

Assessment Task 4 Trial HSC Examination

Mathematics Extension 1

Examiners ~Mrs D. Crancher, Mr G. Rawson, Mr S. Faulds, Ms P. Biczo

General Instructions

- Reading Time -5 minutes
- Working Time -2 hours
- Write using a blue or black pen.
- Board approved calculators and mathematical templates and instruments may be used.
- Show all necessary working in Questions 11,12,13 and 14
- This examination booklet consists of 13 pages including a standard integral page and a multiple choice answer sheet.

Totall marks (70)

Section II

Total marks (10)

- Attempt Questions 1 - 10
- Answer on the Multiple Choice answer sheet provided on the last page of this question booklet.
- Allow about 15 minutes for this section

Section III

Total marks (60)

- Attempt questions11 to 14
- Answer each question in the writing booklets provided.
- Start a new booklet for each question with your student number (or name) and question number at the top of the page.
- All necessary working should be shown for every question
- Allow about 1 hour 45 minutes for this section
\qquad
\qquad

This page left blank intentionally

Section 1

10 marks
Attenypt Questions 1-10
Allow about 15 munates for this section
Use the nultiple choice answer sheet for Questions $1-10$.

1 A curve is defined by the parametric equations $x=\sin 2 t$ and $y=\cos 2 t$. Which of the followings in temes of t, equates to $\frac{d y}{d x}$?
(A) $\cos 4 i$
(B) $2 \tan 2 t$
(C) $2 \sin 4 t$
Yat $-\tan 2 t$

2 If two roots of the equation $x^{3}-2 x^{2}+k x+18=0$ are equal in magnitude but opposite in sign, then what is the vaiue of k ?
yer -9
(B) -6
(C) 6
(D) 9

3 Line $T A$ is a tangent to the circle at A and $T P$ is a secant meeting the circle at B and C.

Given that $T A=6, C B=9$ and $T C=x$, what is the value of x ?
(A) -12
(B) 2
(D) 4

What is the largest possible domain containing $x=0$ for which the function will have an inverse function?
(A) $x \leq 1$
10 $-1 \leq x \leq 3$
(C) $0 \leq x \leq 3$
(D)
All real:

5 Which expression is a correct expansion of $\sin 4 \theta$?
(A) $4 \sin \theta \cos ^{3} \theta-4 \sin ^{3} \theta \cos \theta$
(B) $4 \sin ^{3} \theta \cos \theta-4 \sin \theta \cos ^{3} \theta$
(C) $4 \sin ^{3} \theta \cos ^{2} \theta-4 \sin ^{2} \theta \cos ^{2} \theta$
(D) $4 \sin ^{2} \theta \cos ^{3} \theta-4 \sin ^{3} \theta \cos ^{2} \theta$

6 What is the exact value of $\int_{0}^{1+x^{2}} \frac{d x}{1+}$
(A) $\tan ^{-1} \frac{\pi}{4}$
(B) $\ln 2$
(C) $-\frac{1}{2}$

7 Which cxpression is equal to $\int x e^{x^{2}+5} d x$?
(A) $e^{x^{2}+5}+c$
\& $\frac{1}{2} e^{x^{2}+5}+c$
(C) $2 e^{x^{2}+5}+c$
(D) $x e^{x^{2}+5}+c$

Section III

60 marks

Attempt Questions 11 and 14

Allow about 1 hour 45 minutes for this section

Answer each question in the appropriate writing booklet.
All necessary working should be shown in every question.

Question 11 (15 marks)

Marks

(a) Solve $|p-2|>\sqrt{2(p-2)}$

3 point which divides $A B$ externally in the ratio 3:2.
(c) Show that the acute angle between the two curves $y=x^{2}$ and $y=x^{2}-2 x-4$ is approximately $4^{\circ} 34^{\prime}$.
(d) For $n=1,2,3, \ldots$, let $S_{n}=1^{2}+2^{2}+\ldots+n^{2}$.

