Student Name: _____

HUNTERS HILL HIGH SCHOOL EXTENSION 1 MATHEMATICS HSC TRIAL 2017

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black pen
- Board-approved calculators may be used
- A Reference Sheet is provided
- In Questions 11–14, show relevant mathematical reasoning and/or calculations

Total marks - 70

Section I

10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II

60 marks

- Attempt Questions 11-14
- Allow about 1 hour 45 minutes for this section

Section I

10 marks Attempt Questions 1-10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

1

- Which of the following is the domain of $y = \cos^{-1}\left(\frac{x}{2}\right)$?
 - $(A) \quad -2 \le x \le 2$
 - (B) $0 < x < 2\pi$
 - (C) $-\frac{1}{2} \le x \le \frac{1}{2}$
 - (D) $0 \le x \le \frac{\pi}{2}$
- 2 The point dividing the interval from A(-3,1) to B(1,-1) externally in the ratio 3:1 is:
 - (A) $(0, -\frac{1}{2})$ (B) $(-1, \frac{1}{2})$
 - (C) (-5,2)
 - (D) (3,-2)
- 3 Find the remainder when $P(x) = 2x^3 + x^2 13x + 6$ is divided by (x 1).

(A) 18 (B) 6 (C) 4 (D) -4

The line DT is a tangent to the circle at T and AS is a secant meeting the circle at A and B. Given that ST = 6, AB = 5 and SB = x, which of the following is the value of x?

(A) x = 4 (B) x = 5 (C) x = 6 (D) x=9

5 Using the auxillary angle method, or otherwise, which expression is equal to $\cos x - \sin x$?

(A)
$$\sqrt{2}\cos(x+45^{\circ})$$
 (B) $\sqrt{2}\cos(x-45^{\circ})$

(C) $2\cos(x+45^{\circ})$ (D) $2\cos(x-45^{\circ})$

The equation of the chord of contact of the parabola $y = x^2$ from the point (1, -1) is

(A) x + 8y + 8 = 0 (B) x - 8y + 8 = 0

(C) 2x + y + 1 = 0 (D) 2x - y + 1 = 0

7

6

A particle is moving along the x-axis. Its velocity v at position x is given by $v = \sqrt{8x - x^2}$. What is the acceleration when x = 3?

(A) 1 (B) 2 (C) 3 (D) 4

A, B, C and D are points on a circle with centre O. $\angle ADO = 40^{\circ}$ and $\angle BCO = 70^{\circ}$.

What are the values of *x* and *y*?

- (A) $x = 80^{\circ} \text{ and } y = 15^{\circ}$
- (B) $x = 80^{\circ} \text{ and } y = 30^{\circ}$
- (C) $x = 110^{\circ} \text{ and } y = 15^{\circ}$
- (D) $x = 110^{\circ} \text{ and } y = 35^{\circ}$

9

Let x = 1 be a first approximation to the root of the equation $\cos x = \log_e x$. What is a better approximation to the root using Newton's method?

- (A) 1.28
- (B) 1.29
- (C) 1.30
- (D) 1.31

10 How many solutions does the equation $\sin 2x = 4\cos x$ have for $0 \le x \le 2\pi$.

(A) 1 (B) 2 (C) 3 (D) 4

Section II

60 marks Attempt Questions 11-14 Allow about 1 hours and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11-14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.

(a) Differentiate
$$y = \tan^{-1}\left(\frac{x}{3}\right)$$
 1

(b) Given $f(x) = \sin^{-1} 3\theta$

(i) Determine the domain and range. 2

(ii) Find f'(x) 1

(iii) Sketch
$$y = f(x)$$
.

(c) Evaluate
$$\int_{1}^{4} x\sqrt{x-1} dx$$
 using the substitution $u = x-1$. 3

(d) Evaluate the following definite integrals:

(i)
$$\int_{0}^{\frac{\pi}{2}} \cos^2\left(\frac{x}{2}\right) dx$$
 3

(ii)
$$\int_{1}^{2} x(x^2-1)^2 dx$$
, let $u = x^2-1$ 3

Question 12 (15 marks) Use a SEPARATE writing booklet.

