Student Name:	
Student Manie.	

Class	Teacher	:			
Class	I caciici	•			

HURLSTONE AGRICULTURAL HIGH SCHOOL

YEAR 12 2010

MATHEMATICS EXTENSION 1

TRIAL HIGHER SCHOOL CERTIFICATE

Examiners: P. Biczo, S. Faulds, S. Gee, S. Hackett, G. Rawson

General Instructions

Reading time: 5 minutes
Working time: 2 hours
Attempt all questions

- Start a new sheet of paper for each question
- All necessary working should be shown
- This paper contains 8 questions worth 10 marks each. Total Marks: 80 marks
- Marks may not be awarded for careless or badly arranged work
- Board approved calculators and mathematical templates may be used
- This examination paper must **not** be removed from the examination room

Students are advised that this is a trial examination only and cannot in any way guarantee the content or the format of the 2010 HSC Mathematics Extension 1 Examination.

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1} + C, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x + C, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax} + C, \quad a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax + C, \quad a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax + C, \quad a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax + C, \quad a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax + C, \ a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a} + C, \ a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a} + C, \ a > 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right) + C, \ x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln(x + \sqrt{x^2 + a^2}) + C$$

NOTE: $\ln x = \log_e x$, x > 0

- Let A(4,-1) and B(-3,2) be points on the number plane. Find the coordinates of 2 (a) the point P which divides the interval AB internally in the ratio 3:2.

Prove that $\cos 2x = 1 - 2\sin^2 x$. (b) (i)

- 1
- On the same diagram, sketch the curves $y = \cos 2x$ and $y = 2\sin^2 x$, (ii) for $0 \le x \le \pi$.
- 2
- (iii) Find the points of intersection of the two curves, in the domain $0 \le x \le \pi$.
- 2

3

Determine the acute angle between the two curves at the point where $x = \frac{\pi}{6}$. (iv)

OUESTION 2. Start a new answer booklet.

- (a) Newton's Law of Cooling states that the rate of change in the temperature, T° , of a body is proportional to the difference between the temperature of the body and the surrounding temperature, P° .
 - If A and k are constants, show that $T = P + Ae^{kt}$ satisfies the equation (i) $\frac{dT}{dt} = k(T - P).$
- 1
- (ii) A cup of tea with temperature 100°C is too hot to drink. If two minutes later, the temperature has dropped to 93°C and the surrounding temperature is 23°C, calculate A and k.
- 2
- How long, to the nearest minute, will it take for the tea to reach the drinkable (iii) temperature of 80°C?
- 2
- (b) A particles displacement x centimetres from O at time t seconds, is given by $x = 3\cos\left(2t + \frac{\pi}{3}\right).$
 - Express the acceleration as a function of displacement and hence show the 3 (i) the particle undergoes simple harmonic motion about the origin O.
 - (ii) Find the value of x for which the speed is a maximum and determine this 2 speed.

2

3

QUESTION 3. Start a new answer booklet.

- (a) Given $6^k 1$ is divisible by 5 for all positive integral values of k, prove that $6^{k+1} 1$ is also divisible by 5.
- (b) By the process of mathematical induction, prove the following true for all positive integers n:

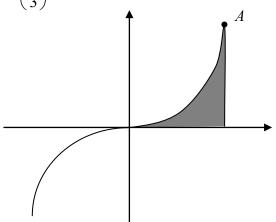
$$\sum_{r=1}^{n} r \cdot 2^{r} = (n-1) \cdot 2^{n+1} + 2$$

- (c) At a school prefect induction ceremony, 16 prefects (8 girls and 8 boys) were to be seated at the front of hall in two rows.
 - (i) How many different seating arrangements of the 16 prefects are possible?
 - (ii) If 4 girls and 4 boys were to be chosen at random to fill the back row, how many different groups of 8 can be chosen to fill the back row?
 - (iii) The middle two seats of the front row were to be occupied by the girl school captain and the boy school captain. If the remaining seats in this row were to be filled by 3 girls and 3 boys chosen at random from the 14 remaining prefects, how many possible arrangements for front row seating are there?

QUESTION 4. Start a new answer booklet.

(a) Find the exact value of:
$$\tan \left[\cos^{-1} \left(\frac{4}{\sqrt{21}} \right) \right]$$

- (b) (i) Write down the expansion for: $tan(\alpha + \beta)$
 - (ii) Use the result in (i) above to evaluate, in exact form:


$$\tan^{-1}\left(2\sqrt{2}-3\right) + \tan^{-1}\left(\sqrt{2}\right)$$

- (c) For the function $f(x) = 3\sin^{-1}(3-2x)$
 - (i) Draw a neat sketch of the graph of the function.
 - (ii) Find the derivative of the function.

2

(a) Find
$$\int \frac{1}{\sqrt{9-x^2}} dx$$
.

- (b) Use the substitution $u = x^2 + 4x 3$ to evaluate $\int_{1}^{2} \frac{x+2}{\sqrt{x^2 + 4x 3}} dx$ 3
- (c) The graph of $y = 2\sin^{-1}\left(\frac{x}{3}\right)$ is shown below

- (i) Write down the coordinates of point A.
- (ii) Differentiate $y = 2x \sin^{-1}\left(\frac{x}{3}\right) + 2\sqrt{9 x^2}$
- (iii) Hence, or otherwise, find the shaded area.

QUESTION 6. Start a new answer booklet.

(a) Solve the inequality
$$\frac{2}{x} < 1$$

- (b) (i) Express $\sqrt{3}\cos x \sin x$ in the form $r\cos(x+\alpha)$, where r > 0 and α is in radians. Justify your answer.
 - (ii) What is the maximum value of $\sqrt{3}\cos x \sin x$ and the smallest positive value of x for which it occurs?

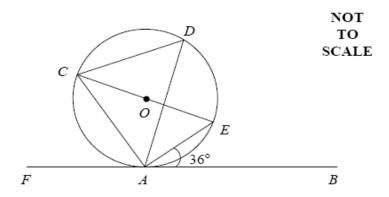
(c) Using the substitution
$$t = \tan \frac{x}{2}$$
, find the general solution of
$$3\sin x - 2\cos x = 2.$$

(a) One root of the equation $e^x - x - 2 = 0$ lies between x = 1 and x = 2. Use one application of Newton's method, with a starting value of x = 1.5, to approximate the root to two decimal places.

2

- (b) John considered the curve $y = \frac{x}{\log_e(x^2)}$
 - (i) John was about to change $\log_e(x^2)$ to $2\log_e x$, but then realised this would actually alter the graph itself. Briefly explain why.

1


(ii) Accurately describe the domain.

2

(iii) Find the derivative of the function.

2

(c)

FB is a tangent meeting a circle at A. CE is a diameter, O is the centre and D lies on the circumference. $\angle BAE = 36^{\circ}$.

O is the centre and D lies on the circumference. $\angle BAE = 36^{\circ}$.

(i) Find the size of $\angle ACE$, giving reasons.

1

(ii) Find the size of $\angle ADC$, giving reasons.

2

1

- (a) When $x^3 3x^2 ax + 2$ is divided by x + 3, the remainder is 4. Find the value of a. 2
- (b) Sketch the curve $y = (3-x)(x+1)^2$ (it is not necessary to find stationary points)
- (c) $P(2ap,ap^2)$ and $Q(2aq,aq^2)$ are two points on the parabola $x^2 = 4ay$. R is the point of intersection of the tangents to the parabola at P and Q.
 - (i) Show that the equation of the tangent to the parabola at P is given by: $px y ap^2 = 0$. You may assume that the gradient of the tangent is p.
 - (ii) Show that the tangents to the parabola at P and Q intersect at the point R = (a(p+q), apq).
 - (iii) It is given that the equation of the chord PQ is

$$y = \frac{(p+q)}{2}x - apq.$$
 (DO NOT PROVE THIS)

Point T is the intersection of the chord and the axis of the parabola. Show that T is the point (0,-apq).

(iv) If R is on both the axis of the parabola and the directrix, show that triangle PTR is an isosceles right angled triangle.

