Student Number

2020 Trial Examination

Mathematics Extension 1

General Instructions	Reading time – 10 minutes Working time – 2 hours Write using black pen Calculators approved by NESA may be used A reference sheet is provided at the back of this paper In Questions 11-14, show relevant mathematical reasoning and/or calculations
Total Marks: 70	Section I – 10 marks (pages 3-6) Attempt all Questions 1–10 Allow about 15 minutes for this section Section II – 60 marks (pages 7-12)
	Attempt Questions 11–14 Allow about 1 hour and 45 minutes for this section

This page intentionally blank

Section I

10 marks Attempt Questions 1–10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Question 1–10.

1. In how many way can the letters of the word SUCCESS be arranged?

(A) 7! (B) $\frac{7!}{2!}$ (C) $\frac{7!}{2!3!}$ (D) 4!

2. The parametric equations x = ct, $y = \frac{c}{t}$ form a

- (A) Line
- (B) Parabola
- (C) Circle
- (D) Rectangular Hyperbola
- **3.** Which if the following vectors is perpendicular to $\begin{bmatrix} -2 \\ 3 \end{bmatrix}$?

(A)
$$\begin{bmatrix} -2\\ 3 \end{bmatrix}$$

(B) $\begin{bmatrix} -3\\ 2 \end{bmatrix}$
(C) $\begin{bmatrix} -6\\ -4 \end{bmatrix}$
(D) $\begin{bmatrix} -4\\ 6 \end{bmatrix}$

- **4.** The parametric form of a function is given as $y = \sin t + 1$, $x = \cos t$. The Cartesian form of the function is
 - (A) y = x + 1
 - (B) $x^2 = y^2$
 - (C) $x^2 + (y-1)^2 = 1$

(D)
$$\tan t = \frac{y-1}{x}$$

- **5.** The quadratic equation $3x^2 5x 6 = 0$ has roots of α and β . The value for the expression $\alpha^2 + \beta^2$ is
 - (A) $\frac{5}{3}$ (B) $\frac{61}{9}$ (C) $\frac{-11}{9}$ (D) -2
- **6.** Which of the following expressions is equivalent to $2 \sin 5\theta \cos 3\theta$
 - (A) $\sin 8\theta + \sin 2\theta$
 - (B) $\cos 8\theta + \cos 2\theta$
 - (C) $\sin 8\theta \sin 2\theta$
 - (D) $\cos 8\theta \cos 2\theta$

2020 Mathematics Extension 1

7. A differential equation is given by y' = xy - 2y

Which of the following slope fields best represents the differential equation?

8. If *A* and *B* are the points (-1, 4) and (3, 7) respectively, then the unit vector in the direction of \overrightarrow{AB} is

(A)	$\frac{2}{5} \underset{\sim}{i} +$	$\frac{11}{5}j_{\sim}$
		o /

- **(B)** 4i + 3j
- (C) -3i + 28j
- (D) $\frac{4}{5} \frac{i}{2} + \frac{3}{5} \frac{j}{2}$

9. Which of the following sketches best represents $|y| = \tan^{-1}(x)$?

- **10.** The letters A, B, C and D are used to form a four letter word. How many words can be written such that D comes before A?
 - **(A)** 3
 - **(B)** 6
 - **(C)** 12
 - **(D)** 24

End of Section I

Section II

60 marks Attempt Questions 11–14 Allow about 1 hours and 45 minutes for this section

Answer each question in a separate writing booklet.

In Questions 11–14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Begin a new Writing Booklet

(a) Solve
$$\frac{x}{x-1} < 3$$
. 2

- (b) Solve $|2x + 3| \le 7$.
- (c) The sketch below shows the curve y = f(x), with the point (a, a) shown. Copy or trace this into your writing booklet and sketch the inverse relation, $y = f^{-1}(x)$ on the same axes.