(a) If $f(x) = e^{x+1}$ find the inverse function $f^{-1}(x)$ and hence show

$$f\left[f^{-1}(x)\right] = f^{-1}\left[f(x)\right] = x$$
²

(b) If α , β and γ are the roots of the equation $x^3 + 2x^2 + 3x + 5 = 0$, find the value of :

(i)
$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$$
 2

(ii)
$$\alpha^2 + \beta^2 + \gamma^2$$
 2

(c) When a polynomial P(x) is divided by x - 2 the remainder is 4 and when it is divided by x - 3 the remainder is 7. Find the remainder when P(x) is 3 divided by (x - 2)(x - 3)

(d) Solve
$$\frac{2x}{x+1} \le x$$
 3

(e) Use mathematical induction to prove that for all positive integers, n

$$\sum_{r=1}^{n} r^3 = \frac{n^2}{4} (n+1)^2$$
3

Question 13 (15 marks) Use a SEPARATE writing booklet.

(a) Find the coefficient of
$$x^6$$
 in the expansion $(x^2 + 4)^{12}$ 2

(b) A particle is moving along the x-axis so that its acceleration after t seconds is by $\ddot{x} = 4x(x^2 - 2)$. The particle starts at the origin with an initial velocity of $\sqrt{6}$ cm/s.

(i) If v is the velocity of the particle, find
$$v^2$$
 as a function of x. 2

- (ii) Explain why the motion is confined to $-1 \le x \le 1$. 2
- (c) O is the centre of the larger circle. The two circles intersect at the points X and Y. AXB is a tangent to the smaller circle at point X. O is on the circumference of the smaller circle.

Copy or trace the diagram onto your answer paper.

(i)	Find $\angle XOY$ in terms of θ . Give a reason for your answer.	1
(ii)	Explain why $\angle BXY = 2\theta$	1
(iii)	Prove AX=YX.	2

Question 13 continued on next page.

Question 13 (continued)

\$

(d) (i) By considering the terms in x^r on both sides of the identity $(1+x)^{m+n} = (1+x)^m (1+x)^n$, show that ${}^{m+n}C_r = \sum_{k=0}^r {}^mC_k {}^nC_{r-k}$ for $0 \le r \le m$ and $0 \le r \le n$.

(ii) Hence show that

$${}^{m+1}C_0 {}^nC_2 + {}^{m+1}C_1 {}^nC_1 + {}^{m+1}C_2 {}^nC_0 = {}^mC_0 {}^{n+1}C_2 + {}^mC_1 {}^{n+1}C_1 + {}^mC_2 {}^{n+1}C_0$$

Question 14 (15 marks) Use a SEPARATE writing booklet.

- (a) Find the exact value of sin [cos⁻¹(⁴/₅) tan⁻¹(⁵/₁₂)]. 3
 (b) At time t years the number N of individuals in a negativitien is given by
- (b) At time t years the number N of individuals in a population is given by $N = 5000 - 4250e^{-kt}$ for some k > 0.
 - (i) Find the initial population.
 - (ii) Sketch the graph of N as a function of t showing clearly the initial and limiting populations.
 - (iii) Find the value of k if $\frac{dN}{dt} = 250$ when N is three times the initial 2 population.
- (c) A water balloon is fired horizontally by a cannon from the point B with a velocity of 120 ms⁻¹ to reach a target at T. At the same time, a stone is launched from the point O with a velocity of V ms⁻¹ and an angle of projection of θ in order to burst the water balloon in the air

The point O is 200 metres directly below the point B and $\theta = \tan^{-1}\left(\frac{3}{4}\right)$. Take the acceleration due to gravity as 10 ms⁻².

Question 14 continued on next page.

1

Question 14 (continued)

2.

(ii) For the stone, assume that the equations of motion are given by $x = Vt \cos \theta$ and $y = -5t^2 + Vt \sin \theta$. (Do NOT prove this.)

Show that in order for the stone to successfully burst the water balloon in the air, it must be launched at a velocity of 150 ms^{-1} .

•

(iii) How high above the ground does the collision occur? Give your answer correct to the nearest metre.