Year 12	Mathematics Extension 1	Trial HSC Examination 2010
Question 1	Solutions and Marking Guidelines	
	Outcomes Addressed in this Question	

- PE2 Uses multi-step deductive reasoning in a variety of contexts
- PE6 Makes comprehensive use of mathematical language, diagrams and notation for communicating in a wide variety of situations
- H5 Applies appropriate techniques from the study of calculus & trigonometry
- HE7 Evaluates mathematical solutions to problems and communicates them in an appropriate form

Part	Solutions	Marking Guidelines
PE2	a) (a) Internal point of division, ratio of 3:2 Point of division of $(4,-1),(-3,2)$ is $\left(\frac{lx_1 + kx_2}{k+l}, \frac{ly_1 + ky_2}{k+l}\right) = \left(\frac{2\times 4 + 3\times -3}{3+2}, \frac{2\times -1 + 3\times 2}{3+2}\right)$	2 marks : correct answer 1 mark : significant progress towards answer
НЕ7	$= \left(\frac{-1}{5}, \frac{4}{5}\right)$ b) (i) $\cos 2x = \cos(x+x)$ $= \cos x \cos x - \sin x \sin x$ $= \cos^2 x - \sin^2 x$ $= 1 - \sin^2 x - \sin^2 x$	1 matk: correct solution
НЕ7	$= 1 - 2\sin^2 x$ (ii) Graph of $y = \cos 2x$ has period $\frac{2\pi}{2} = \pi$, \therefore for $0 \le x \le \pi$, one wavelength. Amplitude 1. Using $\cos 2x = 1 - 2\sin^2 x$,	
	$2\sin^2 x = 1 - \cos 2x$ Graph of $y = 2\sin^2 x$ is same graph as $y = 1 - \cos 2x$. i.e. $y = -\cos 2x$, shifted up 1 unit.	2 marks: both graphs correct 1 mark: one graph correct
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

(iii) $y = 2\sin^2 x$ and $y = \cos 2x$ meet when $2\sin^2 x = \cos 2x$. 2 marks: correct answers HE7 1 mark: significant i.e. when $2\sin^2 x = 1 - 2\sin^2 x$ progress towards correct Solving $4\sin^2 x = 1$ solution $\sin^2 x = \frac{1}{4}, \ \sin x = \pm \frac{1}{2}$ As solving for $0 \le x \le \pi$, x is in quadrants 1, 2 (iv) For $y = \cos 2x$, $y' = -2\sin 2x$. 3 marks: correct solution H5, PE2 When $x = \frac{\pi}{6}$, $y' = -2\sin\frac{\pi}{3} = -\sqrt{3}$ 2 marks: substantial progress towards correct For $y = 2\sin^2 x$, $y' = 4(\sin x)^{\frac{1}{2}}\cos x$ solution 1 mark: significant $= 2\sin 2x$ progress towards correct When $x = \frac{\pi}{6}$, $y' = 2\sin\frac{\pi}{3} = \sqrt{3}$. solution If θ is the angle between the two curves, using $\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$, $\tan \theta = \left| \frac{\sqrt{3} - \left(-\sqrt{3} \right)}{1 + \sqrt{3} \times \left(-\sqrt{3} \right)} \right|$ $\therefore \tan \theta = \sqrt{3}$ $\theta = \frac{\pi}{3}$.

HSC assessment Task 4 2010 Mathematics Extension 1 Year 12 Solutions and Marking Guidelines Question No. 2 Outcomes Addressed in this Question uses a variety of strategies to investigate mathematical models of situations involving binomial probability, projectiles, simple harmonic motion, or exponential growth and decay Marking Guidelines Solutions Outcome $T = P + Ae^{kt}$ (*i*) 1 mark correct answer $Ae^{kt} = T - P$ $\frac{dT}{dt} = kAe^{kt}$ $\frac{dT}{dt} = k \left(T - P \right)$ (ii) $P = 23^{\circ}, (T = 100, t = 0), (T = 93, t = 2)$ 2 marks correct method leading to $100 = 23 + Ae^{6}, A = 77$ correct answer $T = 23 + 77e^{kt}$ I mark substantially correct solution $93 = 23 + 77e^{2k}$ $k \approx -0.0476...$ $80 = 23 + 77e^{-0.0476t}$ 2 marks correct method leading to correct answer $t = \ln\left(\frac{80 - 23}{77}\right) \div \left(-0.0476\right)$ I mark substantially correct solution t = 6.311...min $t \approx 6 \, \text{min}$ (b) $x = 3\cos\left(2t + \frac{\pi}{3}\right)$ 3 marks correct method leading to $x = \frac{dx}{dt} = -3\sin\left(2t + \frac{\pi}{3}\right) \times 2$ correct answer $x = \frac{dx}{dt} = -6\sin\left(2t + \frac{\pi}{3}\right)$ 2 marks correct differentials $\frac{\omega}{x} = \frac{d^2x}{dt^2} = -6\cos\left(2t + \frac{\pi}{3}\right) \times 2$ I mark substantially correct solution $\frac{m}{x} = \frac{d^2x}{dt^2} = -4 \times 3 \cos \left(2t + \frac{\pi}{3}\right) = -4x$ Since acceleration obeys the law $x = -n^2x$ the motion is simple harmonic. (ii) $x = y = -6 \sin \left(2t + \frac{\pi}{3} \right)$

since $-1 \le \sin\left(2t + \frac{\pi}{3}\right) \le 1$

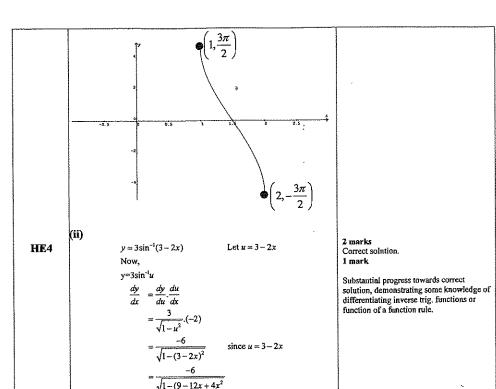
 $x = 3\cos\left(2 \times \frac{\pi}{12} + \frac{\pi}{3}\right)$

x = 0 in all cases

 $x = 3\cos\left(\frac{\pi}{2}\right), 3\cos\left(2\pi + \frac{\pi}{2}\right), \dots$

 \therefore maximum speed is 6cm/s when x = 0.

maximum speed = 6 cm / s occurs when $\left(2t + \frac{\pi}{3}\right) = \frac{\pi}{2}$


