\qquad
\qquad

HURLSTONE AGRICULTURAL HIGH SCHOOL

YEAR 122010

MATHEMATICS EXTENSION 1

TRIAL HIGHER SCHOOL CERTIFICATE

Examiners: P. Biczo, S. Faulds, S. Gee, S. Hackett, G. Rawson

General Instructions

- Reading time : 5 minutes
- Working time : 2 hours
- Attempt all questions
- Start a new sheet of paper for each question
- All necessary working should be shown
- This paper contains 8 questions worth 10 marks each. Total Marks: $\mathbf{8 0}$ marks
- Marks may not be awarded for careless or badly arranged work
- Board approved calculators and mathematical templates may be used
- This examination paper must not be removed from the examination room

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x=\quad \frac{1}{n+1} x^{n+1}+C, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x=\quad \ln x+C, x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}+C, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x+C, \quad a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x+C, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x+C, a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x+C, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}+C, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}+C, a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right)+C, x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)+C
\end{aligned}
$$

QUESTION 1. Start a new answer booklet.
(a) Let $A(4,-1)$ and $B(-3,2)$ be points on the number plane. Find the coordinates of the point P which divides the interval $A B$ internally in the ratio 3:2.
(b) (i) Prove that $\cos 2 x=1-2 \sin ^{2} x$.
(ii) On the same diagram, sketch the curves $y=\cos 2 x$ and $y=2 \sin ^{2} x$, for $0 \leq x \leq \pi$.
(iii) Find the points of intersection of the two curves, in the domain $0 \leq x \leq \pi$.
(iv) Determine the acute angle between the two curves at the point where $x=\frac{\pi}{6}$.

QUESTION 2. Start a new answer booklet.
(a) Newton's Law of Cooling states that the rate of change in the temperature, T°, of a body is proportional to the difference between the temperature of the body and the surrounding temperature, P°.
(i) If A and k are constants, show that $T=P+A e^{k t}$ satisfies the equation
$\frac{d T}{d t}=k(T-P)$.
(ii) A cup of tea with temperature $100^{\circ} \mathrm{C}$ is too hot to drink. If two minutes later, the temperature has dropped to $93^{\circ} \mathrm{C}$ and the surrounding temperature is $23^{\circ} \mathrm{C}$, calculate A and k.
(iii) How long, to the nearest minute, will it take for the tea to reach the drinkable temperature of $80^{\circ} \mathrm{C}$?
(b) A particles displacement x centimetres from O at time t seconds, is given by $x=3 \cos \left(2 t+\frac{\pi}{3}\right)$.
(i) Express the acceleration as a function of displacement and hence show the the particle undergoes simple harmonic motion about the origin O.
(ii) Find the value of x for which the speed is a maximum and determine this speed.

QUESTION 3. Start a new answer booklet.
(a) Given $6^{k}-1$ is divisible by 5 for all positive integral values of k, prove that $6^{k+1}-1$ is also divisible by 5 .
(b) By the process of mathematical induction, prove the following true for all positive integers n :

$$
\sum_{r=1}^{n} r \cdot 2^{r}=(n-1) \cdot 2^{n+1}+2
$$

(c) At a school prefect induction ceremony, 16 prefects (8 girls and 8 boys) were to be seated at the front of hall in two rows.
(i) How many different seating arrangements of the 16 prefects are possible?
(ii) If 4 girls and 4 boys were to be chosen at random to fill the back row, how many different groups of 8 can be chosen to fill the back row?
(iii) The middle two seats of the front row were to be occupied by the girl school captain and the boy school captain. If the remaining seats in this row were to be filled by 3 girls and 3 boys chosen at random from the 14 remaining prefects, how many possible arrangements for front row seating are there?

QUESTION 4. Start a new answer booklet.
(a) Find the exact value of: $\tan \left[\cos ^{-1}\left(\frac{4}{\sqrt{21}}\right)\right]$
(b) (i) Write down the expansion for: $\tan (\alpha+\beta)$
(ii) Use the result in (i) above to evaluate, in exact form:

$$
\tan ^{-1}(2 \sqrt{2}-3)+\tan ^{-1}(\sqrt{2})
$$

(c) For the function $f(x)=3 \sin ^{-1}(3-2 x)$
(i) Draw a neat sketch of the graph of the function.
(ii) Find the derivative of the function.

