

HURLSTONE AGRICULTURAL HIGH SCHOOL

YEAR 12 2011

EXTENSION 1 MATHEMATICS

TRIAL HIGHER SCHOOL CERTIFICATE

Examiners : D. Crancher, J. Dillon, S. Gee, B. Morrison

General Instructions

- Reading time : 5 minutes
- Working time : 2 hours
- Attempt **all** questions.
- Start a new answer booklet for each question making sure your student number is written at the top of each page.
- All necessary working should be shown.
- This paper contains 6 questions worth 14 marks each. Total Marks: 84 marks.
- Marks may not be awarded for careless or badly arranged work.
- Board approved calculators and mathematical templates may be used.
- This examination paper must **not** be removed from the examination room.

Students Name:_____

Teacher:_____

Students are advised that this is a trial examination only and cannot in any way guarantee the content or the format of the 2011 HSC Mathematics Examination.

This page has been left blank intentionally.

QUESTION 1. Start a new answer booklet.

- Find the acute angle between the lines 2x y = 0 and x + 3y = 0a) giving answer correct to the nearest minute.
- A is the point (-2, -1), B is the point (1, 5). b) 2 Find the coordinates of the point Q, which divides AB externally in the ratio 5:2.

c) Solve
$$\frac{3x+2}{x-1} > 2$$
 3

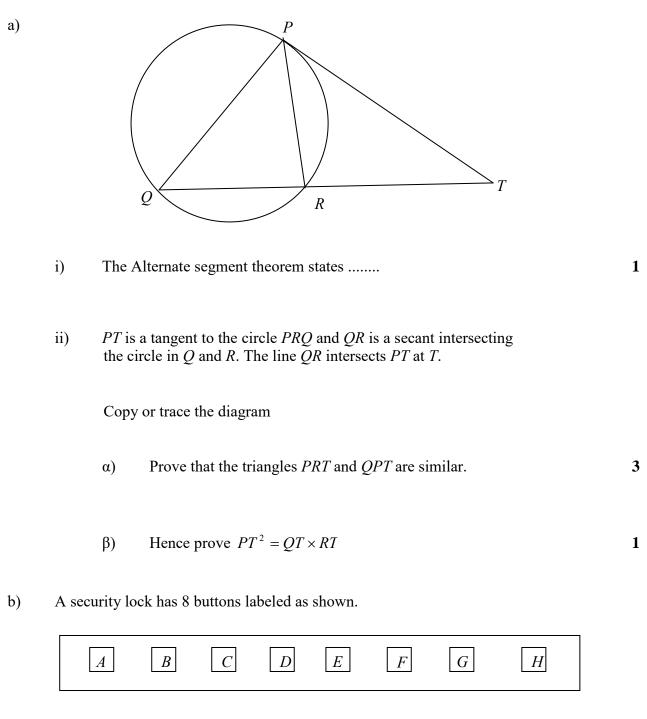
d)
$$\cos A = \frac{3}{5}$$
, where $0 \le A \le \frac{\pi}{2}$ and $\sin B = \frac{5}{13}$, where $0 \le B \le \frac{\pi}{2}$

i) Show that
$$A = 2B$$
 2

ii) Find the exact value of
$$tan(A+B)$$
. 2

e) Show that
$$\frac{\sin 3x - \sin x}{\cos x - \cos 3x} = \cot 2x$$
 3

QUESTION 2. Start a new answer booklet.



Each person using the lock is given a 3 letter code.

i) How many different codes are possible if letters can be repeated and their **1** order is important?

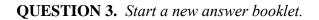
question 2 continued next page...

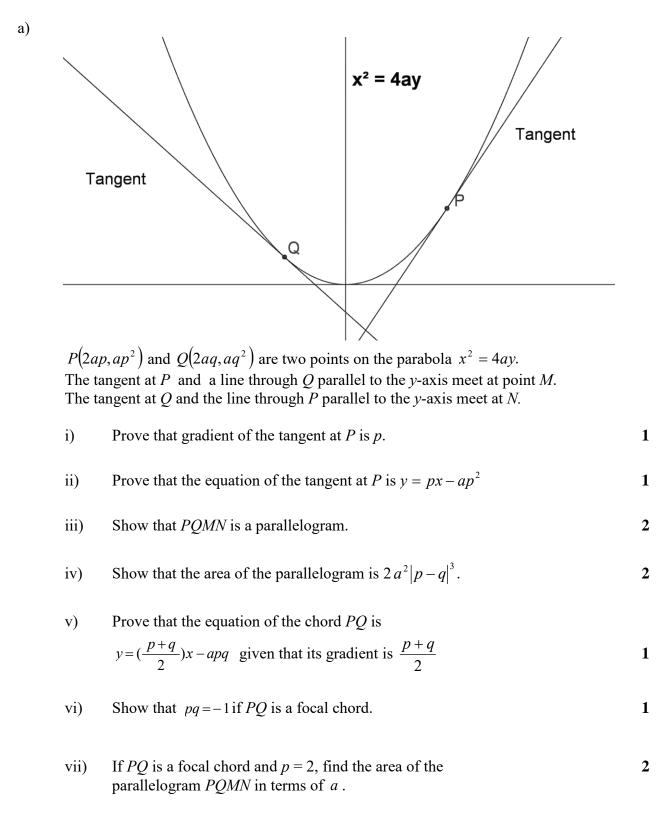
question 2 continued...

c)

d)

ii)	How many different codes are possible if letters cannot be repeated and their order is important?	1
iii)	Now suppose that the lock operates by holding 3 buttons down together, so that order is not important. How many different codes are possible?	1
	the number of nine-letter arrangements that can be made from the letters word <i>GLENFIELD</i> .	2
	eting room contains a round table surrounded by ten chairs. These chairs are inguishable and equally spaced around the table.	
i)	A committee of ten people includes three teenagers. How many seating arrangements are there in which all three teenagers sit together? Give brief reasons for your answer.	2
ii)	Elections are held for the positions of Chairperson and Secretary in a different committee of ten people seated around this table. What is the probability that the two people selected are sitting directly opposite one another? Give brief reasons for your answer.	2





question 3 continued next page...

question 3 continued...

b) $x^3 - 2x^2 - 11x + 12$ has roots α , β , γ . Without finding the values of these roots, find the values of:

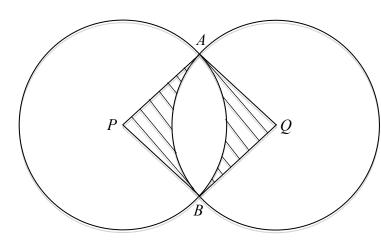
i)
$$\alpha + \beta + \gamma$$
 1

ii)
$$\alpha\beta + \alpha\gamma + \beta\gamma$$
 1

iii)
$$\alpha^2 + \beta^2 + \gamma^2$$
 2

QUESTION 4. Start a new answer booklet.