2 marks total

i mark
For each of distance and velocity
correct solution

HE2 uses inductive reasoning in the construction of proofs PE3 solves problems involving permutations and combinations. Outcome Solutions HE2 (a) Since $6^4 - 1$ is divisible by 5, Let $6^4 - 1 = 5M$ where M is an integer. ie. $6^4 = 5M + 1$ Now, $6^{44} - 1 = 6 \times 6^4 - 1$ $= (6(5M + 1) - 1)$ $= 30M + 6 - 1$ $= 100M + 5$ $= 3(6M + 1)$ which is divisible by 5, as required. HE2 (b) $\sum_{i=1}^{n} r_i 2^i = (n-1) \cdot 2^{n+1} + 2$ $= 1 \times 2^1 = 0 + 2$ $= 1 \times 1 $	Year 12 M	athematics Extension 1 Half Yearly Examination 5. Solutions and Marking Guide	lines
HE2 uses inductive reasoning in the construction of proofs solves problems involving permutations and combinations. Outcome HE2 (a) Since $6^k - 1$ is divisible by 5, Let $6^k - 1 = 5M$ where M is an integer. i.e. $6^k = 5M + 1$ Now, $6^{k+1} - 1 = 6 \times 6^k - 1$ $= (6(5M + 1) - 1)$ $= 30M + 6 - 1$ $= 30M + 6 - 1$ $= 30(6M + 1)$ which is divisible by 5, as required. (b) $\sum_{i=1}^n r_i r_i = (r_i - 1) \cdot 2^{i+1} + 2$ $= 1 \times 2^i = 0 + 2$ $= 1 \times 2^i = 0 + 2$ $= 2 = 2$ $= LHS$ $\therefore \text{ True for } n = 1$ 2. Assume true for $n = k$ i.e. Assume $\sum_{i=1}^n r_i r_i = (r_i - 1) \cdot 2^{k+1} + 2$ Prove true for $n = k$ i.e. Prove true for $n = k$ i.e. Prove true for $n = k + 1$ i.e. Prove $\sum_{i=1}^{k} r_i r_i = (k + 1) \cdot 2^{k+1} + 2$ $= k \cdot 2^k \cdot 2^{k+1} + 2 + (k + 1) \cdot 2^{k+1}$ $= 2k \cdot 2^{k+1} + 2$ $= k \cdot$	Question N	o. 3 Solutions and Warking Guide	his Operation
Solves problems involving permutations and combinations. Marking Guidelines	TT10		
Dutcome Solutions Marking Guidelines HE2 (a) Since $6^k - 1$ is divisible by 5, Let $6^k - 1 = 5M$ where M is an integer. ie. $6^k = 3M + 1$ Now, $6^{k+1} - 1 = 6 \times 6^k - 1$ $= 6(5M + 1) - 1$ $= 30M + 6 - 1$ $= 30M + 6 - 1$ $= 30M + 5$ $= 5(6M + 1)$ which is divisible by 5, as required. HE2 (b) $\sum_{r=1}^{n} r.2^r = (n-1).2^{n+1} + 2$ 1. Prove true for $n = 1$ LHS $= \sum_{r=1}^{1} r.2^r$ RHS $= (1-1) \times 2^{n+1} + 2$ Solution showing clear and log progression dirough to conclusion. 2. nearly 1. Prove true for $n = 1$ LHS $= \sum_{r=1}^{1} r.2^r$ RHS $= (1-1) \times 2^{n+1} + 2$ Solution showing the conclusion of most steps required to fully justify conclusion. 1 nearly 1. Prove true for $n = k$ ie. Assume $\sum_{r=1}^{k} r.2^r = (k-1).2^{k+1} + 2$ Prove true for $n = k+1$ ie. Prove $\sum_{r=1}^{k+1} r.2^r = (k-1).2^{k+1} + 2$ $= k.2^{k+2} + 2$ $=$	HEZ use	s inductive reasoning in the construction of proc	nations
HE2 (a) Since $6^k - 1$ is divisible by 5, Let $6^k - 1 = 5M$ where M is an integer. ie. $6^k = 3M + 1$ Now. $6^{k+1} - 1 = 5 \times 6^k - 1$ = $6(5M + 1) - 1$ = $30M + 6 - 1$ = $30M + 5$ = $5(6M + 1)$ which is divisible by 5, as required. HE2 (b) $\sum_{r=1}^{n} r.2^r = (n-1).2^{n+1} + 2$ 1. Prove true for $n = 1$ LHS = $\sum_{r=1}^{n} r.2^r$ RHS = $(1-1) \times 2^{n+1} + 2$ = $2 \times 2 $			Marking Guidelines
HEZ Since $6^k - 1$ is divisible by 5, Let $6^k + 1 = 5M$ where M is an integer. ie. $6^k = 3M + 1$ Now. $6^{k+1} - 1 = 5 \times 6^k - 1$ $= 6(5M + 1) - 1$ $= 30M + 6 - 1$ $= 100M + 10M + 1$			
Let $6^k - 1 = 5M$ where M is an integer. ie. $6^k = 3M + 1$ Now, $6^{k+1} - 1 = 6 \times 6^k - 1$ $= 6(5M + 1) - 1$ $= 30M + 6 - 1$ $= 30M + 5$ $= 5(6M + 1)$ which is divisible by 5, as required. (b) $\sum_{r=1}^{\infty} r.2^r = (n-1).2^{r+1} + 2$ $1. \text{ Prove true for } n = 1$ $LHS = \sum_{r=1}^{\infty} r.2^r \qquad RHS = (1-1) \times 2^{t+1} + 2$ $= 1 \times 2^1 \qquad = 0 + 2$ $= 1 \times 2^1 \qquad = 0 + 2$ $= 1 \times 2^1 \qquad = 0 + 2$ $= 2 \qquad = $	HEZ		1 '
ic. $6^t = 5M + 1$ Now, $6^{t+1} - 1 = 6 \times 6^k - 1$ $= 6(5M + 1) - 1$ $= 30M + 5$ $= 5(6M + 1)$ which is divisible by 5, as required. (b) $\sum_{r=1}^{5} r.2^r = (n-1).2^{n+1} + 2$ $1. \text{ Prove true for } n = 1$ $LHS = \sum_{r=1}^{1} r.2^r RHS = (1-1) \times 2^{1+1} + 2$ $= 1 \times 2^1 \qquad = 0 + 2$ $= 1 \times 2^1 \qquad = 0 + 2$ $= 1 \times 2$ $= 2 \qquad = 2$ $= LHS$ $\therefore \text{ True for } n = k$ $1e. \text{ Assume } \sum_{r=1}^{5} r.2^r = (k-1).2^{k+1} + 2$ $\text{Prove true for } n = k + 1$ $1e. \text{ Prove } \sum_{r=1}^{5k} r.2^r = (k-1).2^{k+1} + 2$ $\text{Prove true for } n = k + 1$ $1e. \text{ Prove } \sum_{r=1}^{5k} r.2^r = (k-1).2^{k+1} + 2$ $\text{Prove true for } n = k + 1$ $1e. \text{ Prove } \sum_{r=1}^{5k} r.2^r = (k-1).2^{k+1} + 2$ $\text{Prove true } \text{ for } n = k + 1$ $1e. \text{ Prove } \sum_{r=1}^{5k} r.2^r = (k-1).2^{k+1} + 2$ $= k.2 \cdot 2^{k+1} + 2$ $= k.2^{k+2} + 2$ $= RHS$ $\therefore \text{ True for } n = k + 1$ 3. If the result is true for $n = k$ it is also true for $n = k+1$			
Now, $6^{k+1}-1=6\times 6^k-1$ $=6(5M+1)-1$ $=30M+6-1$ $=30M+5$ $=5(6M+1)$ which is divisible by 5, as required. (b) $\sum_{r=1}^n r.2^r = (n-1).2^{n+1}+2$ $1. \text{ Prove true for } n=1$ $LHS = \sum_{r=1}^{1} r.2^r RHS = (1-1)\times 2^{t+1}+2$ $=1\times 2^1 \qquad = 0+2$ $=2 \qquad = 2$ $=LHS$ $\therefore \text{ True for } n=1$ 2. Assume true for $n=k$ i.e. Assume $\sum_{r=1}^k r.2^r = (k-1).2^{k+1}+2$ Prove true for $n=k+1$ i.e. Prove $\sum_{r=1}^{k-1} r.2^r = k.2^{k+2}+2$ $LHS = \sum_{r=1}^{k-1} r.2^r = k.2^{k+2}+2$ $LHS = \sum_{r=1}^{k-1} r.2^r + (k+1).2^{k+1}$ $= 2k.2^{k+1}+2$ $= k.2^{k+1}+2$ $= k.2^{k+1}+2$ $= k.2^{k+2}+2$ $= RHS$ $\therefore \text{ True for } n=k+1$ 3. If the result is true for $n=k$ it is also true for $n=k+1$			
$6^{k+1}-1=6\times 6^k-1$ $=6(5M+1)-1$ $=30M+5$ $=5(6M+1)$ which is divisible by 5, as required. (b) $\sum_{r=1}^{n}r.2^r=(n-1).2^{n+1}+2$ $1. \text{ Prove true for } n=1$ $LHS = \sum_{r=1}^{1}r.2^r RHS = (1-1)\times 2^{1+1}+2$ $=1\times 2^1 \qquad = 0+2$ $=2 \qquad = 2$ $= LHS$ $\therefore \text{ True for } n=1$ $2. \text{ Assume true for } n=k$ i.e. Assume $\sum_{r=1}^{k}r.2^r=(k-1).2^{k+1}+2$ Prove true for $n=k+1$ i.e. Prove $\sum_{r=1}^{k}r.2^r=k.2^{k+2}+2$ $LHS = \sum_{r=1}^{k}r.2^r=k.2^{k+2}+2$ $LHS = \sum_{r=1}^{k}r.2^r=k.2^{k+1}+2$ $=(k-1).2^{k+1}+2+(k+1).2^{k+1}$ $=(k-1).2^{k+1}+2+(k+1).2^{k+1}+2+(k+1).$,	
$HE2$ $= 6(5M+1)-1$ $= 30M+6-1$ $= 5(6M+1)$ which is divisible by 5, as required. (b) $\sum_{r=1}^{n} r.2' = (n-1).2^{n+1} + 2$ $1. \text{ Prove true for } n=1$ $LHS = \sum_{r=1}^{1} r.2^{r} RHS = (1-1) \times 2^{1+1} + 2$ $= 1 \times 2^{1} \qquad = 0 + 2$ $= 1 \times 2^{1} \qquad = 0 + 2$ $= 2 \qquad = LHS$ $\therefore \text{ True for } n=1$ $2. \text{ Assume true for } n=k$ ie. Assume $\sum_{r=1}^{k} r.2' = (k-1).2^{k+1} + 2$ Prove true for $n=k+1$ ie. Prove $\sum_{r=1}^{k+1} r.2' = k.2^{k+2} + 2$ $LHS = \sum_{r=1}^{k+1} r.2' = k.2^{k+2} + 2$ $= k.2^{k+1} + 2$ $= k.2^{k+1} + 2$ $= k.2^{k+1} + 2$ $= RHS$ $\therefore \text{ True for } n=k+1$ 3. If the result is true for $n=k$ it is also true for $n=k+1$		•	·
