\qquad

HUNTERS HILL HIGH SCHOOL EXTENSION 1 MATHEMATICS HSC TRIAL 2017

Hunters Hill
High School

General Instructions

- Reading time -5 minutes
- Working time -2 hours
- Write using black pen
- Board-approved calculators may be used
- A Reference Sheet is provided
- In Questions 11-14, show relevant mathematical reasoning and/or calculations

Total marks - 70

Section I

10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II

60 marks

- Attempt Questions 11-14
- Allow about 1 hour 45 minutes for this section

Section I

10 marks

Attempt Questions 1-10

Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1-10.

1 Which of the following is the domain of $y=\cos ^{-1}\left(\frac{x}{2}\right)$?
(A) $-2 \leq x \leq 2$
(B) $0<x<2 \pi$
(C) $-\frac{1}{2} \leq x \leq \frac{1}{2}$
(D) $0 \leq x \leq \frac{\pi}{2}$

2 The point dividing the interval from $A(-3,1)$ to $B(1,-1)$ externally in the ratio $3: 1$ is:
(A) $(0,-1 / 2)$
(B) $(-1,1 / 2)$
(C) $(-5,2)$
(D) $(3,-2)$

3 Find the remainder when $P(x)=2 x^{3}+x^{2}-13 x+6$ is divided by $(x-1)$.
(A) 18
(B) 6
(C) 4
(D) $\quad-4$

The line DT is a tangent to the circle at T and AS is a secant meeting the circle at A and B . Given that $\mathrm{ST}=6, \mathrm{AB}=5$ and $\mathrm{SB}=x$, which of the following is the value of x ?

(A) $x=4$
(B)
$x=5$
(C)
$x=6$
(D) $x=9$

5 Using the auxillary angle method, or otherwise, which expression is equal to $\cos x-\sin x$?
(A) $\sqrt{2} \cos \left(x+45^{\circ}\right)$
(B) $\sqrt{2} \cos \left(x-45^{\circ}\right)$
(C) $2 \cos \left(x+45^{\circ}\right)$
(D) $2 \cos \left(x-45^{\circ}\right)$

6 The equation of the chord of contact of the parabola $y=x^{2}$ from the point $(1,-1)$ is
(A) $x+8 y+8=0$
(B) $x-8 y+8=0$
(C) $2 x+y+1=0$
(D) $2 x-y+1=0$
$7 \quad$ A particle is moving along the x-axis. Its velocity v at position x is given by $v=\sqrt{8 x-x^{2}}$. What is the acceleration when $x=3$?
(A) 1
(B) 2
(C) 3
(D) 4
$8 \mathrm{~A}, \mathrm{~B}, \mathrm{C}$ and D are points on a circle with centre $\mathrm{O} . \angle A D O=40^{\circ}$ and $\angle B C O=70^{\circ}$.

What are the values of x and y ?
(A) $x=80^{\circ}$ and $y=15^{\circ}$
(B) $x=80^{\circ}$ and $y=30^{\circ}$
(C) $x=110^{\circ}$ and $y=15^{\circ}$
(D) $x=110^{\circ}$ and $y=35^{\circ}$

9 Let $x=1$ be a first approximation to the root of the equation $\cos x=\log _{e} x$. What is a better approximation to the root using Newton's method?
(A) 1.28
(B) 1.29
(C) 1.30
(D) 1.31

10 How many solutions does the equation $\sin 2 x=4 \cos x$ have for $0 \leq x \leq 2 \pi$.
(A) 1
(B) 2
(C) 3
(D) 4

Section II

60 marks
Attempt Questions 11-14
Allow about 1 hours and 45 minutes for this section
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
In Questions 11-14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.
(a) Differentiate $y=\tan ^{-1}\left(\frac{x}{3}\right)$
(b) Given $f(x)=\sin ^{-1} 3 \theta$
(i) Determine the domain and range.
(ii) Find $f^{\prime}(x)$
(iii) Sketch $y=f(x)$.
(c) Evaluate $\int_{1}^{4} x \sqrt{x-1} d x$ using the substitution $u=x-1$.
(d) Evaluate the following definite integrals:
(i) $\int_{0}^{\frac{\pi}{2}} \cos ^{2}\left(\frac{x}{2}\right) d x$
(ii) $\int_{1}^{2} x\left(x^{2}-1\right)^{2} d x$, let $u=x^{2}-1$