(a) Two circles centres P and Q respectively have radii 3 cm. They intersect each other at A and B. AB = PQ.



Find the area of the shaded region.

(b) Sketch the curve
$$y = 1 + 3\sin 2x$$
 for $0 \le x \le \pi$.

(c) Find the equation of the tangent to the curve $y = \frac{\cos x}{x}$ at the point $\left(\frac{\pi}{2}, 0\right)$ 3

question 4 continued next page...

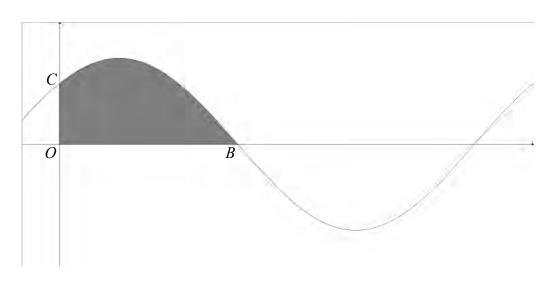
2 2

2

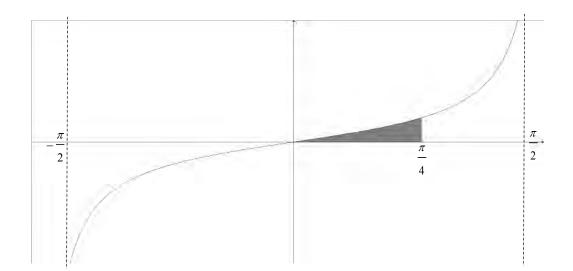
3

question 4 continued...

(d) The graph shows part of the curve $y = \sin x + \cos x$.

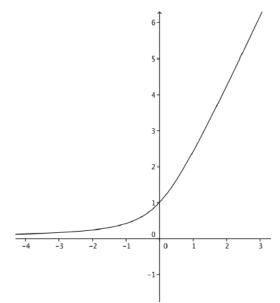


- i) Find the coordinates of the points *B* and *C*.
- ii) Find the area of the shaded region.
- (e) The graph shows part of the curve $y = \tan x$. The shaded region is rotated around the x – axis. Find the volume of the solid of revolution.



QUESTION 5. *Start a new answer booklet.*

(a) Consider the function $f(x) = x + \sqrt{x^2 + 1}$.



i) State the range and domain of f(x).

ii) Show that $f'(x) = \frac{f(x)}{\sqrt{x^2 + 1}}$ and, hence, show that f'(x) > 0 for all real x 2

iii) State the domain and range of
$$f^{-1}(x)$$
, the inverse function of $f(x)$ 1

iv) Show that
$$f^{-1}(x) = \frac{1}{2}(x - \frac{1}{x})$$
 2

(b) i) Find the domain and range of $y = 3\sin^{-1} 2x$ 2

ii) Sketch the graph of
$$y = 3\sin^{-1} 2x$$
 1

(c) Evaluate
$$\int_{-1}^{1} \frac{dx}{\sqrt{2-x^2}}$$
 2

(d) By writing
$$y = \tan^{-1}\sqrt{x}$$
 in the form $x = f(y)$, show that $\frac{dy}{dx} = \frac{1}{2\sqrt{x}(1+x)}$ 3

QUESTION 6. Start a new answer booklet.

a) Evaluate
$$\int_{0}^{1} 2x(1-2x)^4 dx$$
 using the substitution $u = 1-2x$. 3

b) Using the substitution
$$t = \log_e x$$
, integrate $\log_e \left(x^{\frac{1}{x}} \right)$ with respect to x. 3

c) Determine
$$\int \tan^2(x) \sec^2(x) dx$$
 by using the substitution $u = \tan(x)$. 2

d) i) Factorise the polynomial
$$2n^2 + 7n + 6$$
 1

$$6(1^{2} + 2^{2} + 3^{2} + ... + n^{2}) = n(n+1)(2n+1) \text{ for } n \ge 1.$$

$$\lim_{n \to \infty} \left(\frac{1^2 + 2^2 + \dots + n^2}{n^3} \right)$$

END OF EXAMINATION

STANDARD INTEGRALS

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1} + C, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x + C, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax} + C, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax + C, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax + C, \quad a \neq 0$$

$$\int \sec^{2} ax dx = \frac{1}{a} \tan ax + C, \quad a \neq 0$$

$$\int \sec^{2} ax dx = \frac{1}{a} \tan ax + C, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = -\frac{1}{a} \sec ax + C, \quad a \neq 0$$

$$\int \frac{1}{a^{2} + x^{2}} dx = \frac{1}{a} \tan^{-1} \frac{x}{a} + C, \quad a \neq 0$$

