

Assessment Task 4
 Trial HSC Examination

Mathematics Extension 1

Examiners ~Mrs D. Crancher, Mrs S. Gutesa, Mr S. Faulds, Ms P. Biczo

General Instructions

- Reading Time - 5 minutes
- Working Time -2 hours
- Write using a blue or black pen.
- Board approved calculators and mathematical templates and instruments may be used.
- Show all necessary working in Questions 11,12,13 and 14
- This examination booklet consists of 13 pages including a standard integral page and a multiple choice answer sheet.

Total marks (70)

Section I

Total marks (10)

- Attempt Questions 1 - 10
- Answer on the Multiple Choice answer sheet provided on the last page of this question booklet.
- Allow about 15 minutes for this section

Section II

Total marks (60)

- Attempt questions 11 to 14
- Answer each question in the writing booklets provided.
- Start a new booklet for each question with your student name and question number at the top of the page.
- All necessary working should be shown for every question
- Allow about 1 hour 45 minutes for this section

Student Name : \qquad
\qquad

Section I

10 marks
Attempt Questions 1 - 10
Allow about 15 minutes for this section
Use the multiple choice answer sheet for Questions 1-10.

1 The solution to the inequality $x(2-x)(x+1) \geq 0$ is
(A) $x \leq-2$ or $0 \leq x \leq 1$
(B) $\quad-2 \leq x \leq 0$ or $x \geq 1$
(C) $x \leq-1$ or $0 \leq x \leq 2$
(D) $-1 \leq x \leq 0$ or $x \geq 2$

2 A committee of 3 men and 3 women is to be formed from a group of 8 men and 6 women. How many ways can this be done?
(A) 48
(B) 1120
(C) 40320
(D) 3003

3

In the diagram, $A B$ is a tangent to the circle, $B C=6 \mathrm{~cm}$ and $C D=12 \mathrm{~cm}$.
What is the length of $A B$?
(A) $6 \sqrt{2} \mathrm{~cm}$
(B) $6 \sqrt{3} \mathrm{~cm}$
(C) 72 cm
(D) 108 cm

4 What is the equation of the tangent at the point $\left(4 p, 2 p^{2}\right)$ on the parabola $x^{2}=8 y$?
(A) $y=p x-p^{2}$
(B) $x+p y=2 p+p^{3}$
(C) $x+p y=4 p+p^{3}$
(D) $y=p x-2 p^{2}$

5 What is the acute angle to the nearest degree that the line $2 x-3 y+5=0$ makes with the y-axis?
(A) 27°
(B) 34°
(C) 56°
(D) 63°

6 Which of the following statements is FALSE.
(A) $\cos ^{-1}(-\theta)=-\cos ^{-1} \theta$
(B) $\sin ^{-1}(-\theta)=-\sin ^{-1} \theta$
(C) $\tan ^{-1}(-\theta)=-\tan ^{-1} \theta$
(D) $\cos ^{-1}(-\theta)=\pi-\cos ^{-1} \theta$

7 The primitive of $2 x\left(3 x^{2}-1\right)^{4}$ is:
(A) $\frac{1}{15}\left(3 x^{2}-1\right)^{5}+c$
(B) $\quad \frac{3}{5}\left(3 x^{2}-1\right)^{5}+c$
(C) $\frac{2 x}{5}\left(3 x^{2}-1\right)^{5}+c$
(D) $\frac{2 x}{15}\left(3 x^{2}-1\right)^{5}+c$

8 The equation(s) of the horizontal asymptote(s) to the curve $y=\frac{x^{2}+1}{x^{2}-1}$ are
(A) $y=0$
(B) $\quad x= \pm 1$
(C) $y=1$
(D) $x=1$ only

9 What are the coordinates of the point that divides the interval joining the points $A(2,2)$ and $B(4,5)$ externally in the ratio $2: 3$?
(A) $\quad(-2,-4)$
(B) $(-2,11)$
(C) $(8,-4)$
(D) $(8,11)$

10 Which of the following equations is shown in the sketch below

(A) $y=\cos ^{-1}(\sin x)$
(B) $y=\sin ^{-1}(\cos x)$
(C) $y=\sin ^{-1}(x)+\sin (x)$
(D) $y=\cos ^{-1}(x)+\cos (x)$
~End of Section I~

Section III

60 marks

Attempt Questions 11 to 14

Allow about 1 hour 45 minutes for this section

Answer each question in the appropriate writing booklet.
All necessary working should be shown in every question.

Question 11 (15 marks)
(c) (i) Show that the curves $y=x^{3}-x$ and $y=x-x^{2}$ intersect at the point $(-2,-6)$
(ii) Determine the acute angle between the curves $y=x^{3}-x$ and $y=x-x^{2}$ at the point of intersection, to the nearest minute.
(d) (i) A class of 25 students is to be divided into four groups consisting of $3,4,5$ and 6 students. How many ways can this are done? Leave your answer in unsimplified form.
(ii) Assume that the four groups have been chosen.