QUESTION 5. Start a new answer booklet.
(a) Find $\int \frac{1}{\sqrt{9-x^{2}}} d x$.
(b) Use the substitution $u=x^{2}+4 x-3$ to evaluate $\int_{1}^{2} \frac{x+2}{\sqrt{x^{2}+4 x-3}} d x$
(c) The graph of $y=2 \sin ^{-1}\left(\frac{x}{3}\right)$ is shown below

(i) Write down the coordinates of point A.
(ii) Differentiate $y=2 x \sin ^{-1}\left(\frac{x}{3}\right)+2 \sqrt{9-x^{2}}$
(iii) Hence, or otherwise, find the shaded area.

QUESTION 6. Start a new answer booklet.
(a) Solve the inequality $\frac{2}{x}<1$
(b) (i) Express $\sqrt{3} \cos x-\sin x$ in the form $r \cos (x+\alpha)$, where $r>0$ and α is in radians. Justify your answer.
(ii) What is the maximum value of $\sqrt{3} \cos x-\sin x$ and the smallest positive value of x for which it occurs?
(c) Using the substitution $t=\tan \frac{x}{2}$, find the general solution of

$$
3 \sin x-2 \cos x=2 \text {. }
$$

QUESTION 7. Start a new answer booklet.
(a) One root of the equation $e^{x}-x-2=0$ lies between $x=1$ and $x=2$. Use one application of Newton's method, with a starting value of $x=1.5$, to approximate the root to two decimal places.
(b) John considered the curve $y=\frac{x}{\log _{e}\left(x^{2}\right)}$
(i) John was about to change $\log _{e}\left(x^{2}\right)$ to $2 \log _{e} x$, but then realised this would actually alter the graph itself. Briefly explain why.
(ii) Accurately describe the domain.
(iii) Find the derivative of the function.

2
(c)

$F B$ is a tangent meeting a circle at A. CE is a diameter, O is the centre and D lies on the circumference. $\angle B A E=36^{\circ}$.
O is the centre and D lies on the circumference. $\angle B A E=36^{\circ}$.
(i) Find the size of $\angle A C E$, giving reasons.
(ii) Find the size of $\angle A D C$, giving reasons.

QUESTION 8. Start a new answer booklet.
(a) When $x^{3}-3 x^{2}-a x+2$ is divided by $x+3$, the remainder is 4 . Find the value of a.
(b) Sketch the curve $y=(3-x)(x+1)^{2}$ (it is not necessary to find stationary points)
(c) $\quad P\left(2 a p, \mathrm{ap}^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ are two points on the parabola $x^{2}=4 a y . R$ is the point of intersection of the tangents to the parabola at P and Q.
(i) Show that the equation of the tangent to the parabola at P is given by: $p x-y-a p^{2}=0$. You may assume that the gradient of the tangent is p.
(ii) Show that the tangents to the parabola at P and Q intersect at the point $R=(a(p+q), a p q)$.
(iii) It is given that the equation of the chord $P Q$ is

$$
y=\frac{(p+q)}{2} x-a p q .
$$

(DO NOT PROVE THIS)
Point T is the intersection of the chord and the axis of the parabola.
Show that T is the point $(0,-a p q)$.
(iv) If R is on both the axis of the parabola and the directrix, show that triangle $P T R$ is an isosceles right angled triangle.

Year 12	Mathematics Extension 1	Trial HSC Examination 2010
Question 1	Solutions and Marking Guidelines	
	Outcomes Addressed in this Question	

PE2 Uses multi-step deductive reasoming in a variety of contexts
PE6 Makes comprehensive use of mathematical language, diagrams and notation for communicating in a wide variety of situations
H5 Applies appropriate techniques from the study of calculus \& trigonometry
HE7 Evaluates mathematical solutions to problems and communicates them in an appropriate form

(iii) $y=2 \sin ^{2} x$ and $y=\cos 2 x$ meet when $2 \sin ^{2} x=\cos 2 x$. i.e. when $2 \sin ^{2} x=1-2 \sin ^{2} x$

Solving $4 \sin ^{2} x=1$

$$
\begin{aligned}
& 4 \sin ^{2} x=1 \\
& \sin ^{2} x=\frac{1}{4}, \quad \sin x= \pm \frac{1}{2}
\end{aligned}
$$

As solving for $0 \leq x \leq \pi, x$ is in quadrants 1,2
$x=\frac{\pi}{6}, \pi-\frac{\pi}{6}=\frac{\pi}{6}, \frac{5 \pi}{6}$

H5, PE2
(iv) For $y=\cos 2 x, y^{\prime}=-2 \sin 2 x$.