$= 30M + 6 - 1$ $= 30M + 5$ $= 3(6M + 1)$ which is divisible by 5, as required. (b) $\sum_{r=1}^{n} r.2^r = (n-1).2^{n+1} + 2$ $1. \text{ Prove true for } n = 1$ $LHS = \sum_{r=1}^{1} r.2^r RHS = (1-1) \times 2^{1+1} + 2$ $= 1 \times 2^1 \qquad = 0 + 2$ $= 2 \qquad = 2$ $= LHS$ $\therefore \text{ True for } n = 1$ 2. Assume true for $n = k$ i.e. Assume $\sum_{r=1}^{k-1} r.2^r = (k-1).2^{k+1} + 2$ Prove true for $n = k + 1$ i.e. Prove $\sum_{r=1}^{k-1} r.2^r = (k-1).2^{k+1} + 2$ $= \sum_{r=1}^{k-1} r.2^r = k.2^{k+2} + 2$ $LHS = \sum_{r=1}^{k-1} r.2^r = k.2^{k+2} + 2$ $= k.2^{k+1} + 2$ $= k.2^{k+1} + 2$ $= k.2^{k+1} + 2$ $= RHS$ $\therefore \text{ True for } n = k + 1$ 3. If the result is true for $n = k$ it is also true for $n = k+1$			
$= 30M + 5$ $= 5(6M + 1)$ which is divisible by 5, as required. (b) $\sum_{r=1}^{5} r.2^r = (n-1).2^{n+1} + 2$ $1. \text{ Prove true for } n = 1$ $LHS = \sum_{r=1}^{1} r.2^r \qquad RHS = (1-1) \times 2^{t+1} + 2$ $= 1 \times 2^1 \qquad = 0 + 2$ $= 2 \qquad = 2$ $= LHS$ $\therefore \text{ True for } n = 1$ $2. \text{ Assume true for } n = k$ ie. Assume $\sum_{r=1}^{5} r.2^r = (k-1).2^{k+1} + 2$ Prove true for $n = k + 1$ ie. Prove $\sum_{r=1}^{k-1} r.2^r = k.2^{k+2} + 2$ $LHS = \sum_{r=1}^{k-1} r.2^r = k.2^{k+2} + 2$ $LHS = \sum_{r=1}^{k-1} r.2^r = k.2^{k+2} + 2$ $= k.2^{k+1} + 2$ $= 2k.2^{k+1} + 2$ $= k.2^{k+2} + 2$ $= k.2^{k+2} + 2$ $= RHS$ $\therefore \text{ True for } n = k + 1$ 3. If the result is true for $n = k$ it is also true for $n = k+1$			
HE2 (b) $\sum_{r=1}^{n} r.2^r = (n-1).2^{n+1} + 2$ $\sum_{r=1}^{n} r.2^r = (n-1).2^{n+1} + 2$ 1. Prove true for $n=1$ $LHS = \sum_{r=1}^{1} r.2^r \qquad RHS = (1-1) \times 2^{1+1} + 2$ $= 1 \times 2^1 \qquad = 0 + 2$ $= 2 \qquad = 2$ $= 2 \qquad = 2$ $= 2HS$ $\therefore \text{ True for } n=1$ 2. Assume true for $n=k$ ie. Assume $\sum_{r=1}^{k=1} r.2^r = (k-1).2^{k+1} + 2$ Prove true for $n=k+1$ ie. Prove $\sum_{r=1}^{k=1} r.2^r = (k-1).2^{k+1} + 2$ $= (k-1).2^{k+1} + 2 + (k+1).2^{k+1}$ $= (k-1).2^{k+1} + 2 + (k+1).2^{k+1}$ $= 2k.2^{k+1} + 2$ $= k.2^{k+2} + 2$ $= RHS$ $\therefore \text{ True for } n=k+1$ 3. If the result is true for $n=k$ it is also true for $n=k+1$		1	
which is divisible by 5, as required. (b) $\sum_{r=1}^{n} r.2^r = (n-1).2^{n+1} + 2$ $\sum_{r=1}^{n} r.2^r = (n-1).2^{n+1} + 2$ 1. Prove true for $n=1$ $LHS = \sum_{r=1}^{1} r.2^r \qquad RHS = (1-1) \times 2^{1+1} + 2$ $= 1 \times 2^1 \qquad = 0 + 2$ $= 2 \qquad = 2$ $= 2 \qquad = 2$ $= LHS$ $\therefore \text{ True for } n=1$ 2. Assume true for $n=k$ i.e. Assume $\sum_{r=1}^{k} r.2^r = (k-1).2^{k+1} + 2$ Prove true for $n=k+1$ i.e. Prove $\sum_{r=1}^{k} r.2^r = k.2^{k+2} + 2$ $LHS = \sum_{r=1}^{k} r.2^r = k.2^{k+2} + 2$ $= (k-1).2^{k+1} + 2 + (k+1).2^{k+1}$ $= 2k.2^{k+1} + 2$ $= k.2^{k+1} + 2$ $= k.2^{k+1} + 2$ $= k.2^{k+1} + 2$ $= RHS$ $\therefore \text{ True for } n=k+1$ 3. If the result is true for $n=k$ it is also true for $n=k+1$		•	
HE2 (b) $\sum_{r=1}^{n} r.2^r = (n-1).2^{n+1} + 2$ 1. Prove true for $n = 1$ $LHS = \sum_{r=1}^{1} r.2^r \qquad RHS = (1-1) \times 2^{1+1} + 2$ $= 1 \times 2^1 \qquad = 0 + 2$ $= 2 \qquad = LHS$ $\therefore \text{ True for } n=1$ 2. Assume true for $n = k$ ie. Assume $\sum_{r=1}^{k} r.2^r = (k-1).2^{k+1} + 2$ Prove true for $n = k + 1$ ie. Prove $\sum_{r=1}^{k} r.2^r = k.2^{k+2} + 2$ $LHS = \sum_{r=1}^{k} r.2^r = k.2^{k+2} + 2$ $LHS = \frac{k}{n} r.2^r + (k+1).2^{k+1}$ $= 2k.2^{k+1} + 2$ $= k.2^{k+1} + 2$ $= k.2^{k+2} + 2$ $= k.2^{k+1} + 2$ $= k.2^{k+2} + 2$ $= RHS$ $\therefore \text{ True for } n = k + 1$ 3. If the result is true for $n = k$ it is also true for $n = k+1$			
$\sum_{r=1}^{n} r.2^r = (n-1).2^{n+1} + 2$ 1. Prove true for $n=1$ $LHS = \sum_{r=1}^{1} r.2^r \qquad RHS = (1-1) \times 2^{1+1} + 2$ $= 1 \times 2^1 \qquad = 0 + 2$ $= 2 \qquad = 2$ $= LHS$ $\therefore \text{ True for } n=1$ 2. Assume true for $n=k$ i.e. Assume $\sum_{r=1}^{k} r.2^r = (k-1).2^{k+1} + 2$ Prove true for $n=k+1$ i.e. Prove $\sum_{r=1}^{k} r.2^r = k.2^{k+2} + 2$ $LHS = \sum_{r=1}^{k} r.2^r = k.2^{k+2} + 2$ $LHS = \sum_{r=1}^{k} r.2^r + (k+1).2^{k+1}$ $= (k-1)2^{k+1} + 2 + (k+1).2^{k+1}$ $= 2k.2^{k+1} + 2$ $= k.2^{k+2} + 2$ $= k.2^{k+2} + 2$ $= RHS$ $\therefore \text{ True for } n=k+1$ 3. If the result is true for $n=k$ it is also true for $n=k+1$		Which is division by J, as required.	
$\sum_{r=1}^{n} r.2^r = (n-1).2^{n+1} + 2$ 1. Prove true for $n=1$ $LHS = \sum_{r=1}^{1} r.2^r \qquad RHS = (1-1) \times 2^{1+1} + 2$ $= 1 \times 2^1 \qquad = 0 + 2$ $= 2 \qquad = 2$ $= LHS$ $\therefore \text{ True for } n=1$ 2. Assume true for $n=k$ ie. Assume $\sum_{r=1}^{k} r.2^r = (k-1).2^{k+1} + 2$ Prove true for $n=k+1$ ie. Prove $\sum_{r=1}^{k} r.2^r = k.2^{k+2} + 2$ $LHS = \sum_{r=1}^{k} r.2^r = k.2^{k+2} + 2$ $LHS = \sum_{r=1}^{k} r.2^r + (k+1).2^{k+1}$ $= (k-1)2^{k+1} + 2 + (k+1).2^{k+1}$ $= 2k \cdot 2^{k+1} + 2$ $= k \cdot 2^{k+2} + 2$ $= RHS$ $\therefore \text{ True for } n=k+1$ 3. If the result is true for $n=k$ it is also true for $n=k+1$		(b)	
1. Prove true for $n = 1$ 1. LHS $= \sum_{r=1}^{3} r \cdot 2^r$ RHS $= (1-1) \times 2^{1+1} + 2$ $= 1 \times 2^1$ $= 0 + 2$ $= 2$ $= 2$ $= LHS$ 1. True for $n = 1$ 2. Assume true for $n = k$ i. Assume $\sum_{r=1}^{k} r \cdot 2^r = (k-1) \cdot 2^{k+1} + 2$ Prove true for $n = k+1$ i. Prove $\sum_{r=1}^{k+1} r \cdot 2^r = (k-1) \cdot 2^{k+1} + 2$ Prove true for $n = k+1$ i. Prove $\sum_{r=1}^{k+1} r \cdot 2^r = k \cdot 2^{k+2} + 2$ LHS $= \sum_{r=1}^{k+1} r \cdot 2^r + (k+1) \cdot 2^{k+1}$ $= (k-1)2^{k+1} + 2 + (k+1) \cdot 2^{k+1}$ $= 2k \cdot 2^{k+2} + 2$ $= k \cdot 2^{k+2} + 2$ $= RHS$ True for $n = k+1$ 3. If the result is true for $n = k$ it is also true for $n = k+1$	HE2	1 * 1	3 marks Correct solution showing clear and logical
1. Prove true for $n=1$ $LHS = \sum_{r=1}^{1} r \cdot 2^r \qquad RHS = (1-1) \times 2^{t+1} + 2$ $= 1 \times 2^1 \qquad = 0 + 2$ $= 2 \qquad = 2$ $= LHS$ $\therefore \text{ True for } n=1$ 2. Assume true for $n=k$ i.e. Assume $\sum_{r=1}^{k} r \cdot 2^r = (k-1) \cdot 2^{k+1} + 2$ Prove true for $n=k+1$ i.e. Prove $\sum_{r=1}^{k+1} r \cdot 2^r = k \cdot 2^{k+2} + 2$ $LHS = \sum_{r=1}^{k} r \cdot 2^r = k \cdot 2^{k+2} + 2$ $LHS = \sum_{r=1}^{k} r \cdot 2^r + (k+1) \cdot 2^{k+1}$ $= (k-1)2^{k+1} + 2 + (k+1) \cdot 2^{k+1}$ $= 2k \cdot 2^{k+1} + 2$ $= k \cdot 2^{k+2} + 2$ $= RHS$ $\therefore \text{ True for } n=k+1$ 3. If the result is true for $n=k$ it is also true for $n=k+1$		$\sum_{r=1}^{n} r \cdot 2^r = (n-1) \cdot 2^{n+1} + 2$	progression through to conclusion.
LHS = $\sum_{r=1}^{1} r \cdot 2^r$ RHS = $(1-1) \times 2^{1+1} + 2$ complete through to conclusion or ometers required to fully justify conclusion. = 1×2^1 = $0 + 2$ = 2 = $2 \times 2 $		1. Prove true for $n=1$	2 marks
the second state of the second secon		The proof of the old	