Question 11 continues on next page

1

- (d) The cubic equation $x^3 + 3Ax^2 4A = 0$, where A > 0, has roots α , β and $\alpha + \beta$.
 - (i) Use the sum of roots to show that $\alpha + \beta = -\frac{3}{2}A$. 1
 - (ii) Use the sum of the products of pairs of roots to show that $\alpha\beta = -\frac{9}{4}A^2$. **2**

(iii) Show that
$$A = \frac{2}{\sqrt{3}}$$
. 2

(e) Find

(i)
$$\int \frac{-1}{\sqrt{\frac{1}{4} - x^2}} dx$$

(ii)
$$\int \sin^2 2x \, dx$$
 3

End of Question 11

- (a) Using the substitution $u = \sin x$, evaluate $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{3\cos x}{1 + \sin x} dx$
- (b) An extended family sits down to dinner at a round table. The family consists of 5 adults, and 2 children.

Find the number of arrangements possible

(i)	If there are no restrictions placed on seating.	1
(ii)	If two of the adults must sit together.	1
(iii)	If neither of the children can be seated together.	2

(c) Consider the equation $\cos x - 2 \sin x = 1$, for $-\pi \le x \le \pi$.

- (i) Show that the equation can be written as $t^2 + 2t = 0$, where $t = \tan \frac{x}{2}$.
- (ii) Hence, solve the equation for $-\pi \le x \le \pi$, giving solutions to the 2 decimal places where necessary.
- (d) Water is being drained from a spout in the bottom of a cylindrical tank. According to Torricelli's Law, the volume *V* of water left in the tank obeys the differential equation

$$\frac{dV}{dt} = -k\sqrt{V}$$

where k is a constant.

- (i) Use separation of variables to find the general solution to this equation. 1
- (ii) Suppose the tank initially holds 30L of water, which initially drains at a rate of 1.8 L/min. How long will it take for the tank to drain completely?

End of Question 12

2

2

3

.

- (a) The surface area of a sphere ($S = 4\pi r^2$) of radius r metres is decreasing at a rate of 0.8 m²/s at an instant when r = 2.3. Calculate the rate of decrease, at this instant, of the radius of the sphere.
- (b) Prove by mathematical induction, $a + ar + ar^2 + \dots + ar^{n-1} = \frac{a(r^n 1)}{r 1}$, for all integers $n \ge 1$.
- (c) (i) Prove the trigonometric identity $\cos 3\theta = 4\cos^3 \theta 3\cos \theta$. 3
 - (ii) Hence, find expressions for the exact values of the solutions to the equation $8x^3 6x = 1$.
- (d) In the parallelogram *OABC*, $\overrightarrow{OA} = a$ and $\overrightarrow{OC} = c$.

X is the midpoint of the line AC, and OCD is a straight line such that the ratio OC: CD = k: 1.

(i)	Find \overrightarrow{OX} in terms of $\underset{\sim}{a}$ and $\underset{\sim}{c}$.	1
(ii)	Write an expression for \overrightarrow{OD} .	1
(iii)	Given $\overrightarrow{XD} = 3c - \frac{1}{2}a$, find the value of k.	2

End of Question 13

Question 14 (15 marks) Begin a new Writing Booklet

(a) The graphs of y = |f(x)| and $y^2 = f(x)$ are given below. y = |f(x)| $y^2 = f(x)$

Draw separate one-third page sketches of the following curves, clearly indicating any important features such as turning points or asymptotes.

(i)	y = f(x)		1

(ii)
$$y = f(|x|)$$
 1

(b) Four friends go to a restaurant that serves 4 different main courses.

- (i) In how many ways can the friends select meals from the courses available?
- (ii) If each of the friends randomly chooses which meal they have, what is the probability that exactly two of the main course options are not chosen?

