

2014

Assessment Task 4 Trial HSC Examination

Mathematics Extension 1

Examiners ~ Mrs D. Crancher, Mr G. Rawson, Mr S. Faulds, Ms P. Biczo

General Instructions

- Reading Time 5 minutes
- Working Time 2 hours
- Write using a blue or black pen.
- Board approved calculators and mathematical templates and instruments may be used.
- Show all necessary working in Questions 11,12,13 and 14
- This examination booklet consists of 13 pages including a standard integral page and a multiple choice answer sheet.

Total marks (70)

Section I

Total marks (10)

- o Attempt Questions 1 10
- Answer on the Multiple Choice answer sheet provided on the last page of this question booklet.
- Allow about 15 minutes for this section

Section II

Total marks (60)

- Attempt questions11 to 14
- Answer each question in the writing booklets provided.
- Start a new booklet for each question with your student number (or name) and question number at the top of the page.
- All necessary working should be shown for every question
- Allow about 1 hour 45 minutes for this section

Name and Student Number :

This page left blank intentionally

Section I

10 marks Attempt Questions 1 – 10 Allow about 15 minutes for this section

Use the multiple choice answer sheet for Questions 1 - 10.

1 A curve is defined by the parametric equations $x = \sin 2t$ and $y = \cos 2t$. Which of the following, in terms of t, equates to $\frac{dy}{dt}$?

(A)	$\cos 4i$	(B)	2 tan 2 <i>t</i>
(C)	$2\sin 4t$)AL	$-\tan 2t$

2 If two roots of the equation $x^3 - 2x^2 + kx + 18 = 0$ are equal in magnitude but opposite in sign, then what is the value of k?

) JA	-9	(B)	-б
(C)	6	(D)	9

3 Line TA is a tangent to the circle at A and TB is a secant meeting the circle at B and C.

Given that TA = 6, CB = 9 and TC = x, what is the value of x?

(A)	-12	(B)	2
X	3	(D)	4

The diagram below shows the graph of a function y = g(x).

What is the largest possible domain containing x = 0 for which the function will have an inverse function ?

(A)
$$x \le 1$$
(B) $-1 \le x \le 3$ (C) $0 \le x \le 3$ (D) All real x

5 Which expression is a correct expansion of $\sin 4\theta$?

- (C) $4\sin\theta\cos^3\theta 4\sin^3\theta\cos\theta$ $4\sin^3\theta\cos\theta - 4\sin\theta\cos^3\theta$ $4\sin^3\theta\cos^2\theta - 4\sin^2\theta\cos^3\theta$
- (D) $4\sin^2\theta\cos^3\theta 4\sin^3\theta\cos^2\theta$

6 What is the exact value of
$$\int_{0}^{1} \frac{dx}{1+x^2}$$
?

7 Which expression is equal to $\int x e^{x^2+5} dx$?

(A)	$e^{x^2+5}+c$	X	$\frac{1}{2}e^{x^2+5}+c$
(C)	$2e^{x^2+5}+c$	(D)	$xe^{x^2+5}+c$

Hurlstone Agricultural High School 2014 Trial HSC Mathematics Extension 1 Examination

Section II

60 marks Attempt Questions 11 and 14

Allow about 1 hour 45 minutes for this section

Answer each question in the appropriate writing booklet.

All necessary working should be shown in every question.

Quest	tion 11 (15 ma	arks)	Marks
(a)	Solve $ p-2 $:	$>\sqrt{2(p-2)}$	3
(b)		the points $(-1,3)$ and $(4,8)$ find the coordinates of the livides <i>AB</i> externally in the ratio 3:2.	2
(c)	Show that the is approximat	e acute angle between the two curves $y = x^2$ and $y = x^2 - 2x - 4$ rely 4°34'.	3
(d)	For $n = 1, 2, 3$,	, let $S_n = 1^2 + 2^2 + \dots + n^2$.	
	Use m	nathematical induction to prove that, for $n = 1, 2, 3,$	3
		$S_n = \frac{1}{6} n(n+1)(2n+1)$	
(e)	There are thre arranged in a	ee identical blue marbles and four identical yellow marbles row.	
	(i)	How many different arrangements are possible ?	1
	(ii)	How many different arrangements of just five of these marbles are possible ?	2
(f)	The staff in a	n office consists of 4 males and 7 females.	1
	How many co 3 females?	ommittees of 5 can be chosen which contain exactly	

