

2015

Assessment Task 4 Trial HSC Examination

Mathematics Extension 1

Examiners ~ Mrs D. Crancher, Mrs S. Gutesa, Mr S. Faulds, Ms P. Biczo

General Instructions

- o Reading Time 5 minutes
- \circ Working Time 2 hours
- Write using a blue or black pen.
- Board approved calculators and mathematical templates and instruments may be used.
- Show all necessary working in Questions 11,12,13 and 14
- This examination booklet consists of 13 pages including a standard integral page and a multiple choice answer sheet.

Total marks (70)

Section I

Total marks (10)

- Attempt Questions 1 10
- Answer on the Multiple Choice answer sheet provided on the last page of this question booklet.
- Allow about 15 minutes for this section

Section II

Total marks (60)

- o Attempt questions11 to 14
- Answer each question in the writing booklets provided.
- Start a new booklet for each question with your student name and question number at the top of the page.
- All necessary working should be shown for every question
- Allow about 1 hour 45 minutes for this section

Student Name : _____

Teacher : _____

Section I

10 marks Attempt Questions 1 – 10 Allow about 15 minutes for this section

Use the multiple choice answer sheet for Questions 1 - 10.

- 1 The solution to the inequality $x(2-x)(x+1) \ge 0$ is
 - (A) $x \le -2$ or $0 \le x \le 1$ (B) $-2 \le x \le 0$ or $x \ge 1$ (C) $x \le -1$ or $0 \le x \le 2$ (D) $-1 \le x \le 0$ or $x \ge 2$
- 2 A committee of 3 men and 3 women is to be formed from a group of 8 men and 6 women. How many ways can this be done?

(A)	48	(B)	1120
(C)	40320	(D)	3003

In the diagram, AB is a tangent to the circle, BC = 6cm and CD = 12cm. What is the length of AB?

(A) $6\sqrt{2}$ cm (B) $6\sqrt{2}$	3 cm

(C) 72cm (D) 108cm

4

What is the equation of the tangent at the point $(4p, 2p^2)$ on the parabola $x^2 = 8y$?

- (A) $y = px p^2$ (B) $x + py = 2p + p^3$
- (C) $x + py = 4p + p^3$ (D) $y = px 2p^2$

5

What is the acute angle to the nearest degree that the line 2x - 3y + 5 = 0 makes with the y-axis?

(C) 56° (D) 63°

6 Which of the following statements is FALSE.

- (A) $\cos^{-1}(-\theta) = -\cos^{-1}\theta$ (B) $\sin^{-1}(-\theta) = -\sin^{-1}\theta$
- (C) $\tan^{-1}(-\theta) = -\tan^{-1}\theta$ (D) $\cos^{-1}(-\theta) = \pi \cos^{-1}\theta$

7 The primitive of $2x(3x^2-1)^4$ is:

(A) $\frac{1}{15}(3x^2-1)^5+c$ (B) $\frac{3}{5}(3x^2-1)^5+c$

(C)
$$\frac{2x}{5}(3x^2-1)^5 + c$$
 (D) $\frac{2x}{15}(3x^2-1)^5 + c$

8 The equation(s) of the horizontal asymptote(s) to the curve $y = \frac{x^2 + 1}{x^2 - 1}$ are

- (A) y = 0 (B) $x = \pm 1$
- (C) y = 1 (D) x = 1 only
- 9 What are the coordinates of the point that divides the interval joining the points A(2,2) and B(4,5) externally in the ratio 2:3?
 - (A) (-2, -4) (B) (-2, 11)
 - (C) (8,-4) (D) (8,11)

~ End of Section I ~

Section II

60 marks Attempt Questions 11 to 14

Allow about 1 hour 45 minutes for this section

Answer each question in the appropriate writing booklet.

All necessary working should be shown in every question.

Question 11	(15 marks)	Marks
(a)	Solve the inequality $\frac{3}{x(2x-1)} > 1?$	3
(b)	In what ratio does the point (14,18) divide the interval joining X (-1,3) to Y (4,8)?	2
(c)	(i) Show that the curves $y = x^3 - x$ and $y = x - x^2$ intersect at the point $(-2, -6)$	1
	(ii) Determine the acute angle between the curves $y = x^3 - x$ and $y = x - x^2$ at the point of intersection, to the nearest minute.	3
(d)	 (i) A class of 25 students is to be divided into four groups consisting of 3, 4, 5 and 6 students. How many ways can this are done? Leave your answer in unsimplified form. 	2
	 (ii) Assume that the four groups have been chosen. How many ways can the 25 students be arranged around a circular table if the students in each group are to be seated together? Leave your answer in unsimplified form. 	2
(e)	Five different fair dice are thrown together. What is the probability the five scores are all different?	2

Question 12 (15 marks)

1

(a) Consider the function
$$f(x) = (x-1)^2$$

(i) Sketch
$$y = f(x)$$
. 1

- (ii) Explain why f(x) does not have an inverse function for all x in its domain. 1
- (iii) State a domain and range for which f(x) has an inverse function $f^{-1}(x)$.