END OF EXAMINATION

MAKTRIAL SOLUTIONS - 2017 SECTION I $y = cos'(\frac{2}{2})$ $y = 2coso(\frac{1}{2})$ $y = 2coso(\frac{1}{2})$ $y = \frac{1}{2}$ al A Q2. D. B(1,-1) A(3,1) 3 P Q3 D P(1) = 2 + 1 - 13 + 6= -4 51 = 58.5A $6^{2} = \chi (x+5)$ 7(+5x-36=0) (x+9)(x-4)=0 $\chi = 4$ Q4. A as. A Q6. D × ×0=22(yry0) (1,-1) ri=tay ta=1) a=1 $\pi(1) = 2(\frac{1}{4})(\frac{1}{4}-1)$ 2+=9-1

Q7 $V = \int 8x - x^{2}$ $= \int (8x - x^{2})$ $\frac{d}{dx} = \frac{1}{2} (8)$ - 2x +- x. QS: 40 40 100 190 407 J P 10 70 24 + 140+050=30 2(=10)=Losx - h722)=-SIA7L - 1 let fa f'G x=1- cost - In 1 -SIA 1 - 1 QD

SECTION of= ten (2) a 4 9+2 b) $f(x) = 5in^{-1} 3\Theta$. $0 = \frac{1}{3} \sin f(a)$ domain: 20:-150513 +Ha Ringe: 29:-3549533 $\int \frac{1}{1-(3x)^2}$ $\frac{3}{\int (-9x^2)}$ $\int \frac{1}{2}$ f(x) $\frac{1}{2}$ f(x) =11 5 -13 - - M 1=10

c)]= { zJx-1 ohc let u=xx=1, u= lef 1-1 x=4 = 4-1 -3 = p³ (uti) Ju du I $= \int_{0}^{3} \left(\frac{3}{4} + \frac{1}{4} \right) du$ $= \int_{0}^{3} \left(\frac{3}{4} + \frac{1}{4} \right) du$ $= \left[2 + \frac{3}{4} + \frac{2}{3} + \frac{3}{4} \right]_{0}^{3}$ $= 2 \cdot 3^{\frac{3}{4}} + 2 \cdot 3^{\frac{3}{4}} - \left(2 \cdot \frac{3}{4} \right)$ $= 5 \cdot 3^{\frac{3}{4}} + 2 \cdot 3^{\frac{3}{4}} - \left(2 \cdot \frac{3}{4} \right)$ = 2.953 + 2.35 = 23 (9+5) $= \frac{285}{5} = \frac{13.16358614}{9.699484522}$

d). i) $\int_{a}^{a} \cos^{2}\left(\frac{2i}{2}\right) dx$ $(0520 = 2\cos^2 0 - 1)$ $= \frac{1}{2} \int_{-\infty}^{\frac{1}{2}} (1 + \cos x) dx$ =1 [21 + sin 2]] $\frac{2}{2}\left(\frac{\pi}{2}+\sin\pi-0-\sin^{2}\right)$ $= \pm (\pi + 2)$ i)]-(+ (x-1))du let uni-1 パーノーマ ルニ つ du=2xdr 1-2= == 3 I= 1 13 u da $= \frac{1}{2} \int \frac{373}{2}$ $=\frac{1}{2}\left(\frac{3^{2}}{2}-\frac{3^{2}}{2}\right)$ = 9

a) $f(x) = e^{x(x+1)}$ $f': \chi = e^{f(x)+1}$ $\ln x = f'(a) + 1$ f'(x) = ln x - l $\frac{1}{2} - \int f'(x) = f'(f(x)) = -1.$ b) $x^{3}+2x^{2}+3x+5=0.$ i) $1+1+1=x^{p+p}x+yx$ $x + b + 1 = x^{p}y+yx$ = 3 -5=-3 (ii) $x^{2}t^{2}t^{2} = (x+b+y)^{2} - 2(xb+by+yx)$ $= (-2)^2 - 2(3)^2$ = -2 2/2

C P(2) = 4, P(3) = 7P(x) = (x-2).Q(x) + 4when x=3 P(3)= (3-2)Q(3)+4 7 = Q(3) + 4Q(3) = 3 $(-Q_{\alpha}) = (a-3) P(a) + 3$ $S_{0}, P(x) = (x-2)(x-3)m(x) + 3 + 4$ =(51-2)(51-3)M(x) + 3(x-2)+4+ 3x-2. . revander is 3x-2. 371 EX 174-2x(2+1) 5x(2+1)2 x(x+1) [x+1-2] 20 2(x-1)(x+1) 20 -1 <x < 0, x >1 is the solution