 \mathfrak{B}

Using the substitution
$$u = 2x + 1$$
, find $\int \frac{1}{(2x+1)^2 + 1} dx$.

(A)
$$\frac{1}{2} \tan^{-1} x$$

(C) $\tan^{-1}(2x+1)$
(D) $2 \tan^{-1}(2x+1)$

9 What is the derivative of
$$\log_e\left(\frac{2x}{x-1}\right)$$
 ?

(B)
$$\frac{-2}{2x(x-1)}$$
 (B) $\frac{x-2}{2x(x-1)}$

(C)
$$\frac{x-1}{x}$$
 (D) $\log_e 2$

10 For what values of a is
$$\frac{a+1}{a} \le 1$$
?

(A)
$$a > 0$$
 (B) $a \ge 0$
(D) $-1 \le a < 0$

~ End of Section I ~

Question 12 continued...

(d) Let ABPQC be a circle such that AB = AC, AP meets BC at X, and AQ meets BC at Y, as shown below.

Let $\angle BAP = \alpha$ and $\angle ABC = \beta$.

(i) Copy the diagram into your writing booklet, marking the 1 information given above, and state why $\angle AXC = \alpha + \beta$.

- (iii) Prove that $\angle BQA = \beta$ 1
- (iv) Prove that the quadrilateral *PQYX* is cyclic 2

Question 13 (15 marks)

Consider the function $f(x) = \frac{x}{x-1}$. (a) (i) Suggest a domain for which the function is continuous and has an inverse. 1 (ii) Show algebraically that the function is its own inverse. For the function $y = \frac{\pi}{2} + 2\sin^{-1}\left(\frac{x}{3}\right)$: (b) (i) State the domain and range. 2 Draw a neat sketch of the function showing all (ii) 1 important features. (c) Use trigonometric identities to solve the equation 3 $\cos 2x - \sin x = 0$ for $-\pi \le x \le \pi$. Express $8\sin x - 15\cos x$ in the form $R\cos(x-\phi)$, 2 (d) (i) where ϕ is measured to the nearest degree. Hence, or otherwise, solve the equation (ii) 2 $8 \sin x - 15 \cos x = 10$ for $0^{\circ} \le x \le 360^{\circ}$, giving your answer/s to the nearest degree. The derivative of a function is given by $f'(x) = \frac{1}{4 + 9r^2}$ and $f(0) = \frac{\pi}{4}$. (e)

Question 14 (15 marks)

(a) Evaluate
$$\int_{0}^{2\ln 3} \frac{e^x}{1+e^x} dx$$
, giving your answer in simplest exact form. 2

The flow rate of water from a natural spring is given by $\frac{dV}{dt} = 0.2e^{-0.04t}$, (b) where V is the volume in megalitres of water, and t the time in days.

(i) At what time is the water flowing at twice the initial rate?
$$2$$

(ii) How much water will flow from the spring in the first 10 days?

(c)

(ii) Find the value of *h* when the depth of sand in the egg timer is decreasing at a rate of 0.05 cm/s, giving your answer correct to 2 decimal places.

1

2

2

Question 14 continued...

The equation of the ellipse shown is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

(i) Show that the area of the ellipse is given by
$$A = \frac{4b}{a} \int_{0}^{a} \sqrt{a^2 - x^2} dx$$
. 2

(ii) By using the substitution $x = a \sin \theta$, where $0 \le \theta \le \frac{\pi}{2}$, show that the area of the ellipse is πab units².

