HURLSTONE AGRICULTURAL HIGH SCHOOL

MATHEMATICS EXTENSION 1

2013

Trial HSC

Examiners: P. Biczo, J. Dillon, S. Faulds, S. Gutesa, G. Huxley, B. Morrison

General Instructions

- Reading time -5 minutes.
- Working time -2 hours.
- Attempt all questions.
- Board approved calculators and Math Aids may be used.
- This examination must NOT be removed from the examination room
- Section A consists of ten (10) multiple choice questions worth 1 mark each. Fill in your answer on the multiple choice answer sheet provided.
- Section B requires all necessary working to be shown in every question. This section consists of four (4) questions worth 15 marks each. Marks may not be awarded for careless or badly arranged work.
Each question is to be started in a new answer booklet. Additional booklets are available if required.

Name : \qquad

Class : \qquad

SECTION A - 10 multiple choice questions (1 mark each)

The answer sheet may be torn off the back of the exam

Question 1

Ten kilograms of chlorine is placed in water and begins to dissolve.
After t hours the amount $A \mathrm{~kg}$ of undissolved chlorine is given by $A=10 e^{-k t}$.
What is the value of k given that $A=3.6$ and $t=5$?
(A) $\quad-0.717$
(B) -0.204
(C) 0.204
(D) 0.717

Question 2

Consider the polynomial $P(x)=3 x^{3}+3 x+a$.
If $x-2$ is a factor of $P(x)$, what is the value of a ?
(A) $\quad-30$
(B) -18
(C) 18
(D) 30

Question 3

$\tan ^{-1}(-1)=$
(A) $-\frac{\pi}{4}$
(B) $-\frac{\pi}{3}$
(C) $\frac{\pi}{4}$
(D) $\frac{3 \pi}{4}$

Question 4

NOT TO SCALE

In the above diagram, $T A$ is a tangent, $Q P$ is a chord produced to T. What is the value of x ?
(A) 12
(B) $2 \sqrt{3}$
(C) $4 \sqrt{2}$
(D) $4 \sqrt{6}$

Question 5

A flat circular disc is being heated so that the rate of increase of the area $\left(A \mathrm{in} \mathrm{m}^{2}\right)$, after t hours, is given by: $\frac{d A}{d t}=\frac{1}{8} \pi t$.
Initially the disc has a radius of 2 metres.
Which of the following is the correct expression for the area after t hours?
(A) $A=\frac{1}{8} \pi t^{2}$
(B) $A=\frac{1}{16} \pi t^{2}$
(C) $A=\frac{1}{8} \pi t^{2}+4 \pi$
(D) $A=\frac{1}{16} \pi t^{2}+4 \pi$

Question 6

How many distinct permutations of the letters of the word 'DIVIDE' are possible in a straight line when the word begins and ends with the letter D?
(A) 12
(B) 180
(C) 360
(D) 720

Question 7

In the diagram shown, $X Q=$
(A) $h \cos 70^{\circ}$
(B) $h \tan 70^{\circ}$
(C) $h \cot 100^{\circ}$
(D) $h \cot 70^{\circ}$

Question 8

$\sum_{n=1}^{k+1} \frac{n}{2}(n+1)=$
(A) $\frac{k+1}{2}(k+2)$
(B) $\sum_{n=1}^{k} \frac{n}{2}(n+1)+\frac{k+1}{2}(k+2)$
(C) $\frac{k}{2}(k+1)+\frac{k+1}{2}(k+2)$
(D) $\quad \sum_{n=1}^{k} \frac{n}{2}(n+1)+1+3+6+\ldots+\frac{k+1}{2}(k+2)$

Question 9

The displacement, x metres, from the origin of a particle moving in a straight line at any time (t seconds) is shown in the graph.

When was the particle moving with greatest speed?