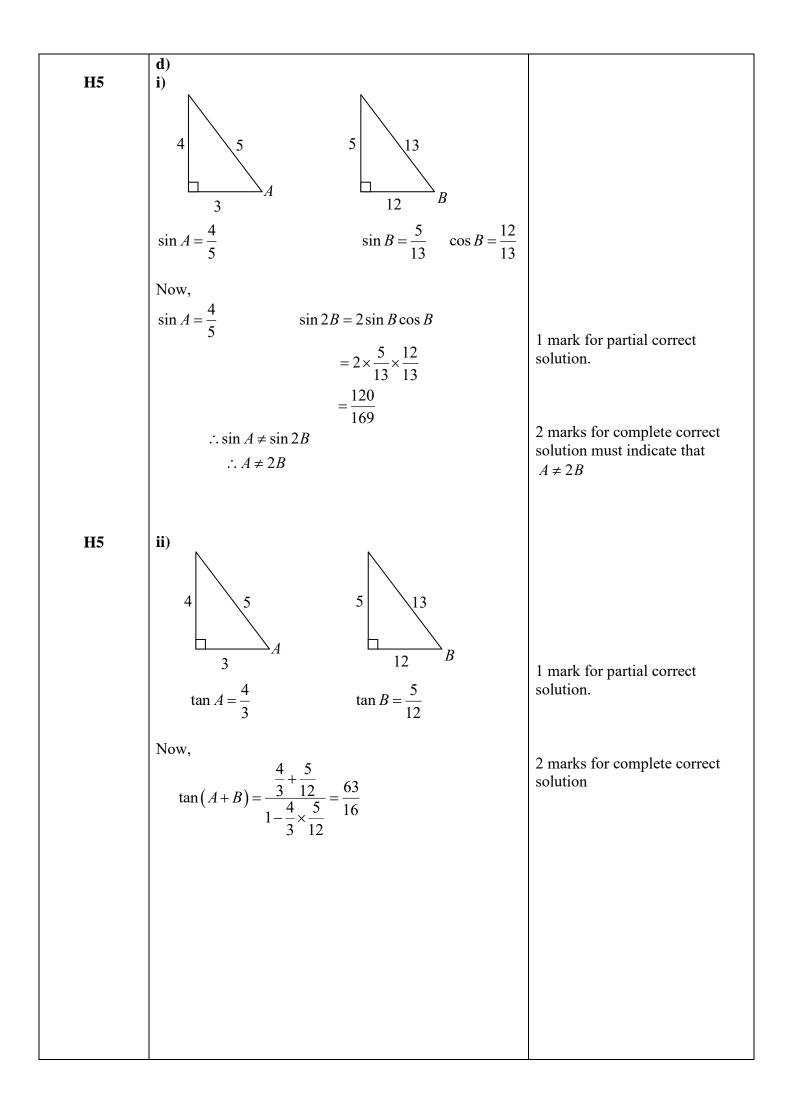
$$\int \frac{1}{\sqrt{a^{2} - x^{2}}} dx = \sin^{-1} \frac{x}{a} + C, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{x^{2} - a^{2}}} dx = \ln \left(x + \sqrt{x^{2} - a^{2}}\right) + C, \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^{2} + a^{2}}} dx = \ln \left(x + \sqrt{x^{2} + a^{2}}\right) + C$$

$$\text{NOTE : } \ln x = \log_{e} x, \quad x > 0$$

Year 12 Extension 1 Mathematics Yearly Examination 2011					
Question No.1	Question No.1 Solutions and Marking Guidelines				
Outcomes Addressed in this Question H5-applies appropriate techniques from the study of calculus, geometry, probability, trigonometry and series to solve problems. PE3-solves problems involving permutations and combinations, inequalities, polynomials, circle geometry					
and parametric Outcome	Solutions	Marking Guidelines			
	1. a)				
Н5 Н5	$2x - y = 0 \qquad x + 3y = 0$ $y = 2x \qquad y = -\frac{1}{3}x$ $m_1 = 2 \qquad m_2 = -\frac{1}{3}$ $\therefore \tan \theta = \left \frac{2 - \left(-\frac{1}{3}\right)}{1 + (2)\left(-\frac{1}{3}\right)} \right = 7$ $\therefore \theta = 81^{\circ}52' \text{ (to nearest minute)}$ \mathbf{b} $A(-2, -1) B(1, 5)$	 mark for finding correct gradients marks for complete correct solution mark for partial correct 			
	External division ratio: $-5:2$ $x = \frac{-2 \times 2 + -5 \times 1}{-5+2} = 3$, $y = \frac{2 \times -1 + -5 \times 5}{-5+2} = 9$ $\therefore Q(3,9)$	solution 2 marks for complete correct solution			
PE3	c) $\frac{3x+2}{x-1} > 2, x \neq 1$ $\frac{3x+2}{x-1} - 2 > 0$ $(x-1)(3x+2) - 2(x-1)^{2} > 0 [multiply through] \\ by (x-1)^{2} \\ (x-1)[3x+2-2(x-1)] > 0 [factorising] \\ (x-1)(3x+2-2x+2) > 0 \\ (x-1)(x+4) > 0$	 mark for one correct part of solution marks for two correct parts of solution 			
	\therefore Solution is $x < -4$, $x > 1$.	3 marks for complete correct solution			



H5	e)	
	$LHS = \frac{\sin 3x - \sin x}{\cos x - \cos 3x}$ $= \frac{\sin (2x + x) - \sin x}{\cos x - \cos (2x + x)}$ $= \frac{\sin 2x \cos x + \sin x \cos 2x - \sin x}{\cos x - (\cos 2x \cos x - \sin 2x \sin x)}$ $= \frac{\sin 2x \cos x + \sin x \cos 2x - \sin x}{\cos x - \cos 2x \cos x + \sin 2x \sin x}$ $= \frac{2 \sin x \cos^2 x + \sin x (1 - 2 \sin^2 x) - \sin x}{\cos x - (1 - 2 \sin^2 x) \cos x + \sin 2x \sin x}$ $= \frac{2 \sin x \cos^2 x + \sin x - 2 \sin x \sin^2 x - \sin x}{\cos x - \cos x + 2 \sin^2 x \cos x + \sin 2x \sin x}$ $= \frac{2 \sin x \cos^2 x - 2 \sin x \sin^2 x}{2 \sin^2 x \cos x + \sin 2x \sin x}$ $= \frac{2 \sin x (\cos^2 x - \sin^2 x)}{\sin x (2 \sin x \cos x + \sin 2x)}$	 1 mark for one correct part of solution 2 marks for two correct parts of solution
	$= \frac{2 \sin x \cos 2x}{\sin x (\sin 2x + \sin 2x)}$ $= \frac{2 \sin x \cos 2x}{\sin x (2 \sin 2x)}$ $= \frac{2 \sin x \cos 2x}{2 \sin x \sin 2x}$ $= \frac{\cos 2x}{\sin 2x}$ $= \cot 2x$	3 marks for complete correct solution