~ End of Section II ~

4

Year 12 2014	Mathematics Extension 1	Task 4 Trial HSC
Question No. 11	Solutions and Marking Guidelines	
	Outcomes Addressed in this Question	

HE2 - uses inductive reasoning in the construction of proofs

PE3 - uses problems involving permutations and combinations, inequalities, polynomials, circle geometry and parametric representations

Outcome	Solutions	Marking Guidelines
Outcome PE3	Solutions 11. a) Solve $ p-2 > \sqrt{2(p-2)}$ Restrictive domain: $2(p-2) \ge 0$ $p-2 \ge 0$ $p \ge 2$ RHS only exists for $p \ge 2$. Now, $ p-2 > \sqrt{2(p-2)}$ Squaring both sides $(p-2)^2 > 2(p-2)$ $p^2 - 4p + 4 > 2p - 4$ $p^2 - 6p + 8 > 0$ (p-2)(p-4) > 0 $4 \xrightarrow{3}{2}$ $1 \xrightarrow{1}{2}$ p < 2, p > 4 Considering the restrictive domain (i.e. $p \ge 2$),	Marking Guidelines 3 marks complete correct solution 2 marks for substantial correct working leading to a correct solution 1 mark for limited correct working leading to a correct solution
	the solution is $p > 4$. b) Since the division is external find the coordinates of a point dividing AB in the ratio 3:-2 $A(-1, 3) = 3$ $B(4, 8) = -2$ $x = \frac{(-2)(-1) + (3)(4)}{3 + (-2)}, y = \frac{(-2)(3) + (3)(8)}{3 + (-2)}$ $= 14 = 18$ Thus the coordinates of the point required are (14, 18).	 2 marks complete correct solution 1 mark for substantial correct working leading to a correct solution or finding the internal division of the interval AB in the ratio 3:2

PE3
(c)

$$y = x^{2} - 2x - 4$$

$$y = x^{2} - 2x - 4$$

$$0 = -2x - 4$$

$$4 = -2x$$

HE2	d) Required to prove that:	
	$S_n = \frac{1}{6}n(n+1)(2n+1),$ for $n = 1,2,3,$	
	Show true for $n = 1$:	
	$LHS = (1)^2$ $= 1$	3 marks complete correct solution
	$= 1$ $RHS = \frac{1}{6}(1)(1+1)(2(1)+1)$	
	$=\frac{6}{6}$ $=1$	2 marks for substantial correct working leading to a correct solution
	$LHS = RHS$ $\therefore \text{ The statement is true for } n = 1.$	
	Assume true for $n = k$:	1 mark for limited correct working leading to a correct solution
	$S_k = \frac{1}{6}k(k+1)(2k+1)$	
	Prove true for $n = k + 1$, i.e. prove that: $S_{k+1} = \frac{1}{6}(k+1)((k+1)+1)(2(k+1)+1)$	
	$= \frac{1}{6}(k+1)(k+2)(2k+3)$	
	Now, $S_k = S_k + (k+1)^2$	
	$= \frac{1}{6}k(k+1)(2k+1) + (k+1)^2$	
	$= (k+1)\left[\frac{1}{6}k(2k+1) + (k+1)\right]$	
	$= (k+1) \left[\frac{k(2k+1) + 6(k+1)}{6} \right]$	
	$=\frac{1}{6}(k+1)(2k^{2}+k+6k+6)$	
	$=\frac{1}{6}(k+1)(2k^{2}+7k+6)$	
	$= \frac{1}{6}(k+1)(k+2)(2k+3)$ ∴ Statement is true for $n = k+1$.	
	If the statement is true for $n = k$, it is also true for $n = k+1$. Therefore, the statement is true for all natural numbers n (i.e. $n = 1,2,3,$).by mathematical induction.	