When $x=\frac{\pi}{6}, y^{\prime}=-2 \sin \frac{\pi}{3}=-\sqrt{3}$
For $y=2 \sin ^{2} x, y^{t}=4(\sin x)^{2} \cos x$
$=2 \sin 2 x$
When $x=\frac{\pi}{6}, y^{\prime}=2 \sin \frac{\pi}{3}=\sqrt{3}$.
If θ is the angle between the two curves,
using $\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|, \tan \theta=\left|\frac{\sqrt{3}-(-\sqrt{3})}{1+\sqrt{3} \times(-\sqrt{3})}\right|$
$\therefore \tan \theta=\left|\frac{2 \sqrt{3}}{1-3}\right|=|-\sqrt{3}|$
$\therefore \tan \theta=\sqrt{3}$
$\theta=\frac{\pi}{3}$.

2 marks : correct answers 1 nark : significant progress towards correct solution

3 marks : correct solution 2 marks : substantial progress towards correct solution
1 mark : significant progress towards correct solution

Year 12 Question N	Mathematics Extension 1 Solutions and Marking Guidelines	HSC assessment Task 42010
Outcomes Addressed in this Question		
HE3 uses a variety of strategies to investigate mathematical models of situations involving binomial probability, projectiles, simple harmonic motion, or exponential growth and decay		
Outcome	Solutions	Marking Guidelines
	(i) $\begin{aligned} & T=P+A e^{k t} \\ & A e^{k t}=T-P \\ & \frac{d T}{d t}=k A e^{k t} \\ & \frac{d T}{d t}=k(T-P) \end{aligned}$ (ii) $\begin{aligned} & P=23^{\circ},(T=100, t=0),(T=93, t=2) \\ & 100=23+A e^{\theta}, A=77 \\ & T=23+77 e^{k t} \\ & 93=23+77 e^{2 k} \\ & k \approx-0.0476 \ldots . \end{aligned}$ (iii) $\begin{aligned} & 80=23+77 e^{-0.0476 t} \\ & \frac{80-23}{77}=e^{-0.0476 t} \\ & t=\ln \left(\frac{80-23}{77}\right) \div(-0.0476) \\ & t=6.311 \ldots \min \\ & t \approx 6 \mathrm{~min} \end{aligned}$ (b)	1 mark correct answer 2 marks correct method leading to correct answer I mark substantially correct solution 2 marks correct method leading to correct answer I mark substantiaily correct solution
	(i) $\begin{aligned} & x=3 \cos \left(2 t+\frac{\pi}{3}\right) \\ & \stackrel{0}{x}=\frac{d x}{d t}=-3 \sin \left(2 t+\frac{\pi}{3}\right) \times 2 \\ & \stackrel{0}{x}=\frac{d x}{d t}=-6 \sin \left(2 t+\frac{\pi}{3}\right) \\ & 0 . d^{2} x \\ & x=-6 \cos \left(2 t+\frac{\pi}{3}\right) \times 2 \\ & \stackrel{\pi}{x}=\frac{d^{2} x}{d t^{2}}=-4 \times 3 \cos \left(2 t+\frac{\pi}{3}\right)=-4 x \end{aligned}$ Since acceleration obeys the law $x=-n^{2} x$ the motion is simple harmonic. (ii) $\begin{aligned} & \begin{array}{l} \theta=v=-6 \sin \left(2 t+\frac{\pi}{3}\right) \\ x=-1 \leq \sin \left(2 t+\frac{\pi}{3}\right) \leq 1 \\ \text { maximum spced }=6 \mathrm{~cm} / \text { s occurs when }\left(2 t+\frac{\pi}{3}\right)=\frac{\pi}{2} \\ 2 t=\frac{\pi}{2}-\frac{\pi}{3} \\ 2 t=\frac{\pi}{6} \\ t=\frac{\pi}{12} \\ x=3 \cos \left(2 \times \frac{\pi}{12}+\frac{\pi}{3}\right) \\ x=3 \cos \left(\frac{\pi}{2}\right), 3 \cos \left(2 \pi+\frac{\pi}{2}\right), \ldots \\ x: 0 \text { in all cases } \\ \therefore \text { maximum spced is } 6 \mathrm{~cm} / \mathrm{s} \text { when } x=0 . \end{array} \end{aligned}$	3 marks correct method leading to correct answer 2 marks correct differentials I mark substantially conrect solution 2 marks total 1 mark For each of distance and velocity correct solution