(A) $t=0$
(B) $t=4.5$
(C) $\quad t=8$
(D) $t=11.5$

Question 10

The interval joining the points $A(1,3)$ and $B(a, b)$ is divided internally in the ratio 2:3 by the point $(3,13)$. What are the values of a and b ?
(A) $\quad a=6$ and $b=28$
(B) $\quad a=6$ and $b=37$
(C) $\quad a=9$ and $b=28$
(D) $\quad a=9$ and $b=37$

End of Section A

SECTION B

Question 11 (15 marks)
Use a SEPARATE writing booklet
a) Find the acute angle between the lines $2 x-y-1=0$ and $\frac{1}{4} x-y+1=0$.

Marks

Give your answer to the nearest degree.
b) If A is the point $(-2,-1)$ and B is the point $(1,5)$, find the coordinates of the point P which divides the interval $A B$ externally in the ratio $2: 5$.
c) The environment committee needs to seat 10 of its members (5 females and 5 males) at a round table.
(i) How many different seating arrangements are possible, without restrictions?
(ii) What is the probability that two particular males are to be seated next to each other?
d) A team of 5 men and 4 women is to be chosen at random from a group of 8 male and 7 female mathematicians. If Rodney and Deborah are both hoping to be chosen, what is the probability that:
(i) Both are chosen? 2
(ii) Neither is chosen?
e) Solve $\frac{4+x}{2 x}>1$
f) The polynomial $p(x)$ is given by $p(x)=x^{3}+b x^{2}+c x-10$ where b and c are constants. The three zeroes of $p(x)$ are $-1,2$ and α.
(i) Find the values of b and c
(ii) Hence or otherwise find the value of α

End of Question 11

a)

In the diagram above, find the length, l. Justify your working with reasons as appropriate.
b) In the following diagram, $B C=D C . \quad A E$ is a tangent to the circle.

(i) Why is $\angle A B D=\angle B C D$?
(ii) Prove that $B C$ bisects $\angle D B E$.
c) The points $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ lie on the parabola $x^{2}=4 a y$ with O the vertex.
(i) Show that the gradient of the chord $P Q$ is $\frac{p+q}{2}$.
(ii) What are the co-ordinates of the point where the chord $P Q$ passes through the y-axis?
(iii) Find the gradient of $O P$.

Question 12 continues on page 7

Question 12 continued

(iv) If $O P \perp O Q$, show that $p q=-4$.

1 mark

2 marks
(v) Given that the gradient of the tangents to the parabola at P and Q are p and q respectively, find the equation of the locus of T, the point where the tangents intersect.

You may assume that the equation of the tangent at the point P is given by $y=p x-a p^{2} \quad$ (DO NOT PROVE THIS)
d) Prove by mathematical induction that $\left(3^{2 n}-1\right)$ is divisible by 8

End of Question 12

a) Solve, in radians, for $0 \leq x \leq 2 \pi$, $\sin 2 x-\cos x=0$
b) Find $\int \frac{d x}{5+x^{2}}$
c) Consider the curve $y=2 \cos ^{-1} \frac{x}{3}$
(i) Find the range, and hence sketch the curve $y=2 \cos ^{-1} \frac{x}{3}$
(ii) Find the gradient of the tangent to the curve, at the point where

$$
x=\frac{3 \sqrt{3}}{2}
$$

d) (i) Write the expansion for $\tan (\alpha-\beta)$
(ii) Hence, find x so that $\tan ^{-1} x=\tan ^{-1}\left(\frac{1}{2}\right)-\tan ^{-1}\left(\frac{1}{3}\right)$
e) Consider the curve $f(x)=(x-2)^{2}$
(i) If the domain is to be restricted to the largest possible domain that contains $x=0$, so that an inverse function will exist, state the domain.
(ii) What is the domain of $y=f^{-1}(x)$?
(iii) What is the equation of $y=f^{-1}(x)$?
(iv) Explain why $x=(x-2)^{2}$ gives the points of intersection of $y=f(x)$ and $y=f^{-1}(x)$ and hence why $x=1$ is the only point of intersection