Question 14 continues on next page

1

- (c) A force described by the vector $\mathbf{F} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$ newtons is applied to an object lying on the line *l* which is parallel to the vector $\begin{pmatrix} 2 \\ 5 \end{pmatrix}$
 - (i) Find the component of the force F in the direction of the line l. 3
 - (ii) What is the component of the force perpendicular to the line *l*?
 - (iii) What force parallel to the line *l* must be applied to the object in order for it to remain stationary?
- (d) The diagram below shows the graphs of $y = \frac{2}{x}$ and y = 3 x for x > 0.

The shaded area is enclosed between the two graphs and their points of intersection *A* and *B*, as shown.

- (i) Find the coordinates of the points *A* and *B*.
- (ii) The shaded area is rotated about the *y*-axis.Find the exact volume of the solid formed.

End of Examination

1

1

2

Student Number Mathematics Extension 1 Trial Γ Section I Answer Sheet

Completely fill the response oval representing the most correct answer.

1.	$A \bigcirc$	B 🔿	c \bigcirc	$D \bigcirc$
2.	$A \bigcirc$	B 🔿	c \bigcirc	$D \bigcirc$
3.	$A \bigcirc$	B 🔿	c \bigcirc	$D \bigcirc$
4.	$A \bigcirc$	B 🔿	c \bigcirc	$D \bigcirc$
5.	$A \bigcirc$	B 🔿	c \bigcirc	$D \bigcirc$
6.	$A \bigcirc$	B 🔿	c \bigcirc	$D \bigcirc$
7.	$A \bigcirc$	B 🔿	c \bigcirc	$D \bigcirc$
8.	$A \bigcirc$	B 🔿	c \bigcirc	$D \bigcirc$
9.	$A \bigcirc$	B 🔿	c \bigcirc	$D \bigcirc$
10.	$A \bigcirc$	B 🔿	c \bigcirc	$D \bigcirc$

2020 12MAX TRIAL -HHHS - SOLUTIONS 7 letters 35,2C C. 7! 3!2! $y = \frac{c}{2E} = \frac{e^2}{2E}$ 2, if 6) is perpendicular, 3. fler -2a+3b=0 $\frac{q}{b} = \frac{3}{2}$ Satisfies this $5in^{2}f = (q-1)^{2}, cos^{2}f = R.$ -:- $2i^{2}f (q-1)^{2} = 1$ 4. $\alpha + \beta = 5$ $\alpha \beta = 2.$ 5. B $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha \beta$ 6. A. = 25+4 = 6 7. B y = q(x-2) x=2=y=2

AB = (3,7) - (-1,4) Ŋ. T 4 |AB| = 142,38 9 3×21 2×2! 10-2! A <u>2</u> 53 2-1 la $x(x-1) \leq 3(x-1)^{2}$ $3(x-1)^{2}-x(x-1) > 0$ (x-1)(3x-3-x) > 0 (x-1)(2x-3) > 01 -: x<1,2>3

b 22+31<7 -752x+357 -0522x64 -55 262 Ċ. Ū, x+3A2 - 4A=2, x,x+B,B $\alpha + \beta + (\alpha + \beta) = -3A$ -: 2(x+B)=-3A x+p=-3A $\alpha\beta + \alpha(\alpha+\beta) + \beta(\alpha+\beta) = 0$ ĩ.) $\frac{\langle \alpha, t p \rangle}{\langle \alpha, t \beta \rangle^2} = 0$ $\frac{\langle \beta, t (\alpha, t \beta)^2}{\langle \alpha, \beta \rangle^2} = -\frac{1}{2} \frac{\langle \alpha, t \beta \rangle}{\langle \alpha, \beta \rangle^2}$ $= -\frac{1}{2} \frac{1}{4} \frac{\langle \alpha, t \beta \rangle}{\langle \alpha, \beta \rangle^2}$