Question 12 (15 marks) Use a SEPARATE writing booklet.
(a) If $f(x)=e^{x+1}$ find the inverse function $f^{-1}(x)$ and hence show

$$
f\left[f^{-1}(x)\right]=f^{-1}[f(x)]=x
$$

(b) If α, β and γ are the roots of the equation $x^{3}+2 x^{2}+3 x+5=0$, find the value of:
(i) $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$
(ii) $\alpha^{2}+\beta^{2}+\gamma^{2}$
(c) When a polynomial $P(x)$ is divided by $x-2$ the remainder is 4 and when it is divided by $x-3$ the remainder is 7 . Find the remainder when $P(x)$ is divided by $(x-2)(x-3)$
(d) Solve $\frac{2 x}{x+1} \leq x$
(e) Use mathematical induction to prove that for all positive integers, n

$$
\sum_{r=1}^{n} r^{3}=\frac{n^{2}}{4}(n+1)^{2}
$$

Question 13 (15 marks) Use a SEPARATE writing booklet.
(a) Find the coefficient of x^{6} in the expansion $\left(x^{2}+4\right)^{12}$
(b) A particle is moving along the x-axis so that its acceleration after t seconds is by $\ddot{x}=4 x\left(x^{2}-2\right)$. The particle starts at the origin with an initial velocity of $\sqrt{6} \mathrm{~cm} / \mathrm{s}$.
(i) If v is the velocity of the particle, find v^{2} as a function of x.
(ii) Explain why the motion is confined to $-1 \leq x \leq 1$.
(c) O is the centre of the larger circle. The two circles intersect at the points X and Y . AXB is a tangent to the smaller circle at point X . O is on the circumference of the smaller circle.

Copy or trace the diagram onto your answer paper.
(i) Find $\angle X O Y$ in terms of θ.

Give a reason for your answer.
(ii) Explain why $\angle B X Y=2 \theta$
(iii) Prove $\mathrm{AX}=\mathrm{YX}$.

Question 13 (continued)
(d) (i) By considering the terms in x^{r} on both sides of the identity

$$
\begin{aligned}
& (1+x)^{m+n}=(1+x)^{m}(1+x)^{n}, \text { show that }{ }^{m+n} C_{r}=\sum_{k=0}^{r}{ }^{m} C_{k}{ }^{n} C_{r-k} \\
& \text { for } 0 \leq r \leq m \text { and } 0 \leq r \leq n
\end{aligned}
$$

(ii) Hence show that

$$
{ }^{m+1} C_{0}{ }^{n} C_{2}+{ }^{m+1} C_{1}{ }^{n} C_{1}+{ }^{m+1} C_{2}{ }^{n} C_{0}={ }^{m} C_{0}{ }^{n+1} C_{2}+{ }^{m} C_{1}{ }^{n+1} C_{1}+{ }^{m} C_{2}{ }^{n+1} C_{0}
$$

Question 14 (15 marks) Use a SEPARATE writing booklet.
(a) Find the exact value of $\sin \left[\cos ^{-1}\left(\frac{4}{5}\right)-\tan ^{-1}\left(\frac{5}{12}\right)\right]$.

Show all working.
(b) At time t years the number N of individuals in a population is given by $N=5000-4250 e^{-k t}$ for some $k>0$.
(i) Find the initial population.
(ii) Sketch the graph of N as a function of t showing clearly the initial and limiting populations.
(iii) Find the value of k if $\frac{d N}{d t}=250$ when N is three times the initial population.
(c) A water balloon is fired horizontally by a cannon from the point B with a velocity of $120 \mathrm{~ms}^{-1}$ to reach a target at T.
At the same time, a stone is launched from the point O with a velocity of $\mathrm{V} \mathrm{ms}{ }^{-1}$ and an angle of projection of θ in order to burst the water balloon in the air
The point O is 200 metres directly below the point B and $\theta=\tan ^{-1}\left(\frac{3}{4}\right)$.
Take the acceleration due to gravity as $10 \mathrm{~ms}^{-2}$.

(i) For the water balloon, show that the equations of motion of the water balloon are given by $x=120 t$ and $y=-5 t^{2}+200$.

Question 14 continued on next page.
(ii) For the stone, assume that the equations of motion are given by $x=V t \cos \theta$ and $y=-5 t^{2}+V t \sin \theta$. (Do NOT prove this.)