Year 12	Mathematics Extension 1 Half Yearly Examination	Task 4 Trial HSC 2011		
Question No.	2 Solutions and Marking Guidelines			
	Outcomes Addressed in this Question			
	PE3 solves problems involving permutations and combinations, inequalities, polynomials, circle geometry and parametric representations			
Outcome	Solutions	Marking Guidelines		
	(a) (i)The Alternate segment states that the angle between the chord and the tangent is equal to the angle in the alternate segment.	1 mark correct answer		
	P P R T			
	(ii)(α) In ΔPTR and ΔPQT $\angle TPR = \angle PQT$ (alternates egment theorem) $\angle T$ is common $\therefore \Delta PTR /// \Delta PQT$ (equiangular)	 3 marks correct method leading to correct answer with reasons. 2 marks substantial progress towards correct answer with reasons. 1 mark some progress towards correct solution with reasons 		
	(β) $\frac{PT}{QT} = \frac{RT}{PT}$ (corresponding sides similar triangles in proportion)	1 mark correct reason		
	$\therefore PT^2 = RT \times QT$ (b)			
	$(i) 8 \times 8 \times 8 = 512$	1 mark correct answer		
	(ii) $8 \times 7 \times 6 = 336$	1 mark correct answer		
	$(iii)^{8}C_{3} = 56$	1 mark correct answer		
	(c) $\frac{9!}{2! \times 2!} = 90720 \text{ different possible words}$	2 marks correct method leading to correct answer.1 mark substantial progress towards correct answer.		
	 (d) (i) Sit teenagers first 3! ways then sit remaining people 7! ways 3!×7!= 30240possibilities. 	1mark correct answer. 1 mark correct reason.		
	(ii) Sit chair person or secretary first, does not matter which, only 1 way this can happen. The other can sit in 8! Ways. Total possibilities 9! $P(E) = \frac{8!}{9!} = \frac{1}{9}$	1mark correct answer. 1 mark correct reason.		

nt Task 4 2011			
Question No. 3Solutions and Marking GuidelinesOutcomes Addressed in this Question: PE3, PE4, PE6,			
Marking Guidelines			
<u>The diagram is not</u> required.			
<u>1 mark:</u> complete			
<u>1 mark:</u> complete			
<u>2 marks:</u> complete <u>1 mark:</u> one pair of opposite sides parallel.			

Gradient of PQ = $\frac{p+q}{2}$	
Gradient of NM = $\frac{2apq-aq^2 - 2apq + ap^2}{2ap - 2aq}$	
$=\frac{ap^2-aq^2}{2a(p-q)}$	
$=\frac{p+q}{2}$	
2 Hence, PQ MN and PQMN is a parallelogram	
(iv) Area of PQMN = $ PQ \times QM $	<u>2 marks:</u> Complete
$= \left [2a(p-q)] \times [ap^2 + aq^2 - 2apq] \right $	solution <u>1 mark:</u> Some progress
$=2a^{2}\left (p-q)\times(p^{2}-2pq+q^{2})\right $	
$=2a^{2}\left p-q\right ^{3}$	
(v) Chord PQ has gradient $\frac{p+q}{2}$ and passes through $(2ap, ap^2)$	<u>1 mark:</u>
The equation is $(y - ap^2) = \frac{(p+q)}{2} \times (x - 2ap)$	
i.e. $y - ap^2 = \frac{(p+q)}{2}x - ap^2 - apq$	
Hence, $y = \frac{(p+q)}{2}x - apq$	
(vi) If PQ is a focal chord it passes through (0,a)	<u>1 mark:</u>
Hence $a = 0$ - apq, giving us $pq = -1$	
(vii) Area of PQMN = $2a^2 p-q ^3$	2 marks: Complete
$pq = -1, p = 2, q = \frac{-1}{2}$	solution <u>1 mark:</u> Some progress
Area = $2a^2 \left 2 - \frac{-1}{2} \right ^3$	
Area = $2a^2(\frac{5}{2})^3$ <i>i.e.</i> $\frac{125a^2}{4}$ U ²	

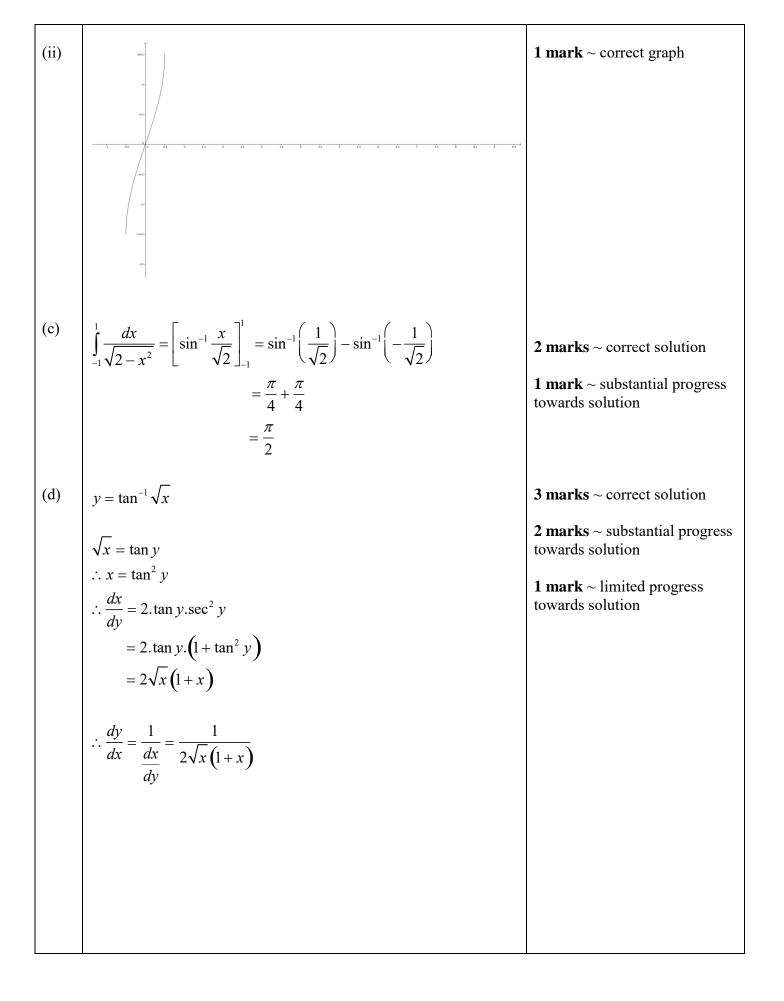
Outcome		Marking Guidelines
		<u>1 mark:</u>
PE3	$(ii)\alpha\beta + \alpha\gamma + \beta\gamma = -11$	<u>1 mark:</u>
	$(iii)\alpha^{2} + \beta^{2} + \gamma^{2} = (\alpha + \beta + \gamma)^{2} - 2(\alpha\beta + \alpha\gamma + \beta\gamma)$ $= 4 - 2 \times -11$	2 marks: Full solution 1 mark: Some progress
	=26	