Some progress towards solution, inclusing the result true for $n = 1$ as a minimum. True for $n = 1$ 2. Assume true for $n = k$ ie. Assume $\sum_{r=1}^{k} r \cdot 2^r = (k-1) \cdot 2^{k+1} + 2$ Prove true for $n = k+1$ ie. Prove $\sum_{r=1}^{k+1} r \cdot 2^r = k \cdot 2^{k+2} + 2$ LHS $= \sum_{r=1}^{k+1} r \cdot 2^r = k \cdot 2^{k+2} + 2$ $= (k-1)2^{k+1} + 2 + (k+1) \cdot 2^{k+1}$ $= 2k \cdot 2^{k+1} + 2$ $= k \cdot 2^{k+2} + 2$ $= k \cdot 2^{k+2} + 2$ $= RHS$ True for $n = k+1$ 3. If the result is true for $n = k$ it is also true for $n = k+1$		$LHS = \sum_{r=1}^{r} r \cdot T \qquad RHS = (1-1) \times 2$	steps required to fully justify conclusion.
showing the result true for $n = 1$ as a minimum. True for $n = 1$ 2. Assume true for $n = k$ ie. Assume $\sum_{t=1}^{k} r \cdot 2^t = (k-1) \cdot 2^{k+1} + 2$ Prove true for $n = k+1$ ie. Prove $\sum_{t=1}^{k+1} r \cdot 2^t = k \cdot 2^{k+2} + 2$ $LHS = \sum_{t=1}^{k} r \cdot 2^t = k \cdot 2^{k+2} + 2$ $= \sum_{t=1}^{k} r \cdot 2^t + (k+1) \cdot 2^{k+1}$ $= (k-1) \cdot 2^{k+1} + 2 + (k+1) \cdot 2^{k+1}$ $= 2k \cdot 2^{k+1} + 2$ $= k \cdot 2^{k+2} + 2$ $= k \cdot 2^{k+2} + 2$ $= RHS$ $\therefore \text{ True for } n = k+1$ 3. If the result is true for $n = k$ it is also true for $n = k+1$		$=1\times2^{1}$ = 0+2	
True for $n=1$ 2. Assume true for $n = k$ ie. Assume $\sum_{r=1}^{k} r.2^r = (k-1).2^{k+1} + 2$ Prove true for $n = k+1$ ie. Prove $\sum_{r=1}^{k+1} r.2^r = k.2^{k+2} + 2$ LHS = $\sum_{r=1}^{k+1} r.2^r = k.2^{k+2} + 2$ = $\sum_{r=1}^{k} r.2^r + (k+1).2^{k+1}$ = $(k-1)2^{k+1} + 2 + (k+1).2^{k+1}$ = $2k.2^{k+1} + 2$ = $k.2^{k+2} + 2$		=2 =2	showing the result true for $n=1$ as a
2. Assume true for $n = k$ ie. Assume $\sum_{r=1}^{k} r \cdot 2^r = (k-1) \cdot 2^{k+1} + 2$ Prove true for $n = k+1$ ie. Prove $\sum_{r=1}^{k+1} r \cdot 2^r = k \cdot 2^{k+2} + 2$ $LHS = \sum_{r=1}^{k+1} r \cdot 2^r$ $= \sum_{r=1}^{k} r \cdot 2^r + (k+1) \cdot 2^{k+1}$ $= (k-1) \cdot 2^{k+1} + 2 + (k+1) \cdot 2^{k+1}$ $= 2k \cdot 2^{k+1} + 2$ $= k \cdot 2^k \cdot 2^{k+1} + 2$ $= k \cdot 2^k \cdot 2^k + 2$ $= RHS$ $\therefore \text{ True for } n = k+1$ 3. If the result is true for $n = k$ it is also true for $n = k+1$		= LHS	minimum.
ie. Assume $\sum_{r=1}^{k} r \cdot 2^r = (k-1) \cdot 2^{k+1} + 2$ Prove true for $n = k+1$ ie. Prove $\sum_{r=1}^{k+1} r \cdot 2^r = k \cdot 2^{k+2} + 2$ $LHS = \sum_{r=1}^{k+1} r \cdot 2^r$ $= \sum_{r=1}^{k} r \cdot 2^r + (k+1) \cdot 2^{k+1}$ $= (k-1) \cdot 2^{k+1} + 2 + (k+1) \cdot 2^{k+1}$ $= 2k \cdot 2^{k+1} + 2$ $= k \cdot 2^1 \cdot 2^{k+1} + 2$ $= k \cdot 2^1 \cdot 2^{k+1} + 2$ $= k \cdot 2^{k+2} + 2$ $= RHS$ $\therefore \text{ True for } n = k+1$ 3. If the result is true for $n = k$ it is also true for $n = k+1$		∴ True for n=1	
Prove true for $n = k + 1$ ie. Prove $\sum_{r=1}^{k+1} r \cdot 2^r = k \cdot 2^{k+2} + 2$ $LHS = \sum_{r=1}^{k+1} r \cdot 2^r$ $= \sum_{r=1}^{k} r \cdot 2^r + (k+1) \cdot 2^{k+1}$ $= (k-1)2^{k+1} + 2 + (k+1) \cdot 2^{k+1}$ $= 2k \cdot 2^{k+1} + 2$ $= k \cdot 2^1 \cdot 2^{k+1} + 2$ $= k \cdot 2^1 \cdot 2^{k+1} + 2$ $= k \cdot 2^{k+2} + 2$ $= RHS$ $\therefore \text{ True for } n = k + 1$ 3. If the result is true for $n = k$ it is also true for $n = k+1$		2. Assume true for $n = k$	•
Prove true for $n = k + 1$ ie. Prove $\sum_{r=1}^{k+1} r \cdot 2^r = k \cdot 2^{k+2} + 2$ $LHS = \sum_{r=1}^{k+1} r \cdot 2^r$ $= \sum_{r=1}^{k} r \cdot 2^r + (k+1) \cdot 2^{k+1}$ $= (k-1)2^{k+1} + 2 + (k+1) \cdot 2^{k+1}$ $= 2k \cdot 2^{k+1} + 2$ $= k \cdot 2^1 \cdot 2^{k+1} + 2$ $= k \cdot 2^1 \cdot 2^{k+1} + 2$ $= k \cdot 2^{k+2} + 2$ $= RHS$ $\therefore \text{ True for } n = k + 1$ 3. If the result is true for $n = k$ it is also true for $n = k+1$		ie. Assume $\sum_{k=0}^{k} r \cdot 2^{r} = (k-1) \cdot 2^{k+1} + 2$	
ie. Prove $\sum_{r=1}^{k+1} r \cdot 2^r = k \cdot 2^{k+2} + 2$ $LHS = \sum_{r=1}^{k} r \cdot 2^r + (k+1) \cdot 2^{k+1}$ $= (k-1)2^{k+1} + 2 + (k+1) \cdot 2^{k+1}$ $= 2k \cdot 2^{k+1} + 2$ $= k \cdot 2^1 \cdot 2^{k+1} + 2$ $= k \cdot 2^1 \cdot 2^{k+1} + 2$ $= k \cdot 2^{k+2} + 2$ $= RHS$ $\therefore \text{ True for } n = k+1$ 3. If the result is true for $n = k$ it is also true for $n = k+1$		Fil	
LHS = $\sum_{r=1}^{k+1} r \cdot 2^r$ = $\sum_{r=1}^{k} r \cdot 2^r + (k+1) \cdot 2^{k+1}$ = $(k-1)2^{k+1} + 2 + (k+1) \cdot 2^{k+1}$ = $2k \cdot 2^{k+1} + 2$ = $k \cdot 2^1 \cdot 2^{k+1} + 2$ = $k \cdot 2^{k+2} + 2$ = $k \cdot 2^1 \cdot 2^{k+1} + 2$ = $k \cdot 2^1 \cdot 2^{k+1} + 2$ = $k \cdot 2^1 \cdot 2^k \cdot 2^k + 2$ = $k \cdot 2^1 \cdot 2^k \cdot 2^k + 2$ = $k \cdot 2^1 \cdot 2^k \cdot 2^k + 2$ = $k \cdot 2^1 \cdot 2^k \cdot 2^k \cdot 2^k + 2$ = $k \cdot 2^1 \cdot 2^k $		·	
$= \sum_{r=1}^{k} r \cdot 2^r + (k+1) \cdot 2^{k+1}$ $= (k-1)2^{k+1} + 2 + (k+1) \cdot 2^{k+1}$ $= 2k \cdot 2^{k+1} + 2$ $= k \cdot 2^1 \cdot 2^{k+1} + 2$ $= k \cdot 2^{k+2} + 2$ $= RHS$ $\therefore \text{ True for } n = k+1$ 3. If the result is true for $n = k$ it is also true for $n = k+1$		ie. Prove $\sum_{r=1}^{\infty} r \cdot 2^r = k \cdot 2^{k+2} + 2$	
$= \sum_{r=1}^{k} r \cdot 2^r + (k+1) \cdot 2^{k+1}$ $= (k-1)2^{k+1} + 2 + (k+1) \cdot 2^{k+1}$ $= 2k \cdot 2^{k+1} + 2$ $= k \cdot 2^1 \cdot 2^{k+1} + 2$ $= k \cdot 2^{k+2} + 2$ $= RHS$ $\therefore \text{ True for } n = k+1$ 3. If the result is true for $n = k$ it is also true for $n = k+1$		$LHS = \sum_{r=0}^{k+1} r \cdot 2^r$	
$= (k-1)2^{k+1} + 2 + (k+1) \cdot 2^{k+1}$ $= 2k \cdot 2^{k+1} + 2$ $= k \cdot 2^{1} \cdot 2^{k+1} + 2$ $= k \cdot 2^{k+2} + 2$ $= RHS$ $\therefore \text{ True for } n = k+1$ 3. If the result is true for $n = k$ it is also true for $n = k+1$		774	•
$= 2k \cdot 2^{k+1} + 2$ $= k \cdot 2^{1} \cdot 2^{k+1} + 2$ $= k \cdot 2^{k+2} + 2$ $= RHS$ $\therefore \text{ True for } n = k + 1$ 3. If the result is true for $n = k$ it is also true for $n = k+1$, r→	
$= k \cdot 2^{k} \cdot 2^{k+1} + 2$ $= k \cdot 2^{k+2} + 2$ $= RHS$ $\therefore \text{ True for } n = k+1$ 3. If the result is true for $n = k$ it is also true for $n = k+1$		$= (k-1)2^{k+1} + 2 + (k+1) \cdot 2^{k+1}$	A STATE OF THE STA
$= k \cdot 2^{k+2} + 2$ $= RHS$ $\therefore \text{ True for } n = k+1$ 3. If the result is true for $n = k$ it is also true for $n = k+1$		$=2k.2^{k+1}+2$	
= RHS ∴ True for n = k+1 3. If the result is true for n = k it is also true for n = k+1		$= k.2^{1}.2^{k+1} + 2$	
 ∴ True for n = k+1 3. If the result is true for n = k it is also true for n = k+1 		$=k.2^{k+2}+2$	
3. If the result is true for $n = k$ it is also true for $n = k+1$		= RHS	
		$\therefore \text{ True for } n = k+1$	
Since the fresht is the for $n-1$ it is also the for $n=1+1=2$, $n=2+1=3$, etc. Hence, by the principle of mathematical induction, the result is true for all positive integral values of n .		Since the tresult is true for $n = 1$ it is al $n = 1 + 1 = 2$, $n = 2 + 1 = 3$, etc. Hence, by the principle of mathematics	so true for al induction,