Show that in order for the stone to successfully burst the water balloon in the air, it must be launched at a velocity of $150 \mathrm{~ms}^{-1}$.
(iii) How high above the ground does the collision occur? Give your answer correct to the nearest metre.

MAX TRHL SOLUTIONS - 2017

SEATON I
a) A

$$
\begin{aligned}
& y=\cos ^{-1}\left(\frac{x}{2}\right) \\
& y y=2 \cos y
\end{aligned}
$$

Q2. D

$$
Q 3
$$

Q 4

$$
\begin{array}{r}
51^{2}=S B \cdot S A \\
6^{2}=x(x+5) \\
x^{2}+5 x-36=0 \\
(x+9)(x-4)=0 \\
x=4
\end{array}
$$

Q5.

Q6.

$$
\left.\begin{array}{l}
x x_{0}=2 a\left(y+y_{0}\right) \quad(1,-1) \\
x==\quad 4 a=1 \\
x^{2}=4 a y \quad a=\frac{1}{4}
\end{array}\right\} \begin{aligned}
& x(1)=2\left(\frac{1}{4}\right)(y-1) \\
& 2 x=y-1
\end{aligned}
$$

$$
\begin{aligned}
v & =\sqrt{8 x-x^{2}} \\
\frac{1}{2} v^{2} & =\frac{1}{2}\left(8 x-x^{2}\right) \\
\frac{d}{d x}: a & =\frac{1}{2}(8-2 x) \\
& =4-x
\end{aligned}
$$

Q9. B

$$
\text { let } \begin{aligned}
f(x) & =\cos x-\ln x-2 \\
f^{\prime}(x) & =-\sin x-\frac{1}{x} \\
x & =1-\frac{\cos 1-\ln 1}{-\sin 1-1}
\end{aligned}
$$

Q10 B

SECTION II
Question II.
a)

$$
\begin{aligned}
& y=\tan ^{-1}\left(\frac{x}{3}\right) \\
& y^{\prime}=\frac{3}{9+x^{2}}
\end{aligned}
$$

b) $f(x)=\sin ^{-1} 3 \theta$. $\theta=\frac{1}{3} \sin f(x)$
domain: $\left\{\theta:-\frac{1}{3} \leq \theta \leq \frac{1}{3}\right\}$
range: $\left\{y:-\frac{\pi}{2} \leqslant\left\{(4) \leq \frac{\pi}{2}\right\}\right.$
11 $f^{\prime}(x)=\frac{1}{\sqrt{1-(3 x)^{2}}} \cdot 3$

$$
=\frac{3}{\sqrt{1-9 x^{2}}}
$$

iii

c) $I=\int_{1}^{4} x \sqrt{x-1} d x$
let $a=x-1$

$$
d u=d x
$$

for $x=1, u=1-1$

$$
=0
$$

$$
x=4 \quad u=4-1
$$

$$
=3
$$

$$
\begin{aligned}
I & =\int_{0}^{3}(u+1) \sqrt{u} d u \\
& =\int_{0}^{3}\left(u^{\frac{3}{2}}+u^{\frac{1}{2}}\right) d u \\
& =\left[\frac{2 u^{\frac{5}{2}}}{5}+\frac{2 u^{\frac{3}{2}}}{3}\right]_{0}^{3} \\
& =\frac{2}{5} \cdot 3^{\frac{5}{2}}+\frac{2}{3} \cdot 3^{\frac{3}{2}}-\left(\frac{\left.2(0)^{\frac{5}{5}}+\frac{2}{3}(0)^{\frac{3}{3}}\right)}{5}\right) \\
& =\frac{2.9 \sqrt{3}}{5}+\frac{2}{3} \cdot 3 \sqrt{3} \\
& =\frac{2 \sqrt{3}}{5}(9+9) \\
& =\frac{28 \sqrt{3}}{5}=\frac{13.16358614}{9.699484522}
\end{aligned}
$$

d). i)

$$
\begin{aligned}
& \int_{0}^{\frac{\pi}{2}} \cos ^{2}\left(\frac{x}{2}\right) d x \\
& =\frac{1}{2} \int_{0}^{\frac{\pi}{2}}(1+\cos x) d x \\
& =\frac{1}{2}[x+\sin x]_{0}^{\frac{\pi}{2}} \\
& =\frac{1}{2}\left(\frac{\pi}{2}+\sin \frac{\pi}{2}-0-\sin 0\right) \\
& =\frac{1}{4}(\pi+2)
\end{aligned}
$$