 $\alpha\beta(\alpha\beta) = -4A$ <u>ui)</u> $-9A^{2}(-3A) = -4A$ $\frac{-27}{8} A^{3} = -4A$ -27 A = -A>0 -36, $A^{2} = \frac{36}{27} \frac{52}{27}$ $\therefore A = \frac{6}{45} \frac{45}{35}$ $= \frac{2}{55}$ $(e)(i) \int \frac{-1}{\sqrt{4}-2^2} dx = (05) 2x + C$ ii) $\int \sin^2 2x \, dx = \int (1 - \cos 4x) \, dx \quad \cos 2x = 1 - 25 \sin^2 2$ $=\frac{1}{2}\left(\chi-\frac{\sin 4\chi}{4}\right)+c$

Q12. 13 3(05× da)I 1+5.12]_ \circ $\frac{1}{2} = \frac{1}{2}, \quad x = \frac{1}{2}, \quad x = \frac{1}{2}$ x=6, a=5 $\overline{J} = 3 \int_{1}^{\frac{15}{2}} \frac{du}{1+u}$ $= 3 \left[h \right] \left[\frac{1}{2} \right]$ $= 3 \left[h \left(1 + \frac{1}{2} \right) - h \left(1 + \frac{1}{2} \right) \right]$ $-3h(\frac{2+13}{2})$ 0-6550368 X 7 peoples at table. X fixone => arrangements = 6! $\frac{6}{2} \frac{90005}{2} \Rightarrow 5!$ ĩ attrangenents = 51.2!= 240

fix one child. other chid sits in one of four spot remaining => 51. $=: a nangements = 5! \times 4$ = 480 atternative $\frac{1}{100} = \frac{1}{100} = \frac{1}{100} = \frac{1}{100} = \frac{1}{100}$ (05x-25112=1, -TT 57511. ∂ $605x = \frac{1-1^2}{1+1^2}$, $91x = \frac{21}{1+1^2}$ $\frac{1-1^2}{1+t^2} - 2 \cdot \frac{2t}{t+t^2} = 1$ $\frac{1}{1+2} - \frac{4}{4} = \frac{1}{2+2}$ = 2f^2 + 4f = 2 f^2 + 2f = 2 ħ +(+2)=0 +=0,-2 ter = 0, -2 $-\frac{1}{2} = -\frac{1}{2} = -\frac{1}{2} - \frac{1}{2} - \frac$

 $\chi = 0, 2 \tan(-2)$ = 0, -2.2(4297 dl = -kJVdf $\int \frac{dV}{\sqrt{k}} = \int -kdt$ $2V^{\pm} = -kf + c$ $V = \frac{1}{4} \left(c - k \right)^2$ t=0, V=30, dV=1.8ĩ.) $30 = \frac{1}{4}(c - k(a))^{2}$ c = 250-1.8 = -k.50 $k = -\frac{9}{5(3)}$ $V = \frac{1}{4} \left(253 - \frac{9}{5} + 1 \right)^{2}$ $\int_{C} \sqrt{-2} 2 \sqrt{-2} + = 0$ +=233 ×530 = 33 min

QIS $dS = 0.8 n^2/s$, $S = 4\pi r^2$, had drdt dt $\frac{dS}{dr} = 8\pi r.$ = 0.0138376 mg b) $a_{tartar^{2}+...+ar^{-1}=a(r^{-1}), n\geq 1$ Prove true for n=1 LHS = a RHS = a (P-1) D-1 =a = LHS -: true for n=1 Assemblie for n=k-i. $\alpha + \alpha r + \alpha r = \alpha (r + -1)$ induction hypothesis r-1Prose true for n = k+1 k-1 k = a(r-1)i.e. a + ar + ar = a(r-1)r-1