Year Oues	12Extension 1 Mathematicstion No. 4Solutions and Marking Guidelines	Trial HSC 2011
	Outcome Addressed in this Question	
Н5	applies appropriate techniques from the study of calculus, geom and series to solve problems	etry, probability, trigonometry
	Solutions	Marking Guidelines
(a)	AQPB is a square ∴ Area $AQPB = 9 \text{ cm}^2$	 2 marks ~ correct solution 1 mark ~ substantial progress towards solution
	Area segment $PAB = \frac{1}{2} \cdot 3^2 \cdot \left(\frac{\pi}{2} - \sin\frac{\pi}{2}\right)$ = $\frac{9}{2}\left(\frac{\pi}{2} - 1\right)$ = Area segment BAQ	
(b)	$\therefore \text{Shaded Area} = 9 - 2 \cdot \frac{9}{2} \left(\frac{\pi}{2} - 1 \right) = \left(18 - \frac{9\pi}{2} \right) \text{ cm}^2$	2 marks ~ correct graph
		1 mark ~ correct graph but not enough detail
(c)	$\cos x$	3 marks ~ correct solution
	$y = \frac{\cos x}{x}$ $\frac{dy}{dx} = \frac{x - \sin x - \cos x \cdot 1}{x^2} = \frac{-x \sin x - \cos x}{x^2}$	 2 marks ~ substantial progress towards solution 1 mark ~ limited progress
	At $\left(\frac{\pi}{2}, 0\right)$, $\frac{dy}{dx} = \frac{-x\sin x - \cos x}{x^2} = -\frac{2}{\pi}$ Equation is $y - 0 = -\frac{2}{\pi} \left(x - \frac{\pi}{2}\right)$.	towards solution
(d) (i)	$x = 0, y = 1 \therefore C(0,1)$ $y = 0, \sin x + \cos x = 0 \Rightarrow \tan x = -1 \Rightarrow x = \frac{3\pi}{4}$ $\therefore B\left(\frac{3\pi}{4}, 0\right)$	2 marks ~ correct points 1 mark ~ only one point correct

(ii) Area
$$\int_{0}^{\frac{\pi}{4}} \left((\sin x + \cos x) dx \right) dx$$

 $= \left[-\cos x + \sin x \right]_{0}^{\frac{\pi}{4}}$
 $= -\left(-\frac{1}{\sqrt{2}} \right) + \frac{1}{\sqrt{2}} - \left(-1 + 0 \right)$
 $= \sqrt{2} + 1 u^{2}$
(e) $V = \pi \int_{0}^{\frac{\pi}{4}} ((\sin x)^{2} dx) = \pi \int_{0}^{\frac{\pi}{4}} \tan^{2} x dx$
 $= \pi \int_{0}^{\frac{\pi}{4}} (\sec^{2} x - 1) dx$
 $= \pi \left[-\pi \frac{\pi}{4} \right] u^{4}$
3 marks ~ correct solution
2 marks ~ correct solution
2 marks ~ correct solution
3 marks ~ substantial progress
towards solution
1 mark ~ limited progress
towards solution