$$
\cos 2 \theta=2 \cos ^{2} \theta-1
$$

$$
\text { 11) } I=\int_{1}^{2} x\left(x^{2}-1\right)^{2} d x
$$

$$
\text { let } u=x^{2}-1
$$

$$
x=1 \Rightarrow u=0
$$

$$
d u=2 x d x
$$

$$
d u=2 x d x
$$

$$
x-2 \Rightarrow u=3
$$

$$
\begin{aligned}
I & =\frac{1}{2} \int_{0}^{3} u^{2} d u \\
& =\frac{1}{2}\left[\frac{u^{3}}{3}\right]_{0}^{2} \\
& =\frac{1}{2}\left(\frac{3^{3}}{3}-\frac{0^{3}}{3}\right) \\
& =\frac{9}{2}
\end{aligned}
$$

Question 12
a)

$$
\begin{aligned}
& f(x)=e^{x+1} \\
& x=e^{f^{-1}(x)+1} \\
& \ln x=f^{-1}(x)+1 \\
& f^{-1}(x)=\ln x-1 \\
& \begin{aligned}
f^{\prime}\left[f^{-1}(x)\right] & =e^{(\ln x-1)+1} \\
& =e^{\ln x} \quad f^{-1}[f(x)] \\
& =x \\
& =\ln \left(e^{x+1}\right)-1 \\
& =x+1-1 \\
& \therefore x
\end{aligned} \\
& \therefore f\left[f^{-1}(x)\right]=f^{-1}[f(x)]=x
\end{aligned}
$$

b) $x^{3}+2 x^{2}+3 x+5=0$.
i)

$$
\begin{aligned}
\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma} & =\frac{\alpha \beta+\beta \gamma+\gamma \alpha}{\alpha \beta \gamma} \\
& =\frac{3}{-5} \\
& =-\frac{3}{5}
\end{aligned}
$$

ii) $\alpha^{2}+\beta^{2}+\gamma^{2}=(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+b \gamma+\gamma \alpha)$

$$
\begin{aligned}
& =(-2)^{2}-2(3) \\
& =-2
\end{aligned}
$$

c)

$$
\begin{gathered}
P(2)=4, P(3)=7 \\
P(x)=(x-2) \cdot Q(x)+4
\end{gathered}
$$

when $x=3$

$$
\begin{aligned}
& P(3)=(3-2) Q(3)+4 \\
& Z=Q(3)+4 \\
& Q(3)=3 \\
& \therefore Q(x)=(x-3) M M(x)+3 \\
& \text { So, } P(x)=(x-2)((x-3) M(x)+3)+4 \\
&=(x-2)(x-3) M(x)+3(x-2)+4 \\
&+3 x-2
\end{aligned}
$$

\therefore remainder is $3 x-2$.
d)

$$
\begin{aligned}
& \frac{2 x}{x+1} \leqslant x \quad, x \neq-1 \\
& 2 x(x+1) \leqslant x(x+1)^{2} \\
& x(x+1)[x+1-2] \geqslant 0 \\
& x(x-1)(x+1) \geqslant 0
\end{aligned}
$$

$\therefore-(<x \leqslant 0, x \geqslant 1$ is the solution
e) $\sum_{r=1}^{n} r^{3}=\frac{n^{2}}{4}(n+1)^{2}, n \geqslant 1$

Prove tire for $n=1$

$$
\begin{aligned}
& \begin{aligned}
\text { LHS } & =\sum_{r=1}^{3} r^{3} \quad \text { RHS }=\frac{1^{2}}{4}(1-1)^{2} \\
& =1^{3}
\end{aligned} \\
& =1 \quad=\frac{4}{4} \\
& =1=\text { LHS }
\end{aligned}
$$

\therefore tive for $n=1$.
Assame
tive for $n=k$.

$$
1^{3}+2^{3}+3^{3}+\ldots+k^{3}=\frac{k^{2}}{4}(k+1)^{2}
$$

Prove tive for $n=k+1$
i.e. $1^{3}+2^{3}+3^{3}+\cdots+k^{3}+(k+1)^{3}=\frac{(k+1)^{2}}{4}((k+1)+1)^{2}$

$$
\begin{aligned}
L H S & =\frac{k^{2}}{4}(k+1)^{2}+(k+1)^{3} \\
& =\frac{(k+1)^{2}}{4}\left[k^{2}+4(k+1)\right)^{2}(k+2)^{2} \\
& =\frac{(k+1)^{2}}{4}\left(k^{2}+4(k+4)\right. \\
& =\frac{(k+1)^{2}(k+2)^{2}}{4} \\
& =R+15
\end{aligned}
$$