End of Question 13

a) (i) Show that $\frac{u}{u+1}=1-\frac{1}{u+1}$
(ii) Hence, find $\int \frac{1}{1+\sqrt{x}} d x$ using the substitution $\left(x=u^{2}, u \geq 0\right)$

1
b) At 7 pm on a Wednesday evening, Mr Huxley's water tank was full. The capacity of the tank was 3000 litres.
Unfortunately, the tap on the tank was leaking in such a way that the change in volume at any time (t) hours was proportional to the volume (V) of the tank.

This means that $\frac{d V}{d t}=-k V$.
(i) Show that $V=V_{0} e^{-k t}$ is a solution of this equation.
(ii) Given that the volume of the tank after 3 hours is 1900 litres, show that $k=0.1523$ correct to 4 decimal places.
(iii) By the time Mr Huxley discovered that the tank was leaking, there were only 250 litres of water remaining.

At what time and on which day did Mr Huxley discover the leak (Answer correct to the nearest minute)?

Question 14 continued

Marks

c) A particle moves along a straight line about a fixed point O so that its acceleration, $a \mathrm{~ms}^{-2}$, at time t seconds is given by $a=4 \cos \left(2 t+\frac{\pi}{6}\right)$. Initially the particle is moving to the right with a velocity of $1 \mathrm{~ms}^{-1}$ from a position $\frac{\sqrt{3}}{2}$ metres to the left of O.
(i) Find an expression for the velocity of the particle after t seconds.
(ii) Find an expression for the position of the particle after t seconds.
(iii) Show that the particle changes directions when $t=\frac{5 \pi}{12}$ seconds.
(iv) At what time does the particle return to its initial position for the first time?

End of Question 14

End of Examination

SECTION A ANSWER SHEET

- Detach this sheet and use it to mark the answers to the questions in Section A
- Mark the answer by shading the letter that matches with the correct answer
- If you make a mistake, draw a cross through the incorrect answer

Name: \qquad
(1)

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE: } \ln x=\log _{e} x, x>0
\end{aligned}
$$

Extension 1 Trial HSC Multiple Choice

Question 1: $\mathbf{C} \quad 3 \cdot 6=10 e^{-5 k} . \ln (0 \cdot 36)=-5 k \Rightarrow k \approx 0 \cdot 204$
Question 2: A $P(2)=0 \quad P(2)=30+a \Rightarrow a=-30$
Question 3: A The range of $\tan ^{-1} \theta$ is $\frac{-\pi}{2}<\theta<\frac{\pi}{2}$. Quadrant 2. Related angle $\frac{\pi}{4} . \therefore \frac{-\pi}{4}$
Question 4: D $\mathrm{QT} \times \mathrm{PT}=x^{2}$ i.e. $12 \times 8=x^{2}$ and $x=4 \sqrt{6}$
Question 5: D $\quad A=\int \frac{1}{8} \pi t . A=\frac{1}{16} \pi t^{2}+C . \pi \times 2^{2}=\frac{1}{16} \pi \times 0^{2}+C . \therefore A=A=\frac{1}{16} \pi t^{2}+4 \pi$
Question 6: A Place the D's. There are 4 letters left, including 2 "I's". $\frac{4!}{2!}=12$
Question 7: D In right triangle $\mathrm{XQP}, \tan \left(70^{\circ}\right)=\frac{h}{X Q} \Rightarrow X Q=h \cot \left(70^{\circ}\right)$
Question 8: B Sum to the k th term + the $(k+1)$ term.
Question 9: A Velocity $=\left|\frac{d x}{d t}\right| \cdot \frac{d x}{d t}$ is the gradient of the tangent. Steepest at $t=0$
Question 10: A Using your formula: $(3,13)=\left(\frac{3 \times 1+2 a}{3+2}, \frac{3 \times 3+2 b}{3+2}\right) \Rightarrow(a, b)=(6,28)$