(iv) For
$$x \ge 1$$
 find the equation of the function $f^{-1}(x)$. 2

(v) Hence, on a new set of axes, sketch the graph of
$$y = f^{-1}(x)$$
. 1

(b) Find
$$\int \frac{dx}{\sqrt{9-4x^2}}$$
 2

(c) Find the exact value of
$$\tan\left(2\tan^{-1}\frac{3}{4}\right)$$
 2

(d) Find the general solution to $2\cos x = \sqrt{3}$. Leave your answer in terms of π .

(e) Differentiate (with respect to *x*)

$$\left(\tan^{-1}\frac{x}{3}\right)^2$$

and hence find the exact value of

$$\int_{0}^{\sqrt{3}} \frac{\tan^{-1} \frac{x}{3}}{x^{2} + 9} dx$$
 3

(a) The points $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ lie on the parabola $x^2 = 4ay$ such that *OP* is perpendicular to *OQ*.

Question 13 continued next page

(d) (i) Consider the curve
$$f(x) = \sin^2 x - x + 1$$
 for $0 \le x \le \pi$.
Show that it has one stationary point and determine its nature. 3

(ii) $f(x) = \sin^2 x - x + 1$ has a zero near $x_1 = \frac{\pi}{2}$. Use one application of Newton's method to obtain another approximation x_2 , to this zero.

2

The graph of $f(x) = \sin^2 x - x + 1$ is shown in the vicinity of $x = \frac{\pi}{2}$.

By using this diagram, determine if x_2 is a better approximation than x_1 to the real root of the equation. You must justify your answer.

Hurlstone Agricultural High School 2015 Trial HSC Mathematics Extension 1 Examination

1

In the diagram above, FG is a common tangent and FB||GD.

(i) Prove that $FA \parallel GC$. 2

(b) (i) Find:
$$\frac{d}{dx}(x\sin 3x)$$
. 2

(ii) Hence, evaluate:
$$\int_{0}^{\frac{1}{6}} x \cos 3x \, dx$$
 3

(c) Use the substitution
$$y = \sqrt{x}$$
 to find

$$\int \frac{dx}{\sqrt{x(1-x)}}$$
 3

(d) Use mathematical induction to prove the inequality: 3

 $n! > 2^n$, for all positive integral values of $n \ge 4$

~ End of Section II ~

	Year 12 Mathematics Extension 1 Trial 2015	
Question No	5. 11 Solutions and Marking Guidelines	
PE3 Solves	Addressed in this Question problems involving permutations and combinations, inequalities and polynomials.	
H5 Applies	appropriate techniques from the study of geometry.	
Outcome	Solutions	Marking Guidelines
PE3	Solutions (a) $\frac{3}{x(2x-1)} > 1$ Multiply by the square of the denominator $3x(2x-1) > x^2(2x-1)^2$ $3x(2x-1) - x^2(2x-1)^2 > 0$ x(2x-1)(3-x(2x-1)) > 0 $x(2x-1)(-2x^2 + x + 3) > 0$ -x(2x-1)(2x-3)(x+1) > 0 $\therefore -1 < x < 0, \frac{1}{2} < x < \frac{3}{2}$	Marking Guidelines 3 marks Correct solution 2 marks Substantial progress towards correct solution 1 mark Some progress towards correct solution
H5	(b) A(-1,3) B(4,8) P(14,18) Ratio $AB: BP, m:n$ assume $1:k$ $x_0 = \frac{mx_2 + nx_1}{m+n}$ $14 = \frac{1(4) + k(-1)}{1+k}$ 14 + 14k = 4 - k $k = \frac{-2}{3}$ $1: k = 1: \frac{-2}{3}$ \therefore Ratio is $-3:2$ (c)(i)	2 marks Correct solution. 1 mark Substantial progress towards correct solution.
H5	Substitute $x = -2$ into $y = x^3 - x$ $RHS = (-2)^3 - (-2)$ = -6 \therefore Satisfies the curve. Substitute $x = -2$ into $y = x - x^2$ $RHS = -2 - (-2)^2$ = -6 \therefore Satisfies the curve. $\therefore (-2, -6)$ is the point of intersection.	I mark Correct solution