c) $\sum_{k=1}^{3} \sum_{i=1}^{n} (k+i)^{2}$, $n \ge 1$ Prove five for n=1LHS = $\frac{13}{13}$ RHS = $\binom{2}{(1-1)^2}$ = $\binom{1}{13}$ 4 = $\binom{2}{13}$ 7 =1 = LHS - · the for n=1. Assure Base the for n=k. 1°+2°+3°+...+ k= k² (k+1) Prove free for n = ke'i.e. $|^{3} + 2^{3} + 3^{3} + \dots + k^{2} + (k+1)^{3} = (k+1)^{3} ((k+1)+1)^{3}$ = (k+1) (k+2) LHS= k? (kai)2 + (kai) $= (k_{+1})^{2} [k^{2} + 4(k_{+1})]$ = (k+1) (k2+4k+4) =[k+1] (k+2) = RtlS. i by induction, statement is the for all n>1

Question B $(-x^2-4)^{12}$ general term, 12 (22) 4t. $for x, (x^2)^{12-k} = x^6$ 7(1-2)k-624-21-2K= 18 k = 9 coefficient. = 12(q 49 = 57 671 680 $\ddot{x} = 4x(\ddot{x} - 2)$ at t=0, x = 0, $\ddot{x} = 56$ b) i) $\frac{d}{dt}(\frac{1}{2}) = (\frac{1}{2}(\frac{2}{2}-2))$ $\frac{1}{2}^{2} = \int 4x (x^{2}-2) dx.$ $v^{2} = 8 \int \chi(x^{2}-2) dx$ let == 2-2. du=2xdx. $v^{2} = 4 \int u \, du$ = $4 \, u^{2} + c$ = $2 \, u^{2} + c$ = $2 \, u^{2} + c$ = $2 (2^{2} - 2)^{2} + c$

at 100, x=56 $(56)^2 = 2(2-2)^2 + c$ 6=9+c c=-1-2 $\frac{1}{2} = 2(2^{2}) = -2$ $= 2(2^{3})(2^{2}-1)$ ii) as initial velocity is positive 50, (23)(2-1) > 0(2x-3)(2+3)(2x-1)(2x+1) > 0-5 Lence, -157(5) ZXDY = 20 (angle at centre fuice angle at circumference) c) i) angle in atternate segment and to angle between tangent and chosed · (11) LYAK+ LAYK = LBXY (extension ongle of triangle) θ + LAMX = 2 θ LAYX = O -LTAXI ... OXYA is isosceles (two equal engles) hence, AX = TX (equal sides of isosceles triangle) = L'TAX!

d) i) $(1+x) = (1+x)^{m} (1+x)^{n}$ coefficient of x in (Hx) is (r. x terms from (1+x) (1+x). = $\sum_{k=1}^{m} C_{k} C_{r-k}$ Hence (1+2) = 5 MC - CE-1K ii) from (i), if m 72, 172 (1=2) (M+1)+n = M+1 n = M+1 = M+also $m + (n+i) C_2 = m C_1 + m C_2 + m C_1 + m C_2 + m C_1 + m C_2 +$ hence, $M^{+1}C_{1}C_{1} + M^{+1}C_{1}C_{2} + M^{+1}C_{2}C_{3} = M^{-1}C_{2} + M^{-1}C_{1} + M^{-1}C_{3}C_{3}$

Question H Sin (05 (4) - ten (5) = $\sin(\cos^{2}(\frac{1}{2}), \cos(-\frac{1}{2}) - \sin(-\frac{1}{2})\cos(\cos^{2}(\frac{1}{2}))$ = 3.12-5.4 = 36 - 20 12 = 16 N = 5000-4250e-H b. i) at t=0-Ka) 5000-42509 5000 - 4250750 initial pop is 750 ï 750 > 1

 $\chi = V + cod$ $y = -5t^2 + V + sin \Theta$. - (I) $Q = \pm n^{-1} \begin{pmatrix} 3 \\ 4 \end{pmatrix}$ 3 65for 1= 150 7(=150+050)= 150+($\frac{1}{5}$) = 1201.time of billion pange of balloon, $y=0 = -5t^2 + 200 = 0$ $t^2 = 40$ t = 250time of flight of stone, y=2 => -5t+150+(3)=2 5+(-++18:)=0 t=0, 18as kulloon and store have some horizontal motion equate, and store travely for longer, store will intersect water kulloon collision at i i i i equate vertical -372+200 = -372 + 90+. $t = \frac{20}{9}$ y= -5(20) +200 m above ground (O dq) = 14200 = 175