Use mathematical induction to prove that, for $n=1,2,3, \ldots$

$$
S_{n}=\frac{1}{6} n(n+1)(2 n+1)
$$

(e) There are three identical blue marbles and four identical yellow marbles arranged in a row.
(i) How many different arrangements are possible?
(ii) How many different arrangements of just five of these marbles are possible?
(f) The staff in an office consists of 4 males and 7 females.

How many committees of 5 can be chosen which contain exactly 3 females?

9 Using the substitution $u=2 x+1$, find $\int \frac{1}{(2 x+1)^{2}+1} d x$.
(A) $\frac{1}{2} \tan ^{-1} x$
Y2 $\frac{1}{2} \tan ^{-1}(2 x+1)$
(C) $\tan ^{-1}(2 x+1)$
(D) $2 \tan ^{-1}(2 x+1)$
9. What is the derivative of $\log _{e}\left(\frac{2 x}{x-1}\right)$?
$x+6 \frac{-2}{2 x(x-1)}$
(B) $\frac{x-2}{2 x(x-1)}$
(C) $\frac{x-1}{x}$
(D) $\log _{e} 2$

10 For what values of a is $\frac{a+1}{a} \leq 1$?
(A) $\quad a>0$
(B) $a \geq 0$
\& $a<0$
(D) $-1 \leq a<0$

Question 12 continued...
(d) Let $A B P Q C$ be a circle such that $A B=A C, A P$ meets $B C$ at X, and $A Q$ meets $B C$ at Y, as shown below.

Let $\angle B A P=\alpha$ and $\angle A B C=\beta$.

(i) Copy the diagram into your writing booklet, marking the
information given above, and state why $\angle A X C=\alpha+\beta$.
(ii) Prove that $\angle B Q P=\alpha$
(iii) Prove that $\angle B Q A=\beta$
(iv) Prove that the quadrilateral $P Q Y X$ is cyclic
(a) Consider the function $f(x)=\frac{x}{x-1}$.
(i) Suggest a domain for which the function is continuous and has an inverse.
(ii) Show algebraically that the function is its own inverse.
(b) For the function $y=\frac{\pi}{2}+2 \sin ^{-1}\left(\frac{x}{3}\right)$:
(i) State the domain and range.
(ii) Draw a neat sketch of the function showing all important features.
(c) Use trigonometric identities to solve the equation

$$
\cos 2 x-\sin x=0 \text { for }-\pi \leq x \leq \pi
$$

(d) (i) Express $8 \sin x-15 \cos x$ in the form $R \cos (x-\phi)$, where ϕ is measured to the nearest degree.
(ii) Hence, or otherwise, solve the equation
$8 \sin x-15 \cos x=10$ for $0^{\circ} \leq x \leq 360^{\circ}$,
giving your answer/s to the nearest degree.
(e) The derivative of a function is given by $f^{\prime}(x)=\frac{1}{4+9 x^{2}}$ and $f(0)=\frac{\pi}{4}$.

Find the value of $f\left(\frac{2 \sqrt{3}}{9}\right)$, giving your answer in exact form.
(a) Evaluate $\int_{0}^{2 \ln 3} \frac{e^{x}}{1+e^{x}} d x$, giving your answer in simplest exact form.
(b) The flow rate of water from a natural spring is given by $\frac{d V}{d t}=0.2 e^{-0.04 t}$, where V is the volume in megalitres of water, and t the time in days.
(i) At what time is the water flowing at the initial rate?
(ii) How much water will flow from the spring in the first 10 days?
(c)

An egg timer in the shape of an inverted right circular cone with semi vertical Angle 30° contains sand to a depth of $h \mathrm{~cm}$. The sand flows out of the apex (A) of the cone at a constant rate of $0.5 \mathrm{~cm}^{3} / \mathrm{s}$.
(i) Show that the volume $V \mathrm{~cm}^{3}$ of sand in the cone is given by $V=\frac{1}{9} \pi h^{3}$.
(ii) Find the value of h when the depth of sand in the egg timer is decreasing at a rate of $0.05 \mathrm{~cm} / \mathrm{s}$, giving your answer correct to 2 decimal places.
(f)

The equation of the ellipse shown is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
(i) Show that the area of the ellipse is given by $A=\frac{4 b}{a} \int_{0}^{a} \sqrt{a^{2}-x^{2}} d x$.
(ii) By using the substitution $x=a \sin \theta$, where $0 \leq \theta \leq \frac{\pi}{2}$, show that the area of the ellipse is $\pi a b$ units 2.