	(c)(ii) For $y = x^3 - x$, $y' = 3x^2 - 1$ when $x = -2$, $m_1 = 3(-2)^2 - 1 = 11$ For $y = x - x^2$, $y' = 1 - 2x$ when $x = -2$, $m_2 = 1 - 2(-2) = 5$ $\tan \theta = \left \frac{m_1 - m_2}{1 + m_1 m_2} \right $ $\tan \theta = \left \frac{11 - 5}{1 + (11)(5)} \right $ $\therefore \theta = \tan^{-1} \left(\frac{6}{56} \right)$ $\therefore \theta = 6^{\circ}7'$ (to the nearest minute)	3 marks Correct solution with correct rounding 2 marks Substantial progress towards correct solution 1 mark Some progress towards correct solution
PE3	(d) (i) ${}^{25}C_3 \times {}^{22}C_4 \times {}^{18}C_5 \times {}^{13}C_6$ or $\frac{25!}{3! \ 4! \ 5! \ 6! \ 7!}$	2 marks Correct solution I mark Substantial progress towards correct solution
PE3	(d) (ii) $(11-1)! \times 3! \times 4! \times 5! \times 6!$	2 marks Correct solution. 1 mark Substantial progress towards correct solution.
H5	(e) $P(E) = \frac{6 \times 5 \times 4 \times 3 \times 2}{6^5}$ $= \frac{5}{54}$	2 marks Correct solution. 1 mark Substantial progress towards correct solution.

Т

Year 12 20	15 Mathematics Extension 1	Task 4 Trial HSC	
Question No. 12 Solutions and Marking Guidelines			
	Outcomes Addressed in this Question	• •	
HE4 use	HE4 uses the relationship between functions, inverse functions and their derivatives		
Outcome	Solutions	Marking Guidelines	
	Question 12	e -	
	a)		
HE4	(i)		
	3	1 Mark for correct sketch	
	1		
	0		
	-1 0 1 2 3 4		
HE4	(ii)		
	It does not have an inverse because for every y value there is	1 Mark for correct explanation	
	Or		
	Does not pass the horizontal line test.		
	Or		
	Anything that is equivalent.		
HE4	(iii)	1 Mark for correct answer	
	Domain: $x \ge 1$ Range: $y \ge 0$		
	Range. $y \ge 0$		
HE4	(iv)	2 Marks for complete correct	
	$x = (y-1)^2$	solution	
	$\sqrt{x} = y - 1$	1 Marile for partial correct	
	$y = 1 + \sqrt{x}$	solution	
	$\therefore f^{-1}(x) = 1 + \sqrt{x}$		
HE4	(v)		
112.	6 5	1 Mark for correct sketch	
	4		
	2		
**	1		
	-4 -3 -2 -1 0 1 2 3 4 5 6 7 8		
	-2		
HF4	(b)		
	$\int dx$	2 Marks for complete correct	
	$\int \sqrt{9-4x}$	solution	
	$\int dx$		
	$= \left \frac{1}{\sqrt{(9-2)}} \right $	1 Mark for partial correct	
	$\int \sqrt{4\left(\frac{1}{4}-x^2\right)}$	501411011	
	(x)		
	$=\frac{1}{\sin^{-1}}\left \frac{3}{2}\right + C$ or $\frac{1}{\sin^{-1}}\left(\frac{2x}{2}\right) + C$		