Year 1 Questio	2 Mathematics Extension 1 on No. 5 Solutions and Marking Guidelines	HSC assessment task 42010
Outcomes Addressed in this Question		
PE5 Determines derivatives which require the application of more than one rule of differentiation HE6 Determines integrals by reduction to standard form through a given substitution H8 Uses techniques of integration to calculate areas and volumes HE4 Uses the relationship between functions, inverse functions and their derivatives.		
	a) $\int \frac{1}{\sqrt{9-x^{2}}} d x=\sin ^{-1} \frac{x}{3}+c$	1 mark-corect answer
	b) $\begin{aligned} \int_{i}^{2} \frac{x+2}{\sqrt{x^{2}+4 x-3}} d x & =\int_{2}^{9} \frac{d u}{2 \sqrt{u}} \\ & =\frac{1}{2} \int_{2}^{9} u^{-\frac{1}{2}} d u \\ & =\frac{1}{2}\left[\frac{u^{\frac{1}{2}}}{\frac{1}{2}}\right]_{2}^{9} \\ & =3-\sqrt{2} \end{aligned}$	```3 marks - correct solution 2 marks-substantial progress towards correct solution 1 mark-some progress towards correct solution```
	c) i) $A(3, \pi)$	2 marks-correct coordinates 1 mark-correct value for x or y
	b) ii) $\begin{aligned} \frac{d y}{d x} & =\frac{2 x}{3} \frac{3}{\sqrt{9-x^{2}}}+\sin ^{-1}\left(\frac{x}{3}\right) \cdot 2+2 \cdot \frac{1}{2}\left(9-x^{2}\right)^{-\frac{1}{2}}-2 x \\ & =\frac{2 x}{\sqrt{9-x^{2}}}+2 \sin ^{-1}\left(\frac{x}{3}\right)-\frac{2 x}{\sqrt{9-x^{2}}} \\ & =2 \sin ^{-1}\left(\frac{x}{3}\right) \end{aligned}$	2 marks-correct solution 1 mark-substantial progress towards correct solution
	c) iii) $\begin{aligned} \int_{0}^{3} 2 \sin ^{-1}\left(\frac{x}{3}\right) d x & =\left[2 x \sin ^{-1}\left(\frac{x}{3}\right)+2 \sqrt{9-x^{2}}\right]_{0}^{3} \\ & =\left(6 \sin ^{-1}(1)+2 \sqrt{9-9}\right)-(0+2 \sqrt{9}) \\ & =(3 \pi-6) \text { square units } \end{aligned}$	2 marks - comect solution 1 mark- substantial progress towards correct solution

Year 12	Mathematics Extension 1	Trial HSC Examination
Question 6	Outcomes Addressed in this Question	
PE3solves problems involving permutations and combinations, inequalities, polynomials, circle geometry and parametric representations		

HE7 evaluates mathematical solutions to problems and communicates them in an appropriate form

Part	Solutions	Marking Guidelines
PE3	a) $\frac{2}{x}<1$ $\frac{2}{x} \times x^{2}<1 \times x^{2}$ (multiplying by positive, $x \neq 0$) $2 x-x^{2}<0$ $x(2-x)<0$ $\therefore x<0$ and $x>2$	2 marks : correct solution 1 mark : substantial progress towards correct solution
HE7	b) (i) $\begin{aligned} & \sqrt{3} \cos x-\sin x \equiv r \cos (x+\alpha) \\ & \equiv r(\cos x \cos \alpha-\sin x \sin \alpha) \text { where } \\ & r=\sqrt{(\sqrt{3})^{2}+(-1)^{2}}=2 \\ & \therefore \sqrt{3} \cos x-\sin x=2 \cos x \cos \alpha-2 \sin x \sin \alpha \end{aligned}$ Equating like coefficients, $\sqrt{3}=2 \cos \alpha, \quad-1=-2 \sin \alpha$ $\therefore \cos \alpha=\frac{\sqrt{3}}{2}, \quad \sin \alpha=\frac{1}{2}$ As sin positive quadrants $1,2 \& \cos$ positive in quadrants $1,4 \alpha$ is in quadrant $1 . \quad \therefore \alpha=\frac{\pi}{6}$ $\therefore \sqrt{3} \cos x-\sin x \equiv 2 \cos \left(x+\frac{\pi}{6}\right)$	2 marks : correct solution 1 mark: correct value for r or α 2 marks : correct answers
HE7	(ii) Maximum value of $\sqrt{3} \cos x-\sin x$ is when $2 \cos \left(x+\frac{\pi}{6}\right)$ is a maximum which occurs when $\cos \left(x+\frac{\pi}{6}\right)=1 . \therefore$ maximum value is $2 \times 1=2$. $\cos \left(x+\frac{\pi}{6}\right)=1$ when $x+\frac{\pi}{6}=0,2 \pi, \ldots$ i.e. when $x=\frac{-\pi}{6}, 2 \pi-\frac{\pi}{6}, \ldots$ \therefore maximum value is 2 , and the smallest positive value of x for which it occurs is $\frac{11 \pi}{6}$.	1 mark : one correct answer or equivalent