Year 12 2014	Mathematics Extension 1	Task 4 Trial HSC
Question No. 11	Solutions and Marking Guidelines	
	Outcomes Addressed in this Question	

HE2 - uses inductive reasoning in the construction of proofs
PE3 - uses problems involving permutations and combinations, inequalities, polynomials, circle geometry and parametric representations

PE3	c) $\begin{align*} & y=x^{2} \ldots \ldots . ~ \tag{A}\\ & y=x^{2}-2 x-4 \end{align*}$	
	Sub A into B $\begin{array}{lr} x^{2}=x^{2}-2 x-4 \\ 0=-2 x-4 \\ 4=-2 x & \text { when } x=-2, y=(-2)^{2} \\ -2=x & =4 \end{array}$ The point of intersection is $(-2,4)$	3 marks complete correct solution
	Gradient of the tangent to $y=x^{2}$ at $x=-2$ is: $\begin{aligned} \frac{d y}{d x}=2 x \quad \text { at } x=-2, \frac{d y}{d x} & =2(-2) \\ & =-4 \\ \therefore m_{1}=-4 & \end{aligned}$	2 marks for substantial correct working leading to a correct solution 1 mark for limited correct working leading to a correct solution
	Gradient of the tangent to $y=x^{2}-2 x-4$ at $x=-2$ is: $\begin{aligned} & \frac{d y}{d x}=2 x-2 \quad \text { at } x=-2, \frac{d y}{d x}=2(-2)-2 \\ &=-6 \\ & \therefore m_{2}=-6 \end{aligned}$ Acute angle between the two curves $y=x^{2}$ and $y=x^{2}-2 x-4$ is: $\begin{aligned} \tan \theta & =\left\|\frac{-4-(-6)}{1+(-4)(-6)}\right\| \\ & =\frac{2}{5} \\ \therefore \theta & =4^{\circ} 34^{\prime} \end{aligned}$	

HE2	d) Required to prove that: $S_{n}=\frac{1}{6} n(n+1)(2 n+1), \quad \text { for } n=1,2,3, \ldots$ Show true for $n=1$: $\begin{aligned} \text { LHS } & =(1)^{2} \\ & =1 \\ \text { RHS } & =\frac{1}{6}(1)(1+1)(2(1)+1) \\ & =\frac{6}{6} \\ & =1 \\ \text { LHS } & =\text { RHS } \end{aligned}$ \therefore Thestatement is truefor $n=1$. Assume true for $n=k$: $S_{k}=\frac{1}{6} k(k+1)(2 k+1)$ Prove true for $n=k+1$, i.e. prove that: $\begin{aligned} S_{k+1} & =\frac{1}{6}(k+1)((k+1)+1)(2(k+1)+1) \\ & =\frac{1}{6}(k+1)(k+2)(2 k+3) \end{aligned}$ Now, $\begin{aligned} S_{k} & =S_{k}+(k+1)^{2} \\ & =\frac{1}{6} k(k+1)(2 k+1)+(k+1)^{2} \\ & =(k+1)\left[\frac{1}{6} k(2 k+1)+(k+1)\right] \\ & =(k+1)\left[\frac{k(2 k+1)+6(k+1)}{6}\right] \\ & =\frac{1}{6}(k+1)\left(2 k^{2}+k+6 k+6\right) \\ & =\frac{1}{6}(k+1)\left(2 k^{2}+7 k+6\right) \\ & =\frac{1}{6}(k+1)(k+2)(2 k+3) \end{aligned}$ \therefore Statement is true for $n=k+1$. If the statement is true for $n=k$, it is also true for $n=k+1$. Therefore, the statement is true for all natural numbers n (i.e. $n=1,2,3, \ldots$).by mathematical induction.	3 marks complete correct solution 2 marks for substantial correct working leading to a correct solution 1 mark for limited correct working leading to a correct solution