\therefore by induction, staterent is tive for all $n \geqslant 1$

Question B
a)

$$
\left(x^{2}+4\right)^{12}
$$

General term. ${ }^{12} C_{k}\left(x^{2}\right)^{12-k} 4^{k}$

$$
\text { for } \begin{aligned}
x^{6},\left(x^{2}\right)^{12 k} & =x^{6} \\
24-2 k & =6 \\
2 k & =18 \\
k & =9
\end{aligned}
$$

coefficient.

$$
\begin{aligned}
& ={ }^{12} C_{9} 4^{9} \\
& =57671680
\end{aligned}
$$

b) $\quad \ddot{x}=4 x\left(x^{2}-2\right) \quad$ at $t=0, x=0, \dot{x}=\sqrt{6}$
i)

$$
\begin{aligned}
& \frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=\left(4 x\left(x^{2}-2\right)\right. \\
& \frac{1}{2} v^{2}= \int 4 x\left(x^{2}-2\right) d x \\
& v^{2}= 8 \int x\left(x^{2}-2\right) d x \\
& \text { let } u=x^{2}-2 \\
& d u=2 x d x \\
& v^{2}= 4 \int u d u \\
&= 4 \frac{u^{2}}{2}+c \\
&= 2 u^{2}+c \\
&= 2\left(x^{2}-2\right)^{2}+c
\end{aligned}
$$

at $x=0, \quad \dot{x}=\sqrt{6}$

$$
\begin{gathered}
(\sqrt{6})^{2}=2\left(0^{2}-2\right)^{2}+c \\
6=8+c \\
c=1-2 \\
\therefore v^{2}=2\left(x^{2}-2\right)^{2} \\
=2\left(x^{2}-3\right)\left(x^{2}-1\right)^{-2}
\end{gathered}
$$

ii) as initial velocity is positive,

$$
\begin{aligned}
& \text { So, }\left(x^{2}-3\right)\left(x^{2}-1\right) \geqslant 0 \\
& (x-\sqrt{3})(x+\sqrt{3})(x-1)(x+1) \geqslant 0
\end{aligned}
$$

hence, $-1 \leqslant x \leqslant 1$
c) ii) $\angle x O Y=22$ (angl at centre twice angle at circumference)
ii) angle in alternate segment equal to angle between tangent and chord
iii) $\angle 4 A X+\angle A Y X=\angle B X Y$ (exterws angle of triande) $\theta+\angle A Y x=2 \theta$

$$
\angle A Y X=\theta
$$

$$
=\angle Y A X^{\prime}
$$

$\therefore \triangle X Y A$ is isosceles (two equal angles) hence, $A X=7 X$ (equal sides of isosceles triangle)
d) i) $(1+x)^{\mu+n}=(1+x)^{\mu}(1+x)^{\Lambda}$
coefficient of x^{r} in $(H x)^{m+1}$ is Cr. $^{m+1}$.
x^{r} terms from $(1+x)^{n}(1-x)^{n}$.

$$
x^{r} \cdot 1+x^{r-1} \cdot x+x^{r-2} \cdot x^{2}+\ldots+x^{2}-x^{r-2}+x \cdot x^{r-1}+1 x^{r}
$$

coefficients

$$
\begin{aligned}
& { }^{n} C_{r} \cdot{ }^{n} C_{0}+{ }^{m} C_{r-1} \cdot{ }^{n} C_{1}+{ }^{m} C_{r-2} \cdot C_{2}+\ldots{ }^{M} C_{2}^{n} C_{r-2}+C_{1} \cdot C_{r-1}+C_{0}^{M} \cdot C_{r}^{n} \\
& =\sum_{k=0}^{r \cdot}{ }^{M} C_{k}{ }^{n} C_{r-k}
\end{aligned}
$$