•

ь):

PE3	e) (i) Possible number of arrangements (permutations) of 7 objects, 3 of which are identical (3 blue marbles) and the other 4 of which are identical (4 yellow):	
	$\frac{7!}{3!4!} = 35$	
PE3	 (ii) Possible combinations of 5 marbles are: 3B 2Y 2B 3Y 1B 4Y 	1 mark for $\frac{7!}{3!4!}$ or 35
	$\frac{5!}{3!2!} + \frac{5!}{3!2!} + \frac{5!}{4!} = 25$	2 marks for complete correct solution1 marks for substantial correct
PE3	f) Each committee will consist of 2 males and 3 females.	working that could lead to a correct solution
	The number of committees of 5 staff with 3 females will be: 4G = 2G = 210	
	${}^{4}C_{2} \times {}^{7}C_{3} = 210$	1 mark for ${}^4C_2 \times {}^7C_3$ or 210
		$C_2 \times C_3 \text{ of } 210$

a

	t 1 Mathematics	TRIAL EXAM 2014
Question N		
PF3 - solves	Outcomes Addressed in this Question problems involving polynomials, circle geometry and parametric representations	
Outcome	Solutions	Marking Guidelines
PE3	(a) $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\beta\gamma + \alpha\gamma + \alpha\gamma}{\alpha\beta\gamma}$	
	$-\frac{2}{5}$	2 marks: correct solution
	$=\frac{-\frac{2}{5}}{-\left(\frac{-4}{5}\right)}$ $=-\frac{1}{2}$	<u>1 mark:</u> substantially correct solution
PE3	(b) $f(x) = 2x^4 + ax^3 - 2x^2 + bx + 6$	
	By the remainder theorem, $f(1) = 12$ 2+a-2+b+6=12	<u>3 marks:</u> correct solution
	a+b=6(1) By the factor theorem, $f\left(-\frac{1}{2}\right)=0$	2 marks: substantially correct solution
	$2\left(-\frac{1}{2}\right)^{4} + a\left(-\frac{1}{2}\right)^{3} - 2\left(-\frac{1}{2}\right)^{2} + b\left(-\frac{1}{2}\right) + 6 = 0$ $\frac{1}{8} - \frac{a}{8} - \frac{1}{2} - \frac{b}{2} = -6$ 1 - a - 4 - 4b = -48 $a + 4b = 45 \qquad \dots(2)$	<u>1 mark:</u> partially correct solution
	a+b=6 (1)a+4b=45 (2)3b=39 (2)-(1)b=13a=-7	
PE3	(c)(i) tangents are $y = px - ap^2$ and $y = qx - aq^2$ so $px - ap^2 = qx - aq^2$	2 marks: correct solution
	$px - qx = ap^{2} - aq^{2}$ $(p-q)x = a(p-q)(p+q)$ $x = a(p+q)$ and $y = p(a(p+q)) - ap^{2}$	<u>1 mark:</u> substantially correct solution
	$= ap^2 + apq - ap^2$ $= apq$	
	ie tangents meet at $T:(a(p+q), apq)$	