HE4	(c)	
	let $\theta = \tan^{-1}\left(\frac{3}{2}\right)$ $\therefore \tan \theta = \frac{3}{2}$	
	now,	2 Marks for complete correct solution
	$\tan\left(2\tan^{-1}\frac{3}{4}\right) = \tan\left(2\theta\right)$	1 Mark for partial correct
	$=\frac{2\tan\theta}{1-\tan^2\theta}$	solution
	$2\left(\frac{3}{4}\right)$	
	$=\frac{(4)}{1-(\frac{3}{4})^2}$	
	$=\frac{24}{24}$	
НЕЛ	7	
1124	$2\cos x = \sqrt{3}$	2 Marks for complete correct solution
	$\cos x = \frac{\sqrt{3}}{2}$	1 Mark for partial correct
	$\therefore x = 2n\pi \pm \cos^{-1} \frac{\sqrt{3}}{2}$	solution
	$=2n\pi\pm\frac{\pi}{6}$, where n is any integer.	
HE4	(e) $\left(\frac{1}{2}\right)$	
	$\frac{d}{dx}\left(\tan^{-1}\frac{x}{3}\right) = 2\left(\tan^{-1}\frac{x}{3}\right)\left(\frac{3}{1+\frac{x^2}{9}}\right)$	3 Marks for complete correct solution
	$= 2\left(\tan^{-1}\frac{x}{3}\right)\left(\frac{3}{9+x^2}\right)$	2 Mark for substantial working that could lead to a correct
	$= 6 \left(\frac{\tan^{-1} \frac{x}{3}}{9 + x^2} \right)$	solution with only one error.
	now,	l Mark for correctly differentiating $d(\tan^{-1} x)^2$
	$\int_{1}^{\sqrt{3}} \left(\tan^{-1} \frac{x}{3} \right)_{dn} = \frac{1}{1} \int_{1}^{\sqrt{3}} \left(\tan^{-1} \frac{x}{3} \right)_{dn}$	$\frac{differentiating}{dx} \frac{dx}{dx} \frac{dx}{3}$
	$\int_{0} \left(\frac{9+x^2}{9+x^2} \right)^{dx} = \frac{1}{6} \int_{0}^{6} \left(\frac{9+x^2}{9+x^2} \right)^{dx}$	
	$\left[\left(1-1\right)^{2}\right]^{\sqrt{2}}$	
	$=\frac{1}{6}\left[\left(\tan^{-1}\frac{x}{3}\right)\right]_{0}$	
	$=\frac{1}{6}\left(\left(\tan^{-1}\frac{\sqrt{3}}{3}\right)^{2}-\left(\tan^{-1}\frac{0}{3}\right)^{2}\right)$	
	$=\frac{1}{6}\left(\left(\frac{\pi}{6}\right)^2-0\right)$	
	$=\frac{\pi^2}{216}$	

Year 12 Tr	al Higher School Certificate Extension 1 Mathematics	Examination 2015
Question N	0.13 Solutions and Marking Guidelines Outcomes Addressed in this Ouestion	
PE3 solve	s problems involving polynomials and parametric representa	tions
PE5 deter	mines derivatives which require the application of more than	one rule of
differ	rentiation	
H6 uses t	the derivative to determine the features of the graph of a fun-	tion them in an appropriate
form.	ates mathematical solutions to problems and communicates (nem in an appropriate
Outcome	Solutions	Marking Guidelines
PE3	(a) (i) $OP \perp OQ$, $\therefore mOP \times m OQ = -1$.	2 marks : correct
	$\therefore \frac{ap^2}{aq^2} \times \frac{aq^2}{aq^2} = -1$	l mark · significant
	2ap 2aq	progress towards correct
	$\therefore \frac{p}{2} \times \frac{q}{2} = -1$	solution
	2 2	
	(ii) Midpoint $PQ = \left(ap + aq, \frac{ap^2 + aq^2}{2}\right)$	2 marks : correct
PE3	As the diagonals bisect one another in a rectangle, OR	solution
	will also have the same midpoint as PQ.	progress towards correct
	If $0(0,0)$, <i>R</i> has midpoint $\left(ap + aq, \frac{ap^2 + aq^2}{2}\right)$, then	solution
	$R ext{ is } (2a(p+q), a(p^2+q^2)).$	
PE3	$\int nam 4$ [1]	
	$pq = -4 \qquad [1]$	2 marks : correct
	(iii) At R, $\{x = 2a(p+q) [2]\}$	1 mark : significant
	$y = a\left(p^2 + q^2\right) \qquad [3]$	progress towards correct
	From [2], $x^2 = 4a^2(p+q)^2$	solution
	$(p^2 + q^2)$	
	$\dots x = 4a \left(p + q + 2pq \right)$	
	Substituting [1] and [3], $x^2 = 4a^2\left(\frac{y}{a} + 2 \times -4\right)$,	
	$\therefore x^2 = 4a(y-8a)$, which is a concave up parabola with	
	vertex $(0,8a)$.	
	(b)	
	$\frac{x+3}{x+3}$	
PE3	$(x-3)x^2 + 0x + 4 - 0x + 0x + 4 - 0x + 0x$	2 marks · correct
	$\frac{x^2 - 3x}{2}$ Remainder is 13.	solution
	3x+4 –	1 mark : significant
	3x-9	progress towards correct
	13	solution
	(c) From $x^3 - 3x^2 - 6x - 1 = 0$,	
	$\alpha + \beta + \gamma = \frac{-b}{2} = 3, \ \alpha\beta + \beta\gamma + \alpha\lambda = \frac{c}{2} = -6.$	2 marks : correct
		solution
	$\left(\alpha+\beta+\gamma\right)^{2} = \alpha^{2}+\beta^{2}+\gamma^{2}+2(\alpha\beta+\beta\gamma+\alpha\gamma)$	progress towards correct