Question No. 5Solutions and Marking GuidelinesOutcome Addressed in this QuestionHE4uses the relationship between functions, inverse functions and their derivatives(a) (i)Domain: $x \in {}^{\circ}$ I mark ~ correct(a) (i)f(x) = $x + \sqrt{x^2 + 1} = x + (x^2 + 1)^{\frac{1}{2}}$ 2marks ~ correct(ii)f(x) = $x + \sqrt{x^2 + 1} = x + (x^2 + 1)^{\frac{1}{2}}$ 2marks ~ correct(iii)f(x) = $1 + \frac{x}{\sqrt{(x^2 + 1)}}^2$ 1marks ~ correct(iii)Domain: $x > 0$ (iiii)Domain: $x > 0$ I mark ~ correct(iv)f(x) = $\sqrt{\sqrt{x^2 + 1} + x}$ (iii)Domain: $x > 0$ Range: $y \in {}^{\circ}$ 1(iv)f(x): $y = x + \sqrt{x^2 + 1}$ $\sqrt{\sqrt{x^2 + 1} + x}$ 2mark ~ correctrange1(iv)f(x): $y = x + \sqrt{x^2 + 1}$ $\sqrt{\sqrt{x^2 + 1} + x}$ 2mark ~ correctrange1(iv)f(x): $y = x + \sqrt{y^2 + 1}$ $\sqrt{y^2 + 1} = x - y$ $y^2 + 1 = (x - y)^2 = x^2 - 2xy + y^2$ $\therefore x^2 - 2xy = 1$ $\therefore 2xy = x^2 - 1$ $\therefore y = \frac{x^2 - 1}{2x} = \frac{1}{2} \left(\frac{x^2 - 1}{x} \right) = \frac{1}{2} \left(x - \frac{1}{x} \right)$	rial HSC 2011
HE4 uses the relationship between functions, inverse functions and their derivativesSolutionsMarking G(a)(i)Domain: $x \in {}^{\circ}$ 1 mark ~ correctRange: $y > 0$ 1 $mark \sim correct$ (ii) $f(x) = x + \sqrt{x^2 + 1} = x + (x^2 + 1)^{\frac{1}{2}}$ 2 marks ~ correct $f'(x) = 1 + \frac{1}{2}(x^2 + 1)^{\frac{1}{2}} = 2x$ 1 mark ~ substar $= 1 + x(x^2 + 1)^{\frac{1}{2}}$ 1 mark ~ substar $= 1 + x(x^2 + 1)^{\frac{1}{2}}$ 1 mark ~ correct $= 1 + x(x^2 + 1)^{\frac{1}{2}}$ 1 mark ~ correct $= 1 + x(x^2 + 1)^{\frac{1}{2}}$ 1 mark ~ correct $= 1 + x(x^2 + 1)^{\frac{1}{2}}$ 1 mark ~ correct $= 1 + x(x^2 + 1)^{\frac{1}{2}}$ 1 mark ~ correct $= 1 + x(x^2 + 1)^{\frac{1}{2}}$ 1 mark ~ correct $= \frac{\sqrt{x^2 + 1} + x}{\sqrt{x^2 + 1}}$ 1 mark ~ correct $= \frac{\sqrt{x^2 + 1} + x}{\sqrt{x^2 + 1}}$ 1 mark ~ correct(iii)Domain: $x > 0$ 1 mark ~ correctRange: $y \in {}^{\circ}$ 1 mark ~ correct $f^{-1}(x) : x = y + \sqrt{y^2 + 1}$ 1 mark ~ substar $\sqrt{y^2 + 1} = x - y$ $y^2 + 1 = (x - y)^2 = x^2 - 2xy + y^2$ $\therefore x^2 - 2xy = 1$ $\therefore 2xy = x^2 - 1$ $\therefore y = \frac{x^2 - 1}{2x} = \frac{1}{2}(\frac{x^2 - 1}{x}) = \frac{1}{2}(x - \frac{1}{x})$	
Image: $y > 0$ Image: $y > 0$ Image: $y > 0$ (ii) $f(x) = x + \sqrt{x^2 + 1} = x + (x^2 + 1)^{\frac{1}{2}}$ 2 $f'(x) = 1 + \frac{1}{2}(x^2 + 1)^{\frac{1}{2}} \cdot 2x$ 1 $= 1 + x(x^2 + 1)^{\frac{1}{2}}$ 1 $= 1 + x(x^2 + 1)^{\frac{1}{2}}$ 1 $= 1 + \frac{x}{\sqrt{x^2 + 1}}$ 1 $= \frac{f(x)}{\sqrt{x^2 + 1}}$ 1 $= \frac{1}{2}(x^2 + 1)^2$ 1 $= \frac{1}{2}(x - 1)^2$ 1 $= \frac{1}{2x} = \frac{1}{2}(\frac{x^2 - 1}{x}) = \frac{1}{2}(x - \frac{1}{x})$	
(a)(i) Domain: $x \in {}^{\circ}$ Range: $y > 0$ (ii) $f(x) = x + \sqrt{x^2 + 1} = x + (x^2 + 1)^{\frac{1}{2}}$ $f'(x) = 1 + \frac{1}{2}(x^2 + 1)^{\frac{1}{2}} \cdot 2x$ $= 1 + x(x^2 + 1)^{\frac{1}{2}}$ $= 1 + \frac{x}{\sqrt{x^2 + 1}}$ $= \frac{1 + x(x^2 + 1)^{\frac{1}{2}}}{\sqrt{x^2 + 1}}$ $= \frac{\sqrt{x^2 + 1} + x}{\sqrt{x^2 + 1}}$ $= \frac{f(x)}{\sqrt{x^2 + 1}}$ (iii) Domain: $x > 0$ Range: $y \in {}^{\circ}$ (iv) $f(x): y = x + \sqrt{x^2 + 1}$ $\int_{y^2 + 1} = x - y$ $y^2 + 1 = (x - y)^2 = x^2 - 2xy + y^2$ $\therefore x^2 - 2xy = 1$ $\therefore y = \frac{x^2 - 1}{2x} = \frac{1}{2}(\frac{x^2 - 1}{x}) = \frac{1}{2}(x - \frac{1}{x})$	Luidelines
(ii) Range: $y > 0$ (iii) $f(x) = x + \sqrt{x^2 + 1} = x + (x^2 + 1)^{\frac{1}{2}}$ $f'(x) = 1 + \frac{1}{2}(x^2 + 1)^{\frac{1}{2}} \cdot 2x$ $= 1 + x(x^2 + 1)^{\frac{1}{2}}$ $= 1 + \frac{x}{\sqrt{(x^2 + 1)}}$ $= \frac{\sqrt{x^2 + 1} + x}{\sqrt{(x^2 + 1)}}$ $= \frac{f(x)}{\sqrt{(x^2 + 1)}}$ $= \frac{f(x)}{\sqrt{(x^2 + 1)}}$ (iii) Domain: $x > 0$ Range: $y \in \circ$ (iv) $f(x): y = x + \sqrt{x^2 + 1}$ $\int f^{-1}(x): x = y + \sqrt{y^2 + 1}$ $\sqrt{y^2 + 1} = x - y$ $y^2 + 1 = (x - y)^2 = x^2 - 2xy + y^2$ $\therefore x^2 - 2xy = 1$ $\therefore 2xy = x^2 - 1$ $\therefore y = \frac{x^2 - 1}{2x} = \frac{1}{2}(\frac{x^2 - 1}{x}) = \frac{1}{2}(x - \frac{1}{x})$	
(ii) $f(x) = x + \sqrt{x^{2} + 1} = x + (x^{2} + 1)^{\frac{1}{2}}$ $f'(x) = 1 + \frac{1}{2}(x^{2} + 1)^{\frac{1}{2}} 2x$ $= 1 + x(x^{2} + 1)^{\frac{1}{2}}$ $= 1 + \frac{x}{\sqrt{x^{2} + 1}}$ $= \frac{\sqrt{x^{2} + 1} + x}{\sqrt{x^{2} + 1}}$ $= \frac{f(x)}{\sqrt{x^{2} + 1}}$ $= \frac{f(x)}{\sqrt{x^{2} + 1}}$ (iii) Domain: $x > 0$ Range: $y \in ^{\circ}$ (iv) $f(x): y = x + \sqrt{x^{2} + 1}$ $\int^{-1}(x): x = y + \sqrt{y^{2} + 1}$ $\sqrt{y^{2} + 1} = x - y$ $y^{2} + 1 = (x - y)^{2} = x^{2} - 2xy + y^{2}$ $\therefore x^{2} - 2xy = 1$ $\therefore 2xy = x^{2} - 1$ $\therefore y = \frac{x^{2} - 1}{2x} = \frac{1}{2}(\frac{x^{2} - 1}{x}) = \frac{1}{2}(x - \frac{1}{x})$	
$f'(x) = 1 + \frac{1}{2} (x^2 + 1)^{\frac{1}{2}} \cdot 2x$ $= 1 + x (x^2 + 1)^{\frac{1}{2}}$ $= 1 + \frac{x}{\sqrt{x^2 + 1}}$ $= \frac{1 + \frac{x}{\sqrt{x^2 + 1}}}{\sqrt{x^2 + 1}}$ $= \frac{\sqrt{x^2 + 1 + x}}{\sqrt{x^2 + 1}}$ $= \frac{f(x)}{\sqrt{x^2 + 1}}$ (iii) Domain: $x > 0$ Range: $y \in \circ$ (iv) $f(x): y = x + \sqrt{x^2 + 1}$ $f^{-1}(x): x = y + \sqrt{y^2 + 1}$ $\sqrt{y^2 + 1} = x - y$ $y^2 + 1 = (x - y)^2 = x^2 - 2xy + y^2$ $\therefore x^2 - 2xy = 1$ $\therefore 2xy = x^2 - 1$ $\therefore y = \frac{x^2 - 1}{2x} = \frac{1}{2} \left(\frac{x^2 - 1}{x} \right) = \frac{1}{2} \left(x - \frac{1}{x} \right)$	
$f'(x) = 1 + \frac{1}{2} \left(x^{2} + 1\right)^{\frac{1}{2}} \cdot 2x$ $= 1 + x \left(x^{2} + 1\right)^{\frac{1}{2}}$ $= 1 + \frac{x}{\sqrt{x^{2} + 1}}$ $= 1 + \frac{x}{\sqrt{x^{2} + 1}}$ $= \frac{1}{\sqrt{x^{2} + 1}}$ $= \frac{f(x)}{\sqrt{x^{2} + 1}}$ $= \frac{f(x)}{\sqrt{x^{2} + 1}}$ $= \frac{f(x)}{\sqrt{x^{2} + 1}}$ (iii) Domain: $x > 0$ Range: $y \in ^{\circ}$ (iv) $f(x) : y = x + \sqrt{x^{2} + 1}$ $f^{-1}(x) : x = y + \sqrt{y^{2} + 1}$ $\sqrt{y^{2} + 1} = x - y$ $y^{2} + 1 = (x - y)^{2} = x^{2} - 2xy + y^{2}$ $\therefore x^{2} - 2xy = 1$ $\therefore 2xy = x^{2} - 1$ $\therefore y = \frac{x^{2} - 1}{2x} = \frac{1}{2} \left(\frac{x^{2} - 1}{x} \right) = \frac{1}{2} \left(x - \frac{1}{x} \right)$	ect solution
$=1 + x(x^{2} + 1)^{\frac{1}{2}}$ $=1 + \frac{x}{\sqrt{x^{2} + 1}}$ $= \frac{\sqrt{x^{2} + 1 + x}}{\sqrt{x^{2} + 1}}$ $= \frac{f(x)}{\sqrt{x^{2} + 1}}$ $= \frac{f(x)}{\sqrt{x^{2} + 1}}$ (iii) Domain: $x > 0$ Range: $y \in \circ$ (iv) $f(x): y = x + \sqrt{x^{2} + 1}$ $\int_{y^{2} + 1}^{1 - 1} x - y$ $y^{2} + 1 = (x - y)^{2} = x^{2} - 2xy + y^{2}$ $\therefore x^{2} - 2xy = 1$ $\therefore 2xy = x^{2} - 1$ $\therefore y = \frac{x^{2} - 1}{2x} = \frac{1}{2} \left(\frac{x^{2} - 1}{x} \right) = \frac{1}{2} \left(x - \frac{1}{x} \right)$ (iii) $x = 1 + x(x^{2} + 1)^{2}$ $= \frac{1}{2} \left(x - \frac{1}{x} \right)$	intial progress
(iii) $= \frac{\sqrt{x^{2} + 1} + x}{\sqrt{x^{2} + 1}}$ $= \frac{f(x)}{\sqrt{x^{2} + 1}}$ $= \frac{f(x)}{\sqrt{x^{2} + 1}}$ (iii) Domain: $x > 0$ Range: $y \in \circ$ (iv) $f(x): y = x + \sqrt{x^{2} + 1}$ $f^{-1}(x): x = y + \sqrt{y^{2} + 1}$ $\sqrt{y^{2} + 1} = x - y$ $y^{2} + 1 = (x - y)^{2} = x^{2} - 2xy + y^{2}$ $\therefore x^{2} - 2xy = 1$ $\therefore 2xy = x^{2} - 1$ $\therefore y = \frac{x^{2} - 1}{2x} = \frac{1}{2}\left(\frac{x^{2} - 1}{x}\right) = \frac{1}{2}\left(x - \frac{1}{x}\right)$ (iii) $f(x) = \frac{1}{2x} + \frac{1}{2}\left(\frac{x^{2} - 1}{x}\right) = \frac{1}{2}\left(x - \frac{1}{x}\right)$ (iv) $f(x) = \frac{1}{2x} + \frac{1}{2}\left(\frac{x^{2} - 1}{x}\right) = \frac{1}{2}\left(x - \frac{1}{x}\right)$	L
$= \frac{f(x)}{\sqrt{x^{2}+1}}$ (iii) Domain: $x > 0$ Range: $y \in \circ$ (iv) $f(x): y = x + \sqrt{x^{2}+1}$ $f^{-1}(x): x = y + \sqrt{y^{2}+1}$ $\sqrt{y^{2}+1} = x - y$ $y^{2}+1 = (x - y)^{2} = x^{2} - 2xy + y^{2}$ $\therefore x^{2} - 2xy = 1$ $\therefore 2xy = x^{2} - 1$ $\therefore y = \frac{x^{2}-1}{2x} = \frac{1}{2}\left(\frac{x^{2}-1}{x}\right) = \frac{1}{2}\left(x - \frac{1}{x}\right)$ $= \frac{1}{2}\left(x - \frac{1}{x}\right)$	
(iii) Domain: $x > 0$ Range: $y \in \circ$ (iv) $f(x): y = x + \sqrt{x^2 + 1}$ $f^{-1}(x): x = y + \sqrt{y^2 + 1}$ $\sqrt{y^2 + 1} = x - y$ $y^2 + 1 = (x - y)^2 = x^2 - 2xy + y^2$ $\therefore x^2 - 2xy = 1$ $\therefore 2xy = x^2 - 1$ $\therefore y = \frac{x^2 - 1}{2x} = \frac{1}{2} \left(\frac{x^2 - 1}{x} \right) = \frac{1}{2} \left(x - \frac{1}{x} \right)$	
(iii) Domain: $x > 0$ Range: $y \in \circ$ (iv) $f(x): y = x + \sqrt{x^2 + 1}$ $f^{-1}(x): x = y + \sqrt{y^2 + 1}$ $\sqrt{y^2 + 1} = x - y$ $y^2 + 1 = (x - y)^2 = x^2 - 2xy + y^2$ $\therefore x^2 - 2xy = 1$ $\therefore 2xy = x^2 - 1$ $\therefore y = \frac{x^2 - 1}{2x} = \frac{1}{2} \left(\frac{x^2 - 1}{x} \right) = \frac{1}{2} \left(x - \frac{1}{x} \right)$	
$f^{-1}(x) : x = y + \sqrt{y^2 + 1}$ $\int f^{-1}(x) : x = y + \sqrt{y^2 + 1}$ $\int \sqrt{y^2 + 1} = x - y$ $y^2 + 1 = (x - y)^2 = x^2 - 2xy + y^2$ $\therefore x^2 - 2xy = 1$ $\therefore 2xy = x^2 - 1$ $\therefore y = \frac{x^2 - 1}{2x} = \frac{1}{2} \left(\frac{x^2 - 1}{x} \right) = \frac{1}{2} \left(x - \frac{1}{x} \right)$	t domain <u>and</u>
$f^{-1}(x): x = y + \sqrt{y^2 + 1}$ $\sqrt{y^2 + 1} = x - y$ $y^2 + 1 = (x - y)^2 = x^2 - 2xy + y^2$ $\therefore x^2 - 2xy = 1$ $\therefore 2xy = x^2 - 1$ $\therefore y = \frac{x^2 - 1}{2x} = \frac{1}{2} \left(\frac{x^2 - 1}{x} \right) = \frac{1}{2} \left(x - \frac{1}{x} \right)$ towards solution	ct solution
$y^{2} + 1 = (x - y)^{2} = x^{2} - 2xy + y^{2}$ $\therefore x^{2} - 2xy = 1$ $\therefore 2xy = x^{2} - 1$ $\therefore y = \frac{x^{2} - 1}{2x} = \frac{1}{2} \left(\frac{x^{2} - 1}{x} \right) = \frac{1}{2} \left(x - \frac{1}{x} \right)$	
$\therefore x^{2} - 2xy = 1$ $\therefore 2xy = x^{2} - 1$ $\therefore y = \frac{x^{2} - 1}{2x} = \frac{1}{2} \left(\frac{x^{2} - 1}{x} \right) = \frac{1}{2} \left(x - \frac{1}{x} \right)$	
$\therefore x^{2} - 2xy = 1$ $\therefore 2xy = x^{2} - 1$ $\therefore y = \frac{x^{2} - 1}{2x} = \frac{1}{2} \left(\frac{x^{2} - 1}{x} \right) = \frac{1}{2} \left(x - \frac{1}{x} \right)$	
$\therefore 2xy = x^{2} - 1$ $\therefore y = \frac{x^{2} - 1}{2x} = \frac{1}{2} \left(\frac{x^{2} - 1}{x} \right) = \frac{1}{2} \left(x - \frac{1}{x} \right)$	
$\therefore y = \frac{x^2 - 1}{2x} = \frac{1}{2} \left(\frac{x^2 - 1}{x} \right) = \frac{1}{2} \left(x - \frac{1}{x} \right)$	
$\therefore f^{-1}(x) = \frac{1}{2} \left(x - \frac{1}{2} \right)$	
(b) (i) Domain: $-\frac{1}{2} \le x \le \frac{1}{2}$ 2	ct domain <u>and</u>
Range: $-\frac{3\pi}{2} \le y \le \frac{3\pi}{2}$ 1 mark ~ correct range	et domain <u>or</u>