2

÷

PE3	(c)(ii) gradients of tangents are $m_1 = p \& m_2 = q$	
	$\tan \theta = \frac{m_1 - m_2}{1 + m_1 m_2}$ $\tan 45^\circ = \frac{p - q}{1 + pq}$	<u>1 mark:</u> correct solution
PE3	$1 = \frac{p-q}{1+pq}$ $1 + pq = p-q$ (c)(iii) $x^{2} - 4ay = (a(p+q))^{2} - 4a(apq)$	
	$= a^{2} (p^{2} + q^{2} + 2pq) - 4a^{2}pq$ $= a^{2} (p^{2} + q^{2} - 2pq)$ $= a^{2} (p - q)^{2}$ $= a^{2} (1 + pq)^{2} \qquad [as p - q = 1 + pq]$ $= a^{2} (1 + 2pq + (pq)^{2})$	<u>2 marks:</u> correct solution <u>1 mark:</u> substantially correct solution
	$= a^{2} + 2a(apq) + (apq)^{2}$ $= a^{2} + 2ay + y^{2} \qquad \{as \ y = apq \\ locus of T is x^{2} = a^{2} + 6ay + y^{2}$	NB: as $T \underline{\text{does not}}$ lie on the parabola $x^2 = 4ay$, it does not satisfy the <i>equation</i> . Subbing the point into the actual equation is not a valid thing to do, and is not the same as evaluating the <i>expression</i> $x^2 - 4ay$.
E3 M@(fhod))	(c)(iii) $x = a(p+q)$ (1) y = apq(2) p-q = 1+pq $(p-q)^2 = (1+pq)^2$ $p^2 - 2pq + q^2 = 1 + 2pq + (pq)^2$ $p^2 + q^2 = 1 + 4pq + (pq)^2$ (3)	
(am "otherwise" method)	from (1) $x = a(p+q)$ $x^{2} = a^{2}(p^{2}+q^{2}+2pq)$ sub in (3) $= a^{2}(1+4pq+(pq)^{2}+2pq)$ $= a^{2}(1+6pq+(pq)^{2})$	
	sub in (2) $= a^{2} \left(1 + 6 \left(\frac{y}{a} \right) + \left(\frac{y}{a} \right)^{2} \right)$ ie, locus of T is $x^{2} = a^{2} + 6ay + y^{2}$	

	athematics Extension 1 Task 4 Trial Examination 2014	
Question N		
TTT 4	Outcomes Addressed in this Question	
	s the relationship between functions, inverse functions and lies appropriate techniques from the study of calculus, geor	
	l series to solve problems	meny, probability, in igonometi y
	luates mathematical solutions to problems and communication	tes them in an appropriate form
Outcome	Solutions	Marking Guidelines
HE4	(a)(i) Any domain not containing $x = 1$.	1 mark
	(a)(1) Any domain not containing $x = 1$. eg. $x > 1$	Any correct domain, not containing $x = 1$.
HE4	(ii)	
LLL	Consider the function as:	1 mark
	x	Correct solution.
	$y = \frac{x}{x - 1}$	
	Interchanging x and y will give the inverse of the function:	
	$x = \frac{y}{y-1}$	
	x(y-1) = y	
	xy - x = y	
	xy - y = x	
	y(x-1) = x	
	$y = \frac{x}{x-1}$, which is the original function.	
	ie. the function is its own inverse provided $x \neq 1$.	
	r	
HE4	(b)(i)	2 marks
	Domain: $-1 \le \frac{x}{3} \le 1$	Correct answers for both domain and range.
	$-3 \le x \le 3$	1 mark One of domain or range stated correctly.
	Range: $-\frac{\pi}{2} \le \sin^{-1}\left(\frac{x}{3}\right) \le \frac{\pi}{2}$	
	$-\pi \le 2\sin^{-1}\left(\frac{x}{3}\right) \le \pi$	
	$-\frac{\pi}{2} \le \frac{\pi}{2} + 2\sin^{-1}\left(\frac{x}{3}\right) \le \frac{3\pi}{2}$	
	$-\frac{\pi}{2} \le y \le \frac{3\pi}{2}$	
	(ii)	1 mark
HE4	У	Correctly drawn graph showing all
	⁵ · (3,3π/2)	important features.
	4	
	3.	
	2	
	π/2	
	1.	
	$-\frac{0}{-3}$ -2 -1 0 1 2 3 4	
	-1-	
	((-3,-π/2)	
	-2 -	