1 mark : significant progress towards correct

solution

	$\therefore \alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \alpha\gamma)$	
	$\therefore \alpha^{2} + \beta^{2} + \gamma^{2} = (3)^{2} - 2(-6)$	
	= 21.	
H6, PE5	(d) (i) $f(x) = \sin^2 x - x + 1$	3 marks : correct
	$f(x) = 2 \sin x \cos x - 1$ $f'(x) = \sin 2x - 1$	solution
	f'(x) = 0 for stationary points.	progress towards correct
	Solving $\sin 2x - 1 = 0$,	solution
	$\sin 2x = 1$	progress
	For $0 \le x \le \pi$, $0 \le 2x \le 2\pi$.	towards correct solution
	Solving, $2x = \frac{\pi}{2}$, \therefore one stationary point, at $x = \frac{\pi}{4}$.	
	Testing $x = \frac{\pi}{4}$, for $f'(x) = \sin 2x - 1$,	
	$x \frac{\pi}{6} \frac{\pi}{4} \frac{\pi}{3}$	
	$f'(x) = \frac{\sqrt{3}-2}{2} = 0 = \frac{\sqrt{3}-2}{2}$	
	As $\frac{\sqrt{3}-2}{2}$ is negative, there is a horizontal point of	
	inflexion at $x = \frac{\pi}{4}$.	
	(ii) $f(\frac{\pi}{2}) = \sin^2 \frac{\pi}{2} - \frac{\pi}{2} + 1 = 2 - \frac{\pi}{2}$	2 marks : correct
PE5, HE7	$\begin{pmatrix} (n) & j & 2 \end{pmatrix} = \begin{pmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \end{pmatrix}$	1 mark : significant
	$f'\left(\frac{\pi}{2}\right) = \sin \pi - 1 = -1.$	progress towards correct
	$2 - \pi$	
	Newton's method : $x_2 = \frac{\pi}{2} - \frac{2 - \frac{2}{2}}{-1}$	
	$\therefore x_2 = 2$ (iii)	
HE7		l mark : correct
	/ real root	
	π/2	
	x_2 is where the tangent at $\frac{\pi}{2}$ meets the x axis.	
	This is closer to the real root, \therefore a better approximation.	
		1