(d) (ii)

Neither is chosen: ${ }^{7} C_{5} \times{ }^{6} C_{4}=315$
\therefore The probability that either are chosen $=\frac{315}{1960}$
$=\frac{9}{56}$
(e)

$$
\begin{aligned}
& \frac{4+x}{2 x}>1 \\
& \frac{(4+x) x^{2}}{2 x}>1 . x^{2} \\
& \frac{(4+x) x}{2}>x^{2} \\
& 4 x+x^{2}>2 x^{2} \\
& 0>x^{2}-4 x \\
& x^{2}-4 x<0 \\
& x(x-4)<0 \\
& \therefore 0<x<4
\end{aligned}
$$

(f) (i)
$p(x)=x^{3}+b x^{2}+c x-10$
PE3
$p(-1)=0$
$(-1)^{3}+b(-1)^{2}+c(-1)-10=0$
$b-c-11=0$
$b=11+c$
$p(2)=0$
$(2)^{3}+b(2)^{2}+c(2)-10=0$
$4 b+2 c-2=0$
$2 b+c-2=0$
Substitute (1) into (2) and solve for c.
$2(11+c)+2 c-2=0$
$22+2 c+2 c-2=0$
$\therefore c=-7$
$\therefore b=11+(-7)$
$\therefore b=4$
(f) (ii)
$\alpha+\beta+\delta=\frac{-b}{a}$
$\alpha-1+2=-4$
$\alpha+1=-4$
$\therefore \alpha=-5$

1 mark

Correct solution.

2 marks

Correct solution.

1 mark

Substantial progress towards correct solution.

2 marks

Correct solution.
1 mark
Substantial progress towards correct solution.

1 mark

Correct solution.

Outcomes Addressed in this Question

HE2 uses inductive reasoning in the construction of proofs
PE3 solves problems involving permutations and combinations, inequalities, polynomials, circle geometry and parametric representations

Outcome	Solutions
PE3	(a)$A X \cdot X B$ $=C X . X D$ (product of intercepts on $1 . l$ $=2.6$ $\therefore l$ $=12$
PE3	(b) (i) Angle between a chord and a tangent is equal to the angle in the alternate segment.
PE3	(ii) $\begin{aligned} & \text { Let } \angle D B C=\alpha \\ & \therefore \angle B D C=\alpha \\ & \angle B D C+\alpha+\alpha=180^{\circ} \quad \text { (angles opposite equal sides in isosceles } \triangle \mathrm{BCD} \text {) } \\ & \angle B D C=180-2 \alpha \\ & \text { Now, } \\ & \angle A B D=\angle B D C \\ &=180-2 \alpha \\ & \text { (angle sum of } \triangle \mathrm{BCD} \text {) } \\ & \angle A B D+\angle D B C+\angle C B E=180^{\circ} \quad \text { (angles on a straight line segment theorem) } \\ & 180-2 \alpha+\alpha+\angle C B E=180^{\circ} \\ & \therefore \angle C B E=\alpha \\ & \angle D B C=\angle C B E=\alpha \\ & \therefore B C \text { bisects } \angle D B E \end{aligned}$

(c) (i)

PE3

PE3

PE3

$$
\begin{aligned}
m_{P Q} & =\frac{a q^{2}-a p^{2}}{2 a q-2 a p} \\
& =\frac{a\left(q^{2}-p^{2}\right)}{2 a(q-p)} \\
& =\frac{a(q+p)(q-p)}{2 a(q-p)} \\
& =\frac{p+q}{2}
\end{aligned}
$$