H5, HE7 (c)
$$\cos^2 x - \sin x = 0$$
 $-\pi \le x \le \pi$
 $\cos^2 x - \sin x = 0$ $-\pi \le x \le \pi$
 $\cos^2 x - \sin x = 0$ $-\pi \le x \le \pi$
 $2\sin^2 x + 2\sin x - \sin x = 0$
 $2\sin^2 x + 2\sin x - \sin x = 1 = 0$
 $2\sin^2 x + 2\sin x - \sin x - 1 = 0$
 $2\sin^2 x + 2\sin x - \sin x - 1 = 0$
 $2\sin^2 x + 2\sin x - \sin x - 1 = 0$
 $2\sin^2 x + 2\sin x - \sin x - 1 = 0$
 $2\sin^2 x + 2\sin x - \sin x - 1 = 0$
 $2\sin^2 x + 2\sin x - \sin x - 1 = 0$
 $2\sin^2 x + 2\sin x - \sin x - 1 = 0$
 $2\sin^2 x + 2\sin x - \sin^2 x - \frac{\pi}{2}$
H5, HE7 (d)(1) To obtain an expression in the fram $Reads(x - \phi)$,
use the expansion $\exp(x - B) = \cos(\cos \theta + \sin x)$
 $=17 (\frac{15}{17} \cos x + \frac{\pi}{17} \cos x)$, since $B - \sqrt{(-15)^2 + 8^2}$
 $=17 \cos(x - \phi)$, $\left[(\sinh x - \cos \phi - \frac{\pi}{13} - \sin \sin \phi - \frac{\pi}{13} - \cos \phi - (\cos^2 - \sin^2 - \cos^2 - (\frac{\pi}{13}) - \cos^2 - (\cos^2 - 6) - \cos^2 - (\cos^2$

ø

	al Higher School Certificate Extension 1 Mathematics	Examination 2014
Question N		
H4 Expre H5 Appl Trigo H8 Uses H9 Com HE5 Appl funct	Outcomes Addressed in this Question pulates algebraic expressions involving logarithmic and exponer esses practical problems in mathematical terms based on simple ies appropriate techniques from the study of Calculus, Geometry onometry and Series to solve problems techniques of integration to calculate areas and volumes municates using mathematical language, notation, diagrams and ies the Chain Rule to problems including those involving velocitions of displacement	given models 7, Probability, graphs ry and acceleration as
	rmines integrals by reduction to a standard form through a given uates mathematical solutions to problems and communicates the	
Outcome	Solutions	Marking Guidelines
	(a) $\int \frac{e^x}{1+e^x} dx$ is in the form $\int \frac{f'(x)}{f(x)} dx$	2 marks : correct solution
	$\therefore \int_{0}^{2\ln 3} \frac{e^{x}}{1+e^{x}} dx = \left[\log(1+e^{x})\right]_{0}^{2\ln 3}$ $= \log(1+e^{2\ln 3}) - \log(1+e^{0})$ $= \log(1+e^{\ln 3^{2}}) - \log 2$	1 mark : significant progress towards answer
	$= \log(1+9) - \log 2$ $= \log \frac{10}{2} = \ln 5$	
H3, H5	(b)(i) $\frac{dV}{dt} = 0.2e^{-0.04t}$	
	When $t = 0$, $\frac{dV}{dt} = 0.2e^0 = 0.2$ \therefore half the initial rate is 0.1. When $\frac{dV}{dt} = 0.1$, $0.1 = 0.2e^{-0.04t}$	2 marks : correct solution
	$dt = 0.5 = e^{-0.04t}$ -0.04t = log _e 0.5 $t = \frac{\log_e 0.5}{-0.04}$ t = 17.3 (to 1 decimal place)	1 mark : significant progress towards answer
H3, H5, H9	flowing at half the initial rate after 17.3 days (ii) Amount of water flowing from spring in first 10 days $= \int_{0}^{10} 0.2 e^{-0.04t} dt$	2 marks : correct solution 1 mark : significant
	$= \frac{0.2}{-0.04} \left[e^{-0.04t} \right]_0^{10}$ = $-5 \left(e^{-0.4} - 1 \right)$ = 1.648 \therefore 1.648 megalitres has flowed out of the spring in the first 10 days.	progress towards answer