from (1)

$$
\begin{aligned}
x & =a(p+q) \\
x^{2} & =a^{2}\left(p^{2}+q^{2}+2 p q\right)
\end{aligned}
$$

sub in (3)

$$
=a^{2}\left(1+4 p q+(p q)^{2}+2 p q\right)
$$

$$
=a^{2}\left(1+6 p q+(p q)^{2}\right)
$$

sub in (2) $\quad=a^{2}\left(1+6\left(\frac{v}{a}\right)+\left(\frac{y}{a}\right)^{2}\right)$
ie, locus of T is $\quad x^{2}=a^{2}+6 a y+y^{2}$

1 mark: correct solution

2 marks: correct solution

1 mark: substantially correct solution

NB : as T does not lie on the parabola $x^{2}=4 a y$, it does not satisfy the equation. Subbing the point into the actual equation is not a valid thing to do, and is not the same as evaluating the expression $x^{2}-4 a y$.

PE3	(d) (i) $\begin{aligned} \angle A X C & =\angle B A X+\angle A B X \quad\binom{\text { exterior angle of } \triangle B A X \text { equals sum }}{\text { of the two opposite interior angles }} \\ & =\alpha+\beta \end{aligned}$	1 mark: correct solution
PE3	$\text { (ii) } \begin{aligned} \angle B Q P & =\angle B A P \quad\binom{\text { angles at the circumference }}{\text { on the same } \operatorname{arc} B P \text { are equal }} \\ & =\alpha \end{aligned}$	1 mark: correct solution
PE3	$\text { (iii) } \begin{aligned} \angle B C A & =\angle A B C \\ \angle B C A & =\beta \\ \angle B Q A & =\angle B C A\binom{\text { angles opposite equal sides }}{\text { in } \triangle A B C} \\ \text { so } \angle B Q A & =\beta \end{aligned}$	1 mark: correct solution
PE3	(iv)	
	$\begin{aligned} \angle A X Y= & \alpha+\beta \quad(\text { proved in (i)) } \\ \angle P Q Y= & \angle B Q P+\angle B Q A \\ = & \alpha+\beta \\ = & \angle A X Y \\ \therefore & \text { quadrilateral } P Q Y X \text { is cyclic } \\ & \binom{\text { exterior angle of quadrilateral }}{P Q Y X \text { equals opposite interior angle }} \end{aligned}$	2 marks: correct solution 1 mark: substantially correct solution

Year 12 Mathematics Extension 1 Task 4 Trial Examination 2014
Question No. 13

Solutions and Marking Guidelines

Outcomes Addressed in this Question
HE4 uses the relationship between functions, inverse functions and their derivatives
H5 applies appropriate techniques from the study of calculus, geometry, probability, trigonometry and series to solve problems
HE7 evaluates mathematical solutions to problems and communicates them in an appropriate form

H5, HE7

H5, HE7

H5, HE7
(c)

$$
\begin{aligned}
\cos 2 x-\sin x & =0 \quad-\pi \leq x \leq \pi \\
\cos ^{2} x-\sin ^{2} x-\sin x & =0 \\
1-\sin ^{2} x-\sin ^{2} x-\sin x & =0 \\
2 \sin ^{2} x+\sin x-1 & =0 \\
2 \sin ^{2} x+2 \sin x-\sin x-1 & =0 \\
2 \sin x(\sin x+1)-(\sin x+1) & =0 \\
(2 \sin x-1)(\sin x+1) & =0 \\
\therefore \sin x & =\frac{1}{2},-1 \\
x & =\frac{\pi}{6}, \frac{5 \pi}{6},-\frac{\pi}{2}
\end{aligned}
$$

