000 m above the telescope. When the horizontal distance of the aeroplane from the telescope is $x \mathrm{~m}$, the angle of elevation of the aeroplane is θ radians.

(i) Show that $\frac{d \theta}{d t}=\frac{2 \times 10^{5}}{x^{2}+10^{6}}$.
(ii) Find the rate at which θ is changing when $\theta=\frac{\pi}{4}$, giving your answer to the nearest degree per second.

Question 13 (continued)
(c) In the diagram below, $P\left(2 a p, a p^{2}\right)$ is a point on the parabola $x^{2}=4 a y$ with focus $S(0, a)$. The point Q lies on PS produced such that Q divides $P S$ externally in the ratio 3:1.

(i) Show that Q has coordinates $\left(-a p, \frac{3 a-a p^{2}}{2}\right)$.
(ii) Show that as P varies, the locus of Q is a parabola with equation

$$
x^{2}=-2 a\left(y-\frac{3 a}{2}\right)
$$

(iii) Give a geometrical description of the locus of Q, stating all important features.

Question 13 continues on page 12

Question 13 (continued)
(d) In the diagram below, $X Y Z$ is a triangle in which $X Z=Y Z . T$ is a point on the minor arc $X Z$ of the circle centre O, passing through X, Y and $Z . X T$ is produced to U.

Copy or trace the diagram into your writing booklet.

Prove that $T Z$ bisects $\angle U T Y$.

End of Question 13

Question 14 ($\mathbf{1 5}$ marks) Start a new writing booklet
(a) (i) Write down the general solutions to the equation $2 \cos 3 \theta=1$.
(ii) Hence, or otherwise, find all solutions of the equation

$$
2 \cos 3 \theta=1 \text { for } 0 \leq \theta \leq \pi
$$

(b) In the diagram below, $A B C D$ is a triangular pyramid with base $\triangle B C D$ and perpendicular height $A D=h . \angle B C D=30^{\circ}, \angle A B D=45^{\circ}$ and $\angle A C D=60^{\circ}$.

(i) Use the cosine rule to show that $2 h^{2}+3 x h-3 x^{2}=0$.
(ii) Hence show that $\frac{h}{x}=\frac{\sqrt{33}-3}{4}$.
(c) An object is projected with velocity $V \mathrm{~ms}^{-1}$ from a point O at an angle of elevation α.

Axes x and y are taken horizontally and vertically through O respectively.
The object just clears two vertical chimneys of height h meters at horizontal distance m metres and n metres from O.

The acceleration due to gravity is taken as $10 \mathrm{~ms}^{-2}$ and air resistance is ignored.

NOT TO
SCALE
(i) Show that the expressions of the particle's horizontal and vertical displacements after t seconds are given by

$$
x=V t \cos \alpha \text { and } y=V t \sin \alpha-5 t^{2} .
$$

(ii) Show that at $x=m, V^{2}=\frac{5 m^{2}\left(1+\tan ^{2} \alpha\right)}{m \tan \alpha-h}$.
(iii) Show that $\tan \alpha=\frac{h(m+n)}{m n}$.

End of Paper

\bar{I} wमुग्ड
8102 JYN 1 Wisuatrg situlW

T
Ano. B
$\frac{2 x+y}{8}=$
$\frac{2}{7} \times \frac{2 x+\frac{1}{2}+t}{2}=$
$\frac{1}{1} \times \frac{2 x+1}{1+1} \times b=$

5) It α, β, γ be the toit
$\operatorname{In}(c),(-3)(-60)(-5)=6 x^{3}+k x^{2}-17 x-60=0$

\square 11 wाइन

侸

210

91.8

(
12.8