Hence $(1+x)^{m+n}=\sum_{k=0}^{r} m C_{k}{ }^{n} C_{1-k}$
ii) from (1), if $m \geqslant 2, n \geqslant 2 \quad(r=2)$

$$
{ }^{(m+1)+n} C_{2}={ }^{m+1} C_{0}^{n} C_{2}+{ }^{m+1} C_{1} C_{1}+{ }^{m+1} C_{2} C_{0}
$$

also ${ }^{m+(n+1)} C_{2}={ }^{M} C_{0}{ }^{n+1} C_{2}+{ }^{M} C_{1}{ }^{N+1} C_{1}+{ }^{M} C_{2}{ }^{n+1} C_{0}$
hence,

$$
{ }^{m+1} C_{0}^{n} C_{2}+{ }^{m+1} C_{1}^{n} C_{1}+{ }^{m+1} C_{2}^{n} C_{0}={ }^{m} C_{0}{ }^{m-1} C_{2}+{ }^{m} C_{1}^{n+1} C_{1}+{ }^{m} C_{2}^{n+1} C_{0} .
$$

Question H

$$
\begin{aligned}
& \text { a) } \begin{aligned}
& \sin \left[\cos ^{-1}\left(\frac{4}{5}\right)-\tan ^{-1}\left(\frac{5}{12}\right)\right] \\
&= \sin \cdot\left(\cos ^{-1}\left(\frac{4}{5}\right) \cdot \cos \left(\tan ^{-1}\left(\frac{5}{12}\right)\right)-\sin \left(\tan ^{-1}\left(\frac{5}{12}\right)\right) \cos \left(\cos ^{-1}\left(\frac{4}{5}\right)\right)\right. \\
&=\frac{3}{5} \cdot \frac{12}{13}-\frac{5}{13} \cdot \frac{4}{5} \\
&=\frac{36-20}{65} \\
&= \frac{16}{65} \cdot \sqrt{12}
\end{aligned}
\end{aligned}
$$

b. $\quad N=5000-4250 e^{-k t}$
i) at $t=0$

$$
\begin{aligned}
N & =0 \\
& =5000-4250 e^{-((0)} \\
& =5000-4250 \\
& =750
\end{aligned}
$$

initial pop is 750

iI)

$$
\begin{aligned}
\frac{d N}{d t} & =4250 k e^{-k t} \\
& =k(5000-N) \\
250 & =k(5000-3 \times 750) \\
k & =\frac{1}{11}
\end{aligned}
$$

c) i

$$
\begin{aligned}
\ddot{x} & =0 \quad \text { horizontally. } \\
\ddot{x} & =20 \\
x & =\int 120 d t \\
& =120 t+c
\end{aligned}
$$

at $t=0, x=0$

$$
\begin{aligned}
\text { so } c & =0 \\
\therefore x & =120 t . \\
\ddot{y} & =-10 \quad-\text { vertically } \\
\dot{y} & =\int-10 d t \\
& =-10 t+c
\end{aligned}
$$

at $t=0, \dot{y}=0$

$$
\begin{aligned}
& \text { so } c=0 \\
& \therefore \dot{y}=-10 t \\
& y=\int-10 t d t \\
&=-5 t^{2}+c
\end{aligned}
$$

at $t=0, y=200$

$$
\text { so, } c=200
$$

and $y=-5 t^{2}+200$
ii)

$$
\begin{aligned}
& x=V+\cos \theta \\
& y=-5 t^{2}+V+\sin \theta
\end{aligned}
$$

$$
\theta=\tan ^{-1}\left(\frac{3}{4}\right)
$$

for $V=150$

$$
\begin{aligned}
x & =150+\cos \theta \\
& =150+\left(\frac{4}{5}\right) \\
& =120+.
\end{aligned}
$$

time of balloon
range of balloon, $y=0 \Rightarrow-5 t^{2}+200=0$

$$
\begin{aligned}
& t^{2}=40 \\
& t=2 \sqrt{10}
\end{aligned}
$$

time of fleght of stone, $y=0 \Rightarrow-5 t^{2}+150+\left(\frac{3}{5}\right)=0$

$$
\left.\begin{array}{r}
5 t(-t+18 i
\end{array}\right)=0
$$

as balloon and store have same
horizontal motion equate, and stone travels
for longer, stone will intersect water balloon
iii) collision at
equate vertical

$$
\begin{aligned}
&-5 t^{2}+200=-5 t^{2}+90 t \\
& t=\frac{20}{9} \\
& y=-5\left(\frac{20}{9}\right)^{2}+200 \\
&= \frac{14200}{81} \doteqdot 175 \quad \text { m above ground } \\
&\left(0 d_{p}\right)
\end{aligned}
$$