PE3	(c) (i) No. of arrangements = $16!$ $\approx 2.09 \times 10^{13}$	1 mark Correct answer.
PE3	(ii) No. of groups of 8 = ${}^8C_4 \times {}^8C_4$ = 70 × 70	2 marks Correct solution, including evaluation of combinations or any other method.
	= 4900 [4 girl prefects chosen from 8 x 4 boy prefects chosen from 8]	1 mark Partially correct solution.
PE3	(iii) No. of front row arrangements $= 2 \times {}^{7}C_{3} \times {}^{7}C_{3} \times 6!$ $= 2 \times 35 \times 35 \times 720$ $= 1764000$ {Captains arranged in 2 ways \times 3 more girl prefects chosen from the 7	2 marks Correct solution, including evaluation of combinations or any other method. 1 mark Partially correct solution.
	remaining × 3 more boy prefects chosen from the 7 remaining × 6! ways that the prefects (oot captains) can be seated.]	
	į	
And the state of t		
L		

	1077 t T 1010				
Year 12 Mathematics Extension 1 Half Yearly Examination 2010					
Question N	Question No. 4 Solutions and Marking Guidelines Outcomes Addressed in this Question				
HE4 uses	the relationship between functions, inverse functions and t	heir derivatives			
Outcome	Solutions	Marking Guidelines			
	(a) Let $\theta = \cos^{-1}\left(\frac{4}{\sqrt{21}}\right)$ $\therefore \cos \theta = \frac{4}{\sqrt{21}}$	2 marks Correct solution 1 mark Substantially correct solution, demonstrating a knowledge of the meaning of inverse trig. functions.			
	On a diagram: $ \sqrt{5} \frac{\sqrt{21}}{\theta} $ $ \tan\left(\cos^{-t}\frac{4}{\sqrt{21}}\right) = \tan\theta $ $ = \frac{\sqrt{5}}{4} $				
HE4	(b) (i) $\tan(\alpha + \beta) = \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha \tan\beta}$	1 mark Correct expansion given.			
HE4	(ii) 1.et $\alpha = \tan^{-1}\left(2\sqrt{2} - 3\right)$ and $\beta = \tan^{-1}\left(\sqrt{2}\right)$ $\therefore \tan \alpha = 2\sqrt{2} - 3$ and $\tan \beta = \sqrt{2}$ Now, $\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$ $= \frac{2\sqrt{2} - 3 + \sqrt{2}}{1 - \left(2\sqrt{2} - 3\right)\sqrt{2}}$ $= \frac{3\sqrt{2} - 3}{1 - 4 + 3\sqrt{2}}$ $= \frac{3\sqrt{2} - 3}{3\sqrt{2} - 3}$ $= 1$ $\therefore (\alpha + \beta) = \tan^{-1}(1)$ $= \frac{\pi}{4}$ ie. $\tan^{-1}\left(2\sqrt{2} - 3c\right) + \tan^{-1}\left(\sqrt{2}\right) = \frac{\pi}{4}$	2 marks Correct solution. 1 mark Substantial progress towards correct solution including demonstration of knowledge of the relationship between the trig. function and its inverse.			
HIE4	(c) $f(x) = 3\sin^{-1}(3-2x)$ Domain: $-1 \le (3-2x) \le 1$ $-4 \le -2x \le -2$ $2 \ge x \ge 1$ See graph on following page.	3 marks Correctly drawn graph showing correct domain and range and correct orientation. 2 marks Substantially correct graph with single error in domain, range or orientation. 1 mark Demonstrates some significant knowledge of how inverse trig, graphs are drawn.			