Year 12 Question		ment Task 4 2011
Question No. 6Solutions and Marking GuidelinesOutcomes Addressed in this Question: HE2, HE6		
Outcome	Colutions	Maulting Cuidaling
Outcome	Solutions	Marking Guidelines
	(a) Let $u = 1 - 2x$. $\therefore du = -2dx$ and $dx = \frac{-du}{2}$ As $u = 1 - 2x$, $2x = 1 - u$. If $x = 0$, $u = 1$. If $x = 1$, $u = -1$	<u>3 marks:</u> Complete
HE6	As $u = 1 - 2x$, $2x = 1 - u$. If $x = 0$, $u = 1$. If $x = 1$, $u = -1$ $\int_{0}^{1} 2x(1-2x)^{4} dx = \frac{-1}{2} \int_{1}^{-1} (1-u)u^{4} du$ $= \frac{1}{2} \int_{-1}^{1} u^{4} du - \frac{1}{2} \int_{-1}^{1} u^{5} du$ $= \frac{1}{2} \{ \frac{u^{5}}{5} - \frac{u^{6}}{6} \}_{-1}^{1}$ $= \frac{1}{2} \{ (\frac{1}{5} - \frac{1}{6}) - (\frac{-1}{5} - \frac{1}{6}) \}$ $= \frac{1}{5}$	solution. <u>2 marks:</u> Substantial progress. <u>1 mark:</u> Some progres
HE6	5 (b) Let $t = \log_e x$, $\therefore dt = \frac{dx}{x}$ or $dx = x dt$ $\int \log_e(x^{\frac{1}{x}}) dx = \int \frac{1}{x} \log_e x dx$ $= \int t dt$ $= \frac{t^2}{2} + C$	3 marks: Complete solution. 2 marks: Substantial progress including resubstitution 1 mark: Some progres
HE6	$=\frac{(\log_e x)^2}{2} + C$ (c) Let u = tan x. \therefore du = sec ² (x) dx $\int \tan^2(x) \sec^2(x) dx = \int u^2 du$ $=\frac{u^3}{3} + C$ tan ³ (x)	<u>2 marks:</u> Complete solution. <u>1 mark:</u> Some progres
	$=\frac{\tan^3(x)}{3} + C$	