Year 12 Mathematics Extension 1 Trial Examination 2015				
Question N	Question No. 14 Solutions and Marking Guidelines			
Outcomes Addressed in this Question				
PE3 solv	es problems involving circle geor	metry		
HEZ uses	uses inductive reasoning in the construction of proofs			
HE6 dete	s me relationship between function to s	ns, inverse functions and the standard form through a	given substitution	
Outcome	Solution	s	Marking Guidelines	
PE3	(a)(i) Let $\angle DGH = \alpha$	~	2 marks	
	$\therefore \angle BFG = \alpha \qquad (cc$	orresponding angles, FB GD)	Correct solution with full reasoning.	
	Now, $\angle GCD = \alpha$ (and	gle between a chord and	Substantial progress towards a correct	
	tai thi	ngent is equal to the angle in elternate segment)	solution.	
	Similarly, $\angle FAB = \alpha$			
	Since $\angle GCD = \angle FAB = \alpha$,	-1)		
	$FA \parallel GC$ (corresponding angles are equ	ai)		
	(ii) Since $\angle GCD = \alpha$ (sh	own above)	2 marks	
PE3	$\angle GCB = 180^\circ - \alpha$ (ar	gles on a straight line	Correct solution with full reasoning.	
	also, $\angle BFG = \alpha$ (sh	iown above)	Substantial progress towards a correct	
	$\angle GCB + \angle BFG = 180^\circ - \alpha + \alpha$		solution.	
	= 180°			
	BUGF is a cyclic quadrilateral (opp	usite angles supplementary)		
Y I Y I 4	(b) (i)			
HE4	$\frac{d}{dt} x \sin 3x = x^3$	$\cos 3x + \sin 3x.1$	2 marks Correct application of product rule to find	
	dx		correct answer.	
	$= 3x^{0}$	$\cos 5x + \sin 5x$	Demonstrates knowledge of product rule in	
			making substantial progress to a full solution.	
	(**)			
HE4	(II) d			
	If $\frac{dx}{dx}x\sin 3x = 3x\cos 3x + s$	$\sin 3x$	3 marks Correct solution	
	then $3x\cos 3x = \frac{d}{2}x\sin 3x$	$-\sin 3x$	2 marks	
	dx		Correctly finds the required primitive function.	
	$x\cos 3x = \frac{1}{3}\frac{a}{dx}x\sin 3x - \frac{1}{3}s$	in 3.r	1 mark	
	Integrating both sides,		substantial progress towards finding the required primitive function.	
	$\frac{\pi}{6}$ $\frac{\pi}{6}$	$\frac{\pi}{6}$		
	$\int x \cos 3x dx = \frac{1}{2} \int \frac{d}{dx} x \sin 3x dx$	$3xdx - \frac{1}{3} \sin 3xdx$		
	J J UX 0 0	ل ر 0		
	$=\frac{1}{3}\left[x\sin 3x + \frac{1}{3}\cos 3x\right]_{0}^{\frac{\pi}{6}}$			
	$=\frac{1}{3}\left[\left(\frac{\pi}{6}\sin\frac{\pi}{2}+\frac{1}{3}\cos\frac{\pi}{2}\right)-\right]$	$\left(0\sin 0+\frac{1}{3}\cos 0\right)$		
	$=\frac{1}{3}\left[\left(\frac{\pi}{6}-0\right)-\left(0+\frac{1}{3}\right)\right]$			
	$=\frac{1}{3}\left(\frac{\pi}{6}-\frac{1}{3}\right)$			
	$=\frac{\pi-2}{2}$			
	18			

(c)	rbe
HE6 Let $y = \sqrt{x}$ Corre	et solution.
$\therefore x = y^2$	rks
$\frac{dx}{dx} = 2y$ Uses make	the given substitution correctly and substantial progress towards a
dy corre-	ct solution.
dx = 2ydy 1 ma	rk
$\int \frac{dx}{\sqrt{1-x^2}} = \int \frac{2ydy}{\sqrt{1-x^2}}$ Uses	the given substitution correctly.
$J \sqrt{x(1-x)} J \sqrt{y^2(1-y^2)}$	
$=\int 2ydy$	
$\int y \sqrt{(1-y^2)}$	
dy dy	
$=2\int \frac{1}{\sqrt{1-v^2}}$	
$\gamma(-2)$	
$=2\sin y+c$	
but $y = \sqrt{x}$	
$\therefore \frac{dx}{\sqrt{c(1-x)}} = 2\sin^{-1}\sqrt{x} + c$	
$\int \sqrt{x(1-x)}$	
HEZ $n! > 2^{\circ}$, for all positive integral values of $n \ge 4$ Brown type for $n = 4$ 3 ma	rks
Prove the for $n = 4$ $LHC = 41$ $PLC = 2^4$	ect solution.
$LHS = 4! \qquad RHS = 2 \qquad 2 \text{ ma}$	rks e the relationship is true for n=4 and
$= 24 \qquad = 10 \qquad \qquad \text{make}$	es substantial progress towards a
$\frac{24 \times 10}{10}$	et solution.
	rk ectly proves the relationship true for
Assume true for $n = k$ $n=4$.	
ie. Assume $k!>2^k$	
$k! - 2^k > 0$	
Prove true for $n = k + 1$	
ie. Prove $(k+1)! > 2^{k+1}$	
Consider the difference	
$(k+1)!-2^{k+1} = (k+1).k!-2.2^{k}$	
$= k k! + k! - 2^k - 2^k$	
$= k k! - 2^k + k! - 2^k$	
$=(k-1)k!+k!-2^{k}+k!-2^{k}$	
$=(k-1)k!+2\{k!-2^k\}$	
Now, since $k > 4$, $(k-1) > 0$	
k!>0	
$\therefore (k-1)k! > 0$	
Also, $k! - 2^k > 0$, from the assumption	
Hence, $(k-1)k+2(k-2^k) > 0$	
$(k+1)!=2^{k+1} > 0$	
$\cdots (\kappa + 1)! \geq 2$	
: By the process of mathematical induction	
i i i i i i i i i i i i i i i i i i i	