		3 44-3-4 2010			
Year :	Traditional Extension 1	C assessment task 4 2010			
Quest	Question No. 5 Solutions and Marking Guidelines				
	Outcomes Addressed in this Question	1:00			
PE5	Determines derivatives which require the application of more than one rule of	ппетеппанон			
HE6	Determines integrals by reduction to standard form through a given substitution	n j			
H8	Uses techniques of integration to calculate areas and volumes	_			
HE4	Uses the relationship between functions, inverse functions and their derivative	1 mark - correct answer			
	a)	1 mark - confect answer			
	$\int \frac{1}{\sqrt{9-x^2}} dx = \sin^{-1} \frac{x}{3} + c$	-			
	b)	3 marks - correct solution			
		2 marks - substantial progress			
	$\int_{-\sqrt{x^2+4x-3}}^{2} dx = \int_{-2\sqrt{y}}^{9} \frac{du}{2\sqrt{y}}$	towards correct solution			
	1 42 +42 2 2 2 4 -	1 mark - some progress towards correct solution			
	$=\frac{1}{2}\int_{0}^{9}u^{-\frac{1}{2}}du$	towards correct solution			
	$=\frac{1}{2}\left[\frac{u^{\frac{1}{2}}}{\frac{1}{2}}\right]_{2}^{9}$				
	$=\frac{1}{2}\left \frac{u^2}{u^2}\right $				
	$ 2 \underline{1} $				
	$\begin{bmatrix} 2 \end{bmatrix}_2$				
	$=3-\sqrt{2}$	3			
		2 marks - correct coordinates			
	c) i) $A(3,\pi)$	1 mark - correct value for x			
		or y			
	b) ii)	2 marks - correct solution			
1	$dy = 2x + 3$ $dy = -1(x) + 2 + 1(0 + x^2) + \frac{1}{2} + 2x$	1 mark – substantial progress towards correct solution			
	$\frac{dy}{dx} = \frac{2x}{3} \frac{3}{\sqrt{9 - x^2}} + \sin^{-1}\left(\frac{x}{3}\right) \cdot 2 + 2 \cdot \frac{1}{2} \left(9 - x^2\right)^{\frac{1}{2}} - 2x$	towards correct solution			
	$= \frac{2x}{\sqrt{9-x^2}} + 2\sin^{-1}\left(\frac{x}{3}\right) - \frac{2x}{\sqrt{9-x^2}}$				
	$=2\sin^{-1}\left(\frac{x}{3}\right)$				
L					
	c) iii)	2 marks - correct solution 1 mark - substantial progress			
	$\int_{0}^{3} 2\sin^{-1}\left(\frac{x}{3}\right) dx = \left[2x\sin^{-1}\left(\frac{x}{3}\right) + 2\sqrt{9 - x^{2}}\right]_{0}^{3}$	towards correct solution			
	0 (-) [(-)				
	$= \left(6\sin^{-1}(1) + 2\sqrt{9-9}\right) - \left(0 + 2\sqrt{9}\right)$				
	$=(3\pi-6)$ square units				
-					

;

Year 12	Mathematics Extension 1	Trial HSC Examination 2010
Question 6	Solutions and Marking Guidelines	
	Outcomes Addressed in this Question	

PE3 solves problems involving permutations and combinations, inequalities, polynomials, circle geometry and parametric representations

HE7 evaluates mathematical solutions to problems and communicates them in an appropriate form