(d)(i) To obtain an expression in the form $R \cos (x-\phi)$, use the expansion $\cos (A-B)=\cos A \cos B+\sin A \sin B$.
$8 \sin x-15 \cos x=-15 \cos x+8 \sin x$

$$
\begin{aligned}
& =17\left(\frac{-15}{17} \cos x+\frac{8}{17} \sin x\right), \operatorname{since} R=\sqrt{(-15)^{2}+8^{2}} \\
& =17 \cos (x-\phi),
\end{aligned}\left(\begin{array}{r}
\text { where } \cos \phi=\frac{-15}{17} \text { and } \sin \phi=\frac{8}{17} \\
\text { (an angle in the second quadrant) } \\
\text { or } \phi=\tan ^{-1}\left(\frac{-8}{15}\right) \\
=152^{\circ} \text { (to the nearest degree) }
\end{array}\right)
$$

OR
using the expansion $\cos (A+B)=\cos A \cos B-\sin A \sin B$.
$8 \sin x-15 \cos x=-(15 \cos x-8 \sin x)$

$$
\begin{aligned}
& =-17\left(\frac{15}{17} \cos x-\frac{8}{17} \sin x\right), \text { since } R=\sqrt{(-15)^{2}+8^{2}} \\
& =-17 \cos (x+\phi), \quad\left(\begin{array}{r}
\text { where } \cos \phi=\frac{15}{17} \text { and } \sin \phi=\frac{8}{17} \\
(\text { an angle in the first quadrant }) \\
\text { or } \phi=\tan ^{-1}\left(\frac{8}{15}\right) \\
=28^{\circ} \text { (to the nearest degree) }
\end{array}\right) \\
& =-17 \cos \left(x+28^{\circ}\right)
\end{aligned}
$$

(iii)

$$
\begin{aligned}
8 \sin x-15 \cos x & =10,0^{\circ} \leq x \leq 360^{\circ} \\
17 \cos \left(x-152^{\circ}\right) & =10,-152^{\circ} \leq x-152^{\circ} \leq 208^{\circ} \\
\cos \left(x-152^{\circ}\right) & =\frac{10}{17} \\
x-152^{\circ} & =\cos ^{-1}\left(\frac{10}{17}\right) \\
& =-54^{\circ}, 54^{\circ} \\
x & =98^{\circ}, 206^{\circ} \quad 0^{\circ} \leq x \leq 360^{\circ}
\end{aligned}
$$

3 marks

Correct solution.
2 marks
Substantial progress towards correct solution. eg. Correctly factorises quadratic in $\sin x$.
1 mark
Some progress towards correct solution. eg. Correct use of identities to form a quadratic equation in $\sin x$

2 marks

Correct solution.

1 mark

Substantial progress towards correct solution.

2 marks

Correct solution from answer obtained in (i) (provided answer in (i) does not make question easier.)
1 mark
Substantial progress towards correct solution.

HE4	(e) $\begin{aligned} & f^{\prime}(x)=\frac{1}{4+9 x^{2}} \\ & =\frac{1}{9} \cdot \frac{1}{\frac{4}{9}+x^{2}} \\ & =\frac{1}{9} \cdot \frac{1}{\left(\frac{2}{3}\right)^{2}+x^{2}} \\ & f(x)=\frac{1}{9} \cdot \frac{3}{2} \tan ^{-1}\left(\frac{3 x}{2}\right)+c \\ & =\frac{1}{6} \tan ^{-1}\left(\frac{3 x}{2}\right)+c \\ & \text { but } f(0)=\frac{\pi}{4} \\ & \therefore \frac{\pi}{4}=\frac{1}{6} \tan ^{-1}(0)+c \\ & c=\frac{\pi}{4} \end{aligned}$ Now, $\begin{aligned} & f(x)=\frac{1}{6} \tan ^{-1}\left(\frac{3 x}{2}\right)+\frac{\pi}{4} \\ & f\left(\frac{2 \sqrt{3}}{9}\right)=\frac{1}{6} \tan ^{-1}\left(\frac{3.2 \sqrt{3}}{2.9}\right)+\frac{\pi}{4} \\ & =\frac{1}{6} \tan ^{-1}\left(\frac{\sqrt{3}}{3}\right)+\frac{\pi}{4} \\ & =\frac{1}{6} \cdot \frac{\pi}{6}+\frac{\pi}{4} \\ & =\frac{\pi}{36}+\frac{\pi}{4} \\ & =\frac{\pi}{36}+\frac{9 \pi}{36} \\ & =\frac{5 \pi}{18} \end{aligned}$	3 marks Correct solution. 2 marks Substantial progress towards correct solution, at least correctly stating the correct function, $f(x)$. 1 mark Some progress towards correct solution, at least demonstrating some knowledge of how to obtain the correct inverse tan primitive.