(ii) Equation of $P Q$

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-a p^{2}=\frac{p+q}{2}(x-2 a p) \\
& \text { If } x=0, \quad y-a p^{2}=\frac{p+q}{2} \times-2 a p \\
& =-a p^{2}-a p q \\
& y=-a p q
\end{aligned}
$$

ie. passes through the y -axis at $-a p q$
(iii)

$$
\begin{aligned}
m_{O P} & =\frac{a p^{2}}{2 a p} \\
& =\frac{p}{2}
\end{aligned}
$$

PE3

PE3

HE2

(d)

To prove $3^{2 n}-1$ is divisible by 8

1. Prove true for $n=1$
$3^{2.1}-1=8 \quad$ which is divisible by 8
\therefore True for $n=1$.
2. Assume true for $n=k$
ie. assume $3^{2 k}-1=8 M$ where M is a positive integer
Prove true for $n=k+1$
ie. prove $3^{2(k+1)}-1$ is divisible by 8
$3^{2(k+1)}-1=3^{2 k+2}-1$
$=3^{2 k} \cdot 3^{2}-1$
$=(8 M+1) \cdot 9-1 \quad\left(\right.$ since $3^{2 k}=8 M+1$, from assumption $)$
$=72 M+9-1$
$=72 M+8$
$=8(9 M+1)$ which is divisible by 8
\therefore True for $n=k+1$
3. If the result is true for $n=k$, it is also true for $n=k+1$.

Since the result is true for $n=1$, it is then also true for $n=1+1=2$,
$n=2+1=3$, etc.
\therefore The result is true for all positive integral values of n.

1 mark

Correct solution.

2 marks

Correct solution.

1 mark

Substantial progress towards full solution.

3 marks

Correct solution showing full reasoning.

2 marks

Substantial progress towards full solution including proof for $n=1$.

1 mark

Proves result is true for $n=1$.

Outcomes Addressed in this Question

HE4 Uses the relationship between functions, inverse functions and their derivatives

HE7 Evaluates mathematical solutions to problems and

 communicates them in an appropriate form| Outcome | Solutions | Marking Guidelines |
| :---: | :---: | :---: |
| HE7 | $\begin{aligned} & \text { (a) } \begin{array}{l} \sin 2 x-\cos x=0 \\ 2 \sin x \cos x-\cos x=0 \\ \cos x(2 \sin x-1)=0 \\ \cos x=0 \quad \text { or } \quad 2 \sin x-1=0 \\ \quad \sin x=\frac{1}{2} \\ x=\frac{\pi}{2}, \frac{3 \pi}{2} \text { (from the graph) or } x=\frac{\pi}{6}, \pi-\frac{\pi}{6} \\ \therefore x=\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{\pi}{6}, \frac{5 \pi}{6} . \end{array} . \end{aligned}$ | 2 marks : correct answer
 1 mark : significant progress towards answer |
| H5 | $\text { (b) } \begin{aligned} \int \frac{d x}{5+x^{2}} & =\int \frac{1}{(\sqrt{5})^{2}+x^{2}} d x \\ & =\frac{1}{\sqrt{5}} \tan ^{-1} \frac{x}{\sqrt{5}}+c \end{aligned}$ | 1 mark : correct answer |
| HE4 | (c) (i) Range of $y=\cos ^{-1} \frac{x}{3}$ is $0 \leq y \leq \pi$ \therefore for $y=2 \cos ^{-1} \frac{x}{3}$, range is $0 \leq y \leq 2 \pi$. Domain of $y=\cos ^{-1} \frac{x}{3}$ is $-1 \leq 3 x \leq 1, \therefore$ domain of $y=2 \cos ^{-1} \frac{x}{3}$ is $-3 \leq x \leq 3$. | 2 marks : correct range and correct graph
 1 mark: correct range but incorrect graph or correct graph for incorrect range |
| | | |