LHS= atartart...tar tark $= \alpha(r-1) + \alpha r^{k} \qquad using helpstlesis$ $= \alpha r^{k-1} + r^{k}$ $= \alpha r^{k-1} + r^{k}$ $\Gamma^{k}_{-1} + \Gamma^{k}(\Gamma_{-1})$ $= \alpha \left[\frac{\Gamma^{-1}}{\Gamma^{-1}} + \Gamma \right]$ $= \alpha \left(\frac{\Gamma^{k+1}}{\Gamma^{-1}} \right)$ = 24-- by principle of mathematical induction statement is true for all n>1 (0530 = co-20+0) 0) 1 = (320 (30 - 5120 5100 = (2000-1) cool - 25in 0000 5in =2030-100 -2552000 =2030 - (250 - 2(1 - 1030)(050),= 20030 - 1050 - 20050 + 20050-=4050-3000 $\Im x^3 - 6x = 1$ let x=coro

\$x0530-6c050= 2(4030-300)=1 2(030 = 1)-TKOKT -3T-53053T $\cos 30 = \frac{1}{2}$ 30 in 1st + 4th quadrants · (0530>0 Hen 30= -217-苦, -2++苦, -苦, 王, 2++苦, 2++苦 $\Theta = -\frac{7\pi}{4}, -\frac{5\pi}{4}, -\frac{\pi}{4}, \frac{\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}, \frac{7\pi}{4}$ $\chi = (o)\left(\frac{\pi}{4}\right), (o)\left(\frac{\pi}{4}\right), (o)\left(\frac{\pi}{4}\right)$ (ESX à an even function $\partial X = \frac{1}{2} \left(+ \frac{1}{2} \right)$ d) i $\vec{n} = \vec{k} = \vec{k} = \vec{k}$ $\vec{i}_{i} = \vec{i}_{k} = \vec{i}_{k}$ $=\left(\frac{|a|-1}{|a|}\right) \leq -\frac{1}{2} = \frac{1}{2}$ = 2k+2-k & -1a

<u>k+2</u> 2k -<u>1</u>a K-2 2k a=32-25 La \leq $\frac{1}{2k} = 3$ (equation É conporte k=2=6k5k=25 Q (4 fa <u>~</u> Л [ł I

- · 1) b) i) number of arrangements = 4 = 256 ways that 4 meats can be had 31/ - · ` 11 22/1for3/1 4(2×2! for 2/2 4(2×2! total for these two reals = 4(3×2) + 4(2×2) = 20-combinations of two reals = 4(2)

 $= 20 \times \frac{4}{256}$ = 5Probability 16 $F = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$ c)unit vedor in direction of l. $\hat{\mathcal{L}} = \frac{1}{\sqrt{29}} \begin{bmatrix} 2\\5 \end{bmatrix}$ $Proj_{n}F = (F \cdot \hat{g})\hat{g}$ = (3、2+-2、5)-1 27 = -4 (27)29 (5) perpendicular component = F-proju F ú perpendicaler $= \begin{bmatrix} 3 \\ -2 \end{bmatrix} - \frac{4}{29} \begin{bmatrix} 2 \\ 5 \end{bmatrix} = -1\begin{bmatrix} -5 \\ -2 \end{bmatrix}$

opposite of pavallel component form opplied to object. is -11 4 27 $q=\frac{2}{2}, q=3-x.$ <u>a)</u>; equating 2= 3-2 $x^{2}-3x+2=0$ (x-2)(x-1)=0 -:x=1,2 : A-s (1,2) and B-is (2,1) $V = \tau \int_{1}^{2} (3-g)^{2} - (3) dg$ $= \pi \int_{-\infty}^{2} \left(\frac{\beta^{2}}{\beta^{2}} - \frac{4}{\epsilon \beta^{2}} \right) d\xi$ $=\pi \left(\frac{3}{3} - \frac{3}{3} + \frac{4}{3} \right)^{2}$ $=\pi \left(\frac{1^{3}}{-3} + \frac{4}{3} - \frac{2^{3}}{-3} + \frac{4}{3} \right)$ $=\pi \left(\frac{1^{3}}{-3} + \frac{4}{-3} - \frac{2^{3}}{-3} + \frac{4}{-3} \right)$ $=\pi \left(2 - \frac{1}{3} - 4 + \frac{8}{3} \right)$ = I units