Year 12 Trial Higher School Certificate Extension 1Mathematics Examination 2014

Outcomes Addressed in this Question

H3 Manipulates algebraic expressions involving logarithmic and exponential functions
H4 Expresses practical problems in mathematical terms based on simple given models
H5 Applies appropriate techniques from the study of Callculus, Geometry, Probability,
Trigonometry and Series to solve problems
H8 Uses techniques of integration to calculate areas and volumes
H9 Communicates using mathematical language, notation, diagrams and graphs
HE5 Applies the Chain Rule to problems including those involving velocity and acceleration as functions of displacement
HE6 Determines integrals by reduction to a standard form through a given substitution
HE7 Evaluates mathematical solutions to problems and communicates them in an appropriate form

Outcome	Solutions	Marking Guidelines
H3, HE6	(a) $\int \frac{e^{x}}{1+e^{x}} d x$ is in the form $\int \frac{f^{\prime}(x)}{f(x)} d x$ $\begin{aligned} \therefore \int_{0}^{2 \ln 3} \frac{e^{x}}{1+e^{x}} d x & =\left[\log \left(1+e^{x}\right)\right]_{0}^{2 \ln 3} \\ & =\log \left(1+e^{2 \ln 3}\right)-\log \left(1+e^{0}\right) \\ & =\log \left(1+e^{\ln 3^{2}}\right)-\log 2 \\ & =\log (1+9)-\log 2 \\ & =\log \frac{10}{2}=\ln 5 \end{aligned}$	2 marks : correct solution 1 mark : significant progress towards answer
H3, H5	$\text { (b)(i) } \frac{d V}{d t}=0.2 e^{-0.04 t}$ When $t=0, \frac{d V}{d t}=0.2 e^{0}=0.2$ \therefore half the initial rate is 0.1 . \therefore flowing at half the initial rate after 17.3 days	2 marks : correct solution 1 mark: significant progress towards answer
$\begin{aligned} & \mathrm{H} 3, \mathrm{H} 5, \\ & \mathrm{H} 9 \end{aligned}$	(ii) Amount of water flowing from spring in first 10 days $\begin{aligned} & =\int_{0}^{10} 0.2 e^{-0.04 t} d t \\ & =\frac{0.2}{-0.04}\left[e^{-0.04 t}\right]_{0}^{10} \\ & =-5\left(e^{-0.4}-1\right) \\ & =1.648 \end{aligned}$ $\therefore 1.648$ megalitres has flowed out of the spring in the first 10 days.	2 marks : correct solution 1 mark : significant progress towards answer

(c) (i) Let the radius of the circle with height h be r.

Volume sand $=\frac{1}{3} \pi r^{2} h$
Using the right triangle, $\tan 30^{\circ}=\frac{r}{h}$

$$
\begin{aligned}
& \therefore \frac{1}{\sqrt{3}}=\frac{r}{h} \\
& \therefore r=\frac{h}{\sqrt{3}}
\end{aligned}
$$