(ii) $y=2 \cos ^{-1} \frac{x}{3}$

$$
\begin{aligned}
y^{\prime} & =-2 \frac{\frac{d}{d x}\left(\frac{x}{3}\right)}{\sqrt{1-\left(\frac{x}{3}\right)^{2}}} \text { since } \frac{d}{d x}\left(\cos ^{-1} f(x)\right)=\frac{-f^{\prime}(x)}{\sqrt{1-(f(x))^{2}}} \\
& =\frac{\frac{-2}{3}}{\sqrt{\frac{9-x^{2}}{9}}} \\
& =\frac{-2}{\sqrt{9-x^{2}}} .
\end{aligned}
$$

When $x=\frac{3 \sqrt{3}}{2}, y^{\prime}=\frac{-2}{\sqrt{9-\frac{27}{4}}}=\frac{-4}{3}$
\therefore gradient of tangent at $x=\frac{3 \sqrt{3}}{2}$ is $\frac{-4}{3}$.
(d) (i) $\tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta}$
(ii) Let $\alpha=\tan ^{-1} \frac{1}{2}$ and $\beta=\tan ^{-1} \frac{1}{3}$.
$\therefore \tan \alpha=\frac{1}{2}, \tan \beta=\frac{1}{3}$
Using result in (i), $\tan (\alpha-\beta)=\frac{\frac{1}{2}-\frac{1}{3}}{1+\frac{1}{2} \times \frac{1}{3}}$
$\therefore \tan (\alpha-\beta)=\frac{1}{7}$
$\therefore \alpha-\beta=\tan ^{-1}\left(\frac{1}{7}\right)$
$\therefore \tan ^{-1}\left(\frac{1}{2}\right)-\tan ^{-1}\left(\frac{1}{3}\right)=\tan ^{-1}\left(\frac{1}{7}\right)$
$\therefore x=\frac{1}{7}$.
(e)

(i) Will have an inverse if strictly increasing or strictly decreasing only. Largest domain, containing $x=0$ where this occurs is $x \leq 2$

2 marks : correct derivative and answer 1 mark : significant progress towards answer

1 mark: correct result

2 marks : correct solution 1 mark : significant progress towards answer

1 mark: correct answer

HE4	(ii) Domain of $y=f^{-1}(x)$ is the range of $y=f(x)$. Range of $y=f(x)$ is $y \geq 0$. \therefore domain of $y=f^{-1}(x)$ is $x \geq 0$.	1 mark: correct answer
HE4	(iii) Interchanging x and y, the inverse is $\begin{aligned} & x=(y-2)^{2} \\ & y-2= \pm \sqrt{x} \\ & y=2 \pm \sqrt{x} \end{aligned}$	1 mark: correct answer
HE4	(iv) $y=f(x)$ and $y=f^{-1}(x)$ intersect on the line $\boldsymbol{y}=\boldsymbol{x}$. $\therefore y=(x-2)^{2}$ and $y=x$ can be solved simultaneously to give the points of intersection for $y=f(x)$ and $y=f^{-1}(x)$. They meet when $x=(x-2)^{2}$. i.e. when $x=x^{2}-4 x+4$ $\begin{aligned} & x^{2}-5 x+4=0 \\ & (x-4)(x-1)=0 \\ & x=1 \text { or } 4 \end{aligned}$ But as $x \leq 2$ for the inverse to exist, $y=f(x)$ and its inverse meet when $x=1$ only.	2 marks: correct explanation for why $x=(x-2)^{2}$ gives the point of intersection; and correctly solves equation and explains why one solution only. 1 mark: one of above

HE6 determines integrals by reduction to a standard form through a given substitution
HE3 uses a variety of strategies to investigate mathematical models of situations involving binomial probability, projectiles, simple harmonic motion, or exponential growth and decay
H4 expresses practical problems in mathematical terms based on simple given models

Outcome

(a) (i)

$$
\begin{aligned}
& \text { LHS }=\frac{u}{u+1} \\
& \begin{aligned}
\text { RHS } & =1-\frac{1}{u+1} \\
& =\frac{u+1-1}{u+1} \\
& =\frac{u}{u+1}=\text { LHS }
\end{aligned}
\end{aligned}
$$