ø

H4, H5	(c) (i) Let the radius of the circle with height h be r .	1 mark : correct solution
	Volume sand = $\frac{1}{3}\pi r^2 h$ [1]	
	Using the right triangle, $\tan 30^\circ = \frac{r}{r}$	
	n n	
	$\therefore \frac{1}{\sqrt{3}} = \frac{r}{h}$	
	$\therefore r = \frac{h}{\sqrt{3}}$	
	Substituting in [1], $V = \frac{1}{3}\pi \left(\frac{h}{\sqrt{3}}\right)^2 h$	
	$\therefore V = \frac{1}{3}\pi \times \frac{h^3}{3} = \frac{1}{9}\pi h^3$	
	(ii) $V = \frac{1}{9}\pi h^3$	2 marks : correct
	$\frac{dV}{dh} = \frac{1}{3}\pi h^2$	solution
	Using the Chain Rule $\frac{dV}{dt} = \frac{dV}{dh} \times \frac{dh}{dt}$	1 mark : significant progress towards answer
HE5	Given $\frac{dV}{dt} = -0.5$, $-0.5 = \frac{1}{3}\pi h^2 \times \frac{dh}{dt}$	
	When $\frac{dh}{dt} = -0.05$, $-0.5 = \frac{1}{3}\pi h^2 \times -0.05$	
	$10 = \frac{1}{3}\pi h^2$	
	$\frac{30}{\pi} = h^2$	
	$\therefore h = \sqrt{\frac{30}{\pi}} \text{or } 3.09 \text{ cm/s.}$	
	(d) (i) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	
H8		2 marks: correct solution 1 mark: significant
	$y^2 = b^2 \left(1 - \frac{x^2}{a^2} \right)$	progress towards correct solution
	$y^2 = \frac{b^2}{a^2} (a^2 - x^2)$	
	From diagram a, b positive, \therefore equation of curve is	
	$y = \frac{b}{a}\sqrt{a^2 - x^2}$	
	Area ellipse = 4 times the area in quadrant 1 = 4 × area between the curve and the x	
	axis, from $x = 0$ to $x = a$.	
	$=4\int_0^a \frac{b}{a}\sqrt{a^2-x^2}dx$	
	$\therefore A = \frac{4b}{a} \int_0^a \sqrt{a^2 - x^2} dx.$	