HE2	(c) (i) $2n^2 + 7n + 6 = (2n+3)(n+2)$ (ii) $P(n): 6(1^2 + 2^2 + 3^2 + + n^2) = n(n+1)(2n+1)$ Test for n = 1 LHS = 6×1 or 6 RHS = 1×2×3 or 6 LHS=RHS, \therefore true for n = 1	<u>1 mark:</u> <u>3 marks:</u> Complete solution. <u>2 marks:</u> Substantial progress <u>1 mark:</u> Some progress
	Assume true for n = k, i.e. $6(1^2 + 2^2 + 3^2 + \dots + k^2) = k(k+1)(2k+1)$ Test for n = k+1. i.e. does $6(1^2 + 2^2 + 3^2 + \dots + k^2 + (k+1)^2) = (k+1)(k+2)(2k+3)$? LHS = $k(k+1)(2k+1) + 6(k+1)^2$ = $(k+1)[2k^2 + k + 6k + 6]$ = $(k+1)(2k^2 + 7k + 6)$ = $(k+1)(k+2)(2k+3)$ = RHS P(n) is true for n = k+1 whenever it is true for n = k Summation: P(n) is true for n = 1 and is true for n = k+1 whenever it is true for n = k. Hence P(n) is true for n ≥ 1 (d) $Limit_{n\to\infty} (\frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^3})$ = $Limit_{n\to\infty} \frac{n(n+1)(2n+1)}{6n^3} (from(c))$ = $\frac{2}{6}$ or $\frac{1}{3}$	2 marks: Complete solution. 1 mark: Some progress