$$
\text { c) If } 3 \sin x-2 \cos x=2 \text { and } t=\tan \frac{x}{2}
$$

$$
\begin{aligned}
& 3 \times \frac{2 t}{1+t^{2}}-2 \times \frac{1-t^{2}}{1+t^{2}}=2 \\
& 6 t-2\left(1-t^{2}\right)=2\left(1+t^{2}\right) \\
& 6 t-2+2 t^{2}=2+2 t^{2} \\
& 6 t=4 \\
& t=\frac{2}{3} \\
& \therefore \tan \frac{x}{2}=\frac{2}{3} \\
& \therefore \frac{x}{2}=n \pi+\tan ^{-1} \frac{2}{3} \\
& \text { Testing } x=\pi=\pi \text { as a solution to } 3 \sin x-2 \cos x=2: \\
& 3 \sin \pi-2 \cos \pi=0-2(-1)=2 \\
& \therefore \text { true for } x=\pi \\
& \therefore x=2 n \pi+2 \tan ^{-1} \frac{2}{3} \text { and } x=(2 n+1) \pi \text { for any integer } n
\end{aligned}
$$

4 marks : correct solution 4 marks: correct solut
3 marks : substantial 3 marks : substantial
progress towards correct solution
2 marks : significant progress towards correct solution
1 mark : correct use of 1 mark : correct use of t
results to solve equation or comect use of general solution to solve equation

Year
Mathematics Extension
HSC assessment task 42010
Question No. 7 Solutions and Marking Guidelines Outcomes Addressed in this Question
PE3 Solves problems involving circle geometry
PE6 Makes comprehensive use of mathematical language, diagrams and notation for communicating in a wide variety of situations

	a) $\begin{array}{rlrl} f(x)=e^{x}-x-2 & x_{1} & =1.5-\frac{e^{1.5}-1.5-2}{e^{1.5}-1} \\ f^{\prime}(x)=e^{x}-1 & & =1.5-\frac{0.98168}{3.48168} \\ & \approx 1.22 \end{array}$	2 marks - correct solution 1 mark-substantial progress towards correct solution
	b) i) The domain of $\log \left(x^{2}\right)$ is all real $x, x \neq 0$. The domain of $2 \log x$ is $x>0$. Changing the function restricts the domain, so half the graph would be lost.	1 mark-correct explanation
	b) ii) All real $x, x \neq 0$ and $x \neq \pm 1$	$\begin{aligned} & \frac{2 \text { marks }}{\frac{1 \text { mark }}{x \neq \pm 1}}-\text { either } x \neq 0 \text { or } \end{aligned}$
	b) iii) $\begin{aligned} \frac{d y}{d x} & =\frac{\log _{e}\left(x^{2}\right) \cdot 1-x \cdot \frac{2 x}{x^{2}}}{\left(\log \left(x^{2}\right)\right)^{2}} \\ & =\frac{\log _{e}\left(x^{2}\right)-2}{\left(\log \left(x^{2}\right)\right)^{2}} \end{aligned}$	$\begin{array}{\|l\|} \hline \frac{2 \text { marks }}{1 \text { mark-correct solution }} \\ \frac{\text { towards }}{\text { torrect solution }} \end{array}$
	c) i) $\angle A C E=36^{\circ}$ (alternate segment theorem)	1 mark - correct answer with correct reason
	c) ii) $\quad$$\angle C A E=90^{\circ}$ (angle in a semicircle) $\angle C E A+90^{\circ}+36^{\circ}=180^{\circ}$ (angle sum of $\triangle A C E$) $\angle C E A=54^{\circ}$ $\therefore \angle A D C=54^{\circ}$ (angles on same arc)	2 marks - correct answer with correct reasons 1 mark-substantial progress towards correct solution