HE6 (ii)
$$x = a \sin \theta$$

 $\frac{dx}{d\theta} = a \cos \theta$
When $x = 0$, $0 = a \sin \theta$, $\theta = 0$ (Given $0 \le \theta \le \frac{\pi}{2}$).
When $x = a$, $a = a \sin \theta$, $\theta = \frac{\pi}{2}$ (Given $0 \le \theta \le \frac{\pi}{2}$).
As $A = \frac{4b}{a} \frac{\pi}{6} \sqrt[4]{d^2 - x^2} dx$,
 $A = \frac{4b}{a} \frac{\pi}{6} \sqrt[4]{d^2 - x^2} dx$,
 $A = \frac{4b}{a} \frac{\pi}{6} \sqrt[4]{d^2 - x^2} dx$,
 $A = \frac{4b}{a} \frac{\pi}{6} \sqrt[4]{d^2 - x^2} dx$,
 $A = \frac{4b}{a} \frac{\pi}{6} \sqrt[4]{d^2 - x^2} dx$,
 $A = \frac{4b}{a} \frac{\pi}{6} \sqrt[4]{d^2 - x^2} dx$,
 $A = \frac{4b}{a} \frac{\pi}{6} \sqrt[4]{d^2 - x^2} dx$,
 $a = \frac{4b}{a} \frac{\pi}{6} \sqrt[4]{d^2 - x^2} dx$,
 $a = \frac{4b}{a} \frac{\pi}{6} \sqrt[4]{d^2 - x^2} dx$,
 $a = \frac{4b}{a} \frac{\pi}{6} \sqrt[4]{d^2 - x^2} dx$,
 $a = \frac{4b}{a} \frac{\pi}{6} \sqrt[4]{d^2 - x^2} dx$,
 $a = \frac{4b}{a} \frac{\pi}{6} \sqrt[4]{d^2 - x^2} dx$,
 $a = \frac{4b}{a} \frac{\pi}{6} \sqrt[4]{d^2 - x^2} dx$,
 $a = \frac{4b}{a} \frac{\pi}{6} \sqrt[4]{d^2 - x^2} dx$,
 $a = \frac{4b}{a} \frac{\pi}{6} \sqrt[4]{d^2 - x^2} dx$,
 $a = \frac{4b}{a} \frac{\pi}{6} \sqrt[4]{d^2 - x^2} dx$,
 $a = \frac{4b}{a} \frac{\pi}{6} \sqrt[4]{d^2 - x^2} dx$,
 $a = \frac{4b}{a} \frac{\pi}{6} \sqrt[4]{d^2 - x^2} dx$,
 $a = \frac{4b}{a} \frac{\pi}{6} \sqrt{d^2 - x^2} dx$,
 $a = \frac{4b}{a} \frac{\pi}{6} \sqrt{d^2 - x^2} dx$,
 $a = \frac{4b}{a} \frac{\pi}{6} \sqrt{d^2 - x^2} dx$,
 $a = \frac{4b}{a} \frac{\pi}{6} \sqrt{d^2 - x^2} dx$,
 $a = \frac{4b}{a} \frac{\pi}{6} \sqrt{d^2 - x^2} dx$,
 $a = \frac{4b}{a} \frac{\pi}{6} \sqrt{d^2 - x^2} dx$,
 $a = \frac{4b}{a} \frac{\pi}{6} \sqrt{d^2 - x^2} dx$,
 $a = \frac{4b}{a} \frac{\pi}{6} \sqrt{d^2 - x^2} dx$,
 $a = \frac{4b}{a} \frac{\pi}{6} \sqrt{d^2 - x^2} dx$,
 $a = \frac{4b}{a} \frac{\pi}{6} \sqrt{d^2 - x^2} dx$,
 $a = \frac{4b}{a} \frac{\pi}{6} \sqrt{d^2 - x^2} dx$,
 $a = \frac{4b}{a} \frac{\pi}{6} \sqrt{d^2 - x^2} dx$,
 $a = \frac{4b}{a} \frac{\pi}{6} \sqrt{d^2 - x^2} dx$,
 $a = \frac{4b}{a} \frac{\pi}{6} \sqrt{d^2 - x^2} dx$,
 $a = \frac{4b}{a} \frac{\pi}{6} \sqrt{d^2 - x^2} dx$,
 $a = \frac{4b}{a} \frac{\pi}{6} \sqrt{d^2 - x^2} dx$,
 $a = \frac{4b}{a} \frac{\pi}{6} \sqrt{d^2 - x^2} dx$,
 $a = \frac{4b}{a} \frac{\pi}{6} \sqrt{d^2 - x^2} dx$,
 $a = \frac{4b}{a} \frac{\pi}{6} \sqrt{d^2 - x^2} dx$,
 $a = \frac{4b}{a} \frac{\pi}{6} \sqrt{d^2 - x^2} dx$,
 $a = \frac{4b}{a} \frac{\pi}{6} \sqrt{d^2 - x^2} dx$,
 $a = \frac{4b}{a} \frac{\pi}{6} \sqrt{d^2 - x^2} dx$,
 $a = \frac{4b}{a} \frac{\pi}{6} \sqrt{d^2 - x^2} dx$,
 $a = \frac{4b}{a} \frac{\pi}{6} \sqrt{d^2 - x^2} dx$,
 $a = \frac{4b}{a} \sqrt{d^2 - x^2} dx$,
 $a = \frac{4b}{a} \sqrt{d^2 - x^2} dx$,
 $a = \frac{4b}{a} \sqrt{d^2 - x^2$

ę.