Substituting in [1],V $=\frac{1}{3} \pi\left(\frac{h}{\sqrt{3}}\right)^{2} h$

$$
\therefore V=\frac{1}{3} \pi \times \frac{h^{3}}{3}=\frac{1}{9} \pi h^{3}
$$

(ii) $V=\frac{1}{9} \pi h^{3}$

$$
\frac{d V}{d h}=\frac{1}{3} \pi h^{2}
$$

Using the Chain Rule $\frac{d V}{d t}=\frac{d V}{d h} \times \frac{d h}{d t}$

$$
\begin{aligned}
& \text { Given } \frac{d V}{d t}=-0.5,-0.5=\frac{1}{3} \pi h^{2} \times \frac{d h}{d t} \\
& \text { When } \frac{d h}{d t}=-0.05,-0.5=\frac{1}{3} \pi h^{2} \times-0.05 \\
& 10=\frac{1}{3} \pi h^{2} \\
& \frac{30}{\pi}=h^{2} \\
& \therefore h=\sqrt{\frac{30}{\pi}} \text { or } 3.09 \mathrm{~cm} / \mathrm{s} .
\end{aligned}
$$

(d) (i) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

$$
\begin{aligned}
& y^{2}=b^{2}\left(1-\frac{x^{2}}{a^{2}}\right) \\
& y^{2}=\frac{b^{2}}{a^{2}}\left(a^{2}-x^{2}\right)
\end{aligned}
$$

From diagram a, b positive, \therefore equation of curve is $y=\frac{b}{a} \sqrt{a^{2}-x^{2}}$
Area ellipse $=4$ times the area in quadrant 1

$$
=4 \times \text { area between the curve and the } x
$$ axis, from $x=0$ to $x=a$.

$=4 \int_{0}^{a} \frac{b}{a} \sqrt{a^{2}-x^{2}} d x$
$\therefore A=\frac{4 b}{a} \int_{0}^{a} \sqrt{a^{2}-x^{2}} d x$.

2 marks : correct solution

1 mark : significant progress towards answer

2 marks: correct solution 1 mark: significant progress towards correct solution
(ii) $x=a \sin \theta$

$$
\frac{d x}{d \theta}=a \cos \theta
$$

When $x=0,0=a \sin \theta, \theta=0$ (Given $0 \leq \theta \leq \frac{\pi}{2}$).
When $x=a, a=a \sin \theta, \theta=\frac{\pi}{2}$ (Given $0 \leq \theta \leq \frac{\pi}{2}$).
As $A=\frac{4 b}{a} \int_{0}^{a} \sqrt{a^{2}-x^{2}} d x$,

$$
\begin{aligned}
A & =\frac{4 b}{a} \int_{0}^{\frac{\pi}{2}} \sqrt{a^{2}-a^{2} \sin ^{2} \theta} \cdot a \cos \theta d \theta \\
& =\frac{4 b}{a} \int_{0}^{\frac{\pi}{2}} \sqrt{a^{2} \cos ^{2} \theta} \cdot a \cos \theta d \theta \\
& =\frac{4 b}{a} \int_{0}^{\frac{\pi}{2}} a \cos \theta \cdot a \cos \theta d \theta\left(\text { Given } 0 \leq \theta \leq \frac{\pi}{2},\right. \\
& a \text { positive) } \\
& =4 a b \int_{0}^{\frac{\pi}{2}} \cos ^{2} \theta d \theta
\end{aligned}
$$

Since $\cos 2 \theta=2 \cos ^{2} \theta-1, \cos ^{2} \theta=\frac{\cos 2 \theta+1}{2}$
Then $A=4 a b \int_{0}^{\frac{\pi}{2}} \frac{\cos 2 \theta+1}{2} d \theta$

$$
\begin{aligned}
& =2 a b \int_{0}^{\frac{\pi}{2}}(\cos 2 \theta+1) d \theta \\
& =2 a b\left[\frac{1}{2} \sin 2 \theta+\theta\right]_{0}^{\frac{\pi}{2}} \\
& =2 a b\left(\frac{1}{2} \sin \pi+\frac{\pi}{2}-0\right) \\
& =2 a b \times \frac{\pi}{2} \\
& =\pi a b \text { units }^{2}
\end{aligned}
$$

4 marks: correct solution 3 marks: substantially correct solution
2 marks : significant progress towards a solution
1 mark: some progress towards simplifying the integral