(ii) HE6
$\int \frac{1}{1+\sqrt{x}} d x \quad x=u^{2} \Rightarrow d x=2 u d u$
$=\int \frac{1}{1+u} 2 u d u$
$=2 \int \frac{u}{u+1} d u$
$=2 \int\left(1-\frac{1}{u+1}\right) d u$
$=2(u-\ln (u+1))+c$
$=2(\sqrt{x}-\ln (\sqrt{x}+1))+c$
(b) (i) HE3
$V=V_{0} e^{-k t}$
$\frac{d V}{d t}=V_{0} \times-k e^{-k t}$
$=-k V_{0} e^{-k t}$
$=-k V$
\therefore Solution to the given equation.
(ii) HE3
$t=3, V=1900$
From given information, $V_{0}=3000$
$1900=3000 e^{-3 k}$
$e^{-3 k}=\frac{1900}{3000}=\frac{19}{30}$
$\therefore e^{3 k}=\frac{30}{19}$
$\therefore k=\ln \left(\frac{30}{19}\right) \approx 0.1523$
(iii) HE3
$V=250$
$250=3000 e^{-\frac{1}{3} \ln \left(\frac{30}{19}\right) t}$
$\left.e^{-\frac{1}{3} \ln \left(\frac{30}{19}\right)}\right)^{t}=\frac{250}{3000}$
$\left.e^{\frac{1}{3} \ln \left(\frac{30}{19}\right)}\right)^{t}=\frac{3000}{250}=12$
$\frac{1}{3} \ln \left(\frac{30}{19}\right) \cdot t=\ln 12$
$t=\frac{\ln 12}{\frac{1}{3} \ln \left(\frac{30}{19}\right)}=16.3209257$ hours ≈ 16 hours 19 minutes
\therefore Mr Huxley discovered the leak on Thursday @ 11:19 am
(c) (i) H 4
$a=4 \cos \left(2 t+\frac{\pi}{6}\right)$
$v=2 \sin \left(2 t+\frac{\pi}{6}\right)+c$
$t=0, v=1$
$1=2 \sin \left(2.0+\frac{\pi}{6}\right)+c$
$1=2 . \frac{1}{2}+c$
$\therefore c=0$
$\therefore v=2 \sin \left(2 t+\frac{\pi}{6}\right)$
(ii) H 4
$x=-\cos \left(2 t+\frac{\pi}{6}\right)+k$
$t=0, x=-\frac{\sqrt{3}}{2}$
$-\frac{\sqrt{3}}{2}=-\cos \left(\frac{\pi}{6}\right)+k$
$k=0$
$\therefore x=-\cos \left(2 t+\frac{\pi}{6}\right)$

2 marks \sim correct solution
1 mark ~ substantial progress towards solution

2 marks ~ correct solution
1 mark ~ substantial progress towards solution

2 marks ~ correct solution
1 mark ~ substantial progress towards solution
(iii) H 4
$v=0,2 \sin \left(2 t+\frac{\pi}{6}\right)=0$
1 mark ~ correct solution
(iv) H 4
$x=-\frac{\sqrt{3}}{2}$
$-\cos \left(2 t+\frac{\pi}{6}\right)=-\frac{\sqrt{3}}{2}$
$\cos \left(2 t+\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}$
$2 t+\frac{\pi}{6}=\frac{\pi}{6}, \frac{11 \pi}{6}, \frac{13 \pi}{6}, \frac{23 \pi}{6}, \ldots \ldots$.
$2 t=0, \frac{5 \pi}{3}, 2 \pi, \frac{11 \pi}{3}, \ldots \ldots$
$t=0, \frac{5 \pi}{6}, \pi, \frac{11 \pi}{6}, \ldots \ldots$

Returns to starting position again when $t=\frac{5 \pi}{6}$.