Part	Solutions	Marking Guidelines
PE3	a) $\frac{2}{x} < 1$ $\frac{2}{x} \times x^2 < 1 \times x^2$ (multiplying by positive, $x \neq 0$)	2 marks : correct solution 1 mark : substantial progress towards correct solution
не7	$2x - x^{2} < 0$ $x(2-x) < 0$ $x < 0 \text{ and } x > 2$ 0 $x < 0 \text{ and } x > 2$ $x < 0 \text{ and } x > 2$ $x < 0 \text{ and } x > 2$ $x < 0 \text{ and } x > 2$ $x < 0 \text{ and } x > 2$	2 marks: correct solution 1 mark: correct value for α
	$\therefore \sqrt{3}\cos x - \sin x = 2\cos x \cos \alpha - 2\sin x \sin \alpha$ Equating like coefficients, $\sqrt{3} = 2\cos \alpha$, $-1 = -2\sin \alpha$ $\therefore \cos \alpha = \frac{\sqrt{3}}{2}, \sin \alpha = \frac{1}{2}$ As $\sin positive quadrants 1, 2 & \cos positive in quadrants 1, 4 \alpha is in quadrant 1. \therefore \alpha = \frac{\pi}{6} \therefore \sqrt{3}\cos x - \sin x = 2\cos\left(x + \frac{\pi}{6}\right)$	
HE7	(ii) Maximum value of $\sqrt{3}\cos x - \sin x$ is when $2\cos\left(x + \frac{\pi}{6}\right)$ is a maximum which occurs when $\cos\left(x + \frac{\pi}{6}\right) = 1$. \therefore maximum value is $2 \times 1 = 2$. $\cos\left(x + \frac{\pi}{6}\right) = 1$ when $x + \frac{\pi}{6} = 0$, 2π , \dots i.e. when $x = \frac{-\pi}{6}$, $2\pi - \frac{\pi}{6}$, \dots	2 marks: correct answers 1 mark: one correct answer or equivalent

HE7

c) If $3\sin x - 2\cos x = 2$ and $t = \tan \frac{x}{2}$, $3 \times \frac{2t}{1+t^2} - 2 \times \frac{1-t^2}{1+t^2} = 2$ $6t - 2(1-t^2) = 2(1+t^2)$ $6t - 2 + 2t^2 = 2 + 2t^2$ 6t = 4 $t = \frac{2}{3}$ $\therefore \tan \frac{x}{2} = \frac{2}{3}$ $\therefore \tan \frac{x}{2} = \frac{2}{3}$ Testing $x = \pi$ as a solution to $3\sin x - 2\cos x = 2$: $3\sin \pi - 2\cos \pi = 0 - 2(-1) = 2$ $\therefore \text{ true for } x = \pi$ $\therefore x = 2n\pi + 2\tan^{-1}\frac{2}{3}$ and $x = (2n+1)\pi$ for any integer n

4 marks: correct solution
3 marks: substantial
progress towards correct
solution
2 marks: significant
progress towards correct
solution
1 mark: correct use of t
results to solve equation or
correct use of general

solution to solve equation

Year 12	Mathematics Extension 1	HSC assessment task 4 2010
Question N	5. 7 Solutions and Marking Guidelines	
	Outcomes Addressed in this Questio	n
PE3 Solv	es problems involving circle geometry	
PE6 Mak	es comprehensive use of mathematical language, diagrams and r	notation for communicating in
	de variety of situations	
a)	$f(x) = e^x - x - 2$ $x_1 = 1.5 - \frac{e^{1.5} - 1.5 - 2}{e^{1.5} - 1}$	2 marks - correct solution 1 mark - substantial progress towards correct solution
A DOMESTIC OF THE POST OF THE	$f'(x) = e^x - 1$ =1.5 - $\frac{0.98168}{3.48168}$ ≈ 1.22	
· LX P	7.	1 mark - correct explanation
b) i)		-
	The domain of $2 \log x$ is $x>0$.	
	Changing the function restricts the domain, so half the graph would be lost.	
b) ii) All real x , $x \neq 0$ and $x \neq \pm 1$	2 marks – correct domain 1 mark – either $x \neq 0$ or $x \neq \pm 1$
b) ii	$\frac{dy}{dx} = \frac{\log_{e}(x^{2}) \cdot 1 - x \cdot \frac{2x}{x^{2}}}{\left(\log(x^{2})\right)^{2}}$ $= \frac{\log_{e}(x^{2}) - 2}{\left(\log(x^{2})\right)^{2}}$	2 marks — correct solution 1 mark — substantial progress towards correct solution
e)	i) $\angle ACE = 36^{\circ}$ (alternate segment theorem)	1 mark - correct answer with
c)	ii) $\angle CAE = 90^{\circ}$ (angle in a semicircle) $\angle CEA + 90^{\circ} + 36^{\circ} = 180^{\circ}$ (angle sum of $\triangle ACE$) $\angle CEA = 54^{\circ}$ $\therefore \angle ADC = 54^{\circ}$ (angles on same arc)	2 marks – correct answer wit correct reasons 1 mark – substantial progress towards correct solution

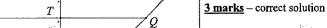
Year 12	Mathematics Extension 1	TRIAL Exam 2010
Question No. 8	Solutions and Marking Guidelines	
	Outcomes Addressed in this Question	

PE3 solves problems involving polynomials and parametric representations

PE4 uses the parametric representation together with differentiation to identify geometric properties of parabolas

	Solutions	Marking Guidelines
(a)	$P(x) = x^3 - 3x^2 - ax + 2$	2 marks - correct solution
PE3	$P(-3) = (-3)^3 - 3(-3)^2 - a(-3) + 2 = 4$ $4 = -27 - 27 + 3a + 2$	1 mark – substantially correct solution
	56 = 3 <i>a</i>	
	$a = \frac{56}{3}$	40 -
(b)		1 mark correct solution
		•
(c) (i)	$P(2ap,ap^2), m=p$	
	Equation of tangent is	
PE3	$y - y_1 = m(x - x_1)$ $y - ap^2 = p(x - 2ap)$	1 mark - correct solution
	$y - ap^2 = p(x - 2ap^2)$ $y - ap^2 = px - 2ap^2$	
	$px - y - ap^2 = 0$	
Ø (ii)	tangent at P is $y = px - ap^2$	
	tangent at R is $y = qx - aq^2$	
	solve simult $px - ap^2 = qx - aq^2$	2 marks - correct solution
	$px - qx = ap^2 - aq^2$	1 mark - substantially correct
PE3	x(p-q) = a(p-q)(p+q)	solution
	x = a(p+q)	
	$y = p[a(p+q)] - ap^2$	
	= apq so $R = (a(p+q), apq)$	
	SOR = (u(p + q), upq)	

(c) (iii) axis of parabola is x = 0 (1)


chord PQ is $y = \frac{(p+q)x_*}{2} - apq$ (2)

sub (1) into (2) y = 0 - apqso T = (0, -apq)

(c) (iv)

PE3

PE4

 $\frac{2\ marks}{solution} - substantially correct$

1 mark - correct solution

1 mark - partial progress towards correct solution

$$R = (a(p+q), apq)$$
 is...

$$R = (a(p+q), apq) \text{ is...}$$
on directrix, $y = -a$ and on axis, $x = 0$
ie $apq = -a$ ie $a(p+q) = 0$

$$pq = -1 \dots(1) \qquad p+q = 0, \text{ as } x \neq 0$$

$$p = -q \dots(2)$$

$$\therefore p, q = \pm 1$$

$$P(2ap,ap^{2}) \Rightarrow P(2ap,a)$$

$$Q(2aq,aq^{2}) \Rightarrow Q(-2ap,a)$$

$$R(a(p+q),apq) \Rightarrow R(0,-a)$$

$$T(0,-apq) \Rightarrow T(0,a)$$

$$m_{PQ} = \frac{ap^2 - ap^2}{2apr - (-2ap)} = 0$$

$$RT \text{ is vertiacal (axis)}$$

$$\therefore PQ \perp RT$$

$$\Rightarrow ARTR \text{ is right angle}$$

distance $PT = 2a (p = \pm 1)$ distance TR = 2a

 $\therefore PQ \perp RT$ is isosceles ie $\triangle PTR$ is right angled

 \mid So $\triangle PTR$ is an isosceles right angled triangle.