How many ways can the 25 students be arranged around a circular table if the students in each group are to be seated together? Leave your answer in unsimplified form.
(e) Five different fair dice are thrown together.

What is the probability the five scores are all different?
(a) Consider the function $f(x)=(x-1)^{2}$
(i) Sketch $y=f(x)$.
(ii) Explain why $f(x)$ does not have an inverse function for all x in its domain.
(iii) State a domain and range for which $f(x)$ has an inverse function $f^{-1}(x)$.
(iv) For $x \geq 1$ find the equation of the function $f^{-1}(x)$.
(v) Hence, on a new set of axes, sketch the graph of $y=f^{-1}(x)$.
(b) Find $\int \frac{d x}{\sqrt{9-4 x^{2}}}$
(c) Find the exact value of $\tan \left(2 \tan ^{-1} \frac{3}{4}\right)$
(d) Find the general solution to $2 \cos x=\sqrt{3}$.

Leave your answer in terms of π.
(e) Differentiate (with respect to x)

$$
\left(\tan ^{-1} \frac{x}{3}\right)^{2}
$$

and hence find the exact value of

$$
\int_{0}^{\sqrt{3}} \frac{\tan ^{-1} \frac{x}{3}}{x^{2}+9} d x
$$

(a) The points $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ lie on the parabola $x^{2}=4 a y$ such that $O P$ is perpendicular to $O Q$.

(i) Prove that $p q=-4$.
(ii) $\quad R$ is the point such that $O P R Q$ is a rectangle.

Explain why the co-ordinates of R are $\left(2 a(p+q), a\left(p^{2}+q^{2}\right)\right)$.
(iii) Show that the locus of R is a parabola.
(b) Find by division of polynomials, the remainder when $x^{2}+4$ is divided by $x-3$.
(c) $\quad \alpha, \beta$ and γ are the roots of the equation $x^{3}-3 x^{2}-6 x-1=0$.

Find $\alpha^{2}+\beta^{2}+\gamma^{2}$.
(d) (i) Consider the curve $f(x)=\sin ^{2} x-x+1$ for $0 \leq x \leq \pi$.

Show that it has one stationary point and determine its nature.
(ii) $\quad f(x)=\sin ^{2} x-x+1$ has a zero near $x_{1}=\frac{\pi}{2}$.

Use one application of Newton's method to obtain another approximation x_{2}, to this zero.
(iii)

The graph of $f(x)=\sin ^{2} x-x+1$ is shown in the vicinity of $x=\frac{\pi}{2}$.

By using this diagram, determine if x_{2} is a better approximation than x_{1} to the real root of the equation. You must justify your answer.
(a)

In the diagram above, FG is a common tangent and $\mathrm{FB} \| \mathrm{GD}$.
(i) Prove that $\mathrm{FA} \| \mathrm{GC}$.
(ii) Prove that BCGF is a cyclic quadrilateral.
(b) (i) Find: $\frac{d}{d x}(x \sin 3 x)$.
(ii) Hence, evaluate: $\int_{0}^{\frac{\pi}{6}} x \cos 3 x d x$
(c) Use the substitution $y=\sqrt{x}$ to find

$$
\int \frac{d x}{\sqrt{x(1-x)}}
$$

(d) Use mathematical induction to prove the inequality:
$n!>2^{n}$, for all positive integral values of $n \geq 4$

Year 1220	15 Mathematics Extension 1	Task 4 Trial HSC
Question No. 12 Solutions and Marking Guidelines		
	Outcomes Addressed in this Questio	
HE4 uses the relationship between functions, inverse functions and their derivatives		
Outcome	Solutions	Marking Guidelines
HE4	Question 12 a) (i)	1 Mark for correct sketch
HE4	(ii) It does not have an inverse because for every y value there is more than one x value. Or Does not pass the horizontal line test. Or Anything that is equivalent.	1 Mark for correct explanation
HE4	(iii) Domain: $x \geq 1$ Range: $y \geq 0$	1 Mark for correct answer
HE4	(iv) $\begin{aligned} x & =(y-1)^{2} \\ \sqrt{x} & =y-1 \\ y & =1+\sqrt{x} \\ \therefore f^{-1}(x) & =1+\sqrt{x} \end{aligned}$	2 Marks for complete correct solution 1 Mark for partial correct solution
HE4	(v)	1 Mark for correct sketch
HE4	(b) $\begin{aligned} & \int \frac{d x}{\sqrt{9-4 x}} \\ & =\int \frac{d x}{\sqrt{4\left(\frac{9}{4}-x^{2}\right)}} \\ & =\frac{1}{2} \sin ^{-1}\left(\frac{\frac{x}{3}}{2}\right)+C \quad \text { or } \quad \frac{1}{2} \sin ^{-1}\left(\frac{2 x}{3}\right)+C \end{aligned}$	2 Marks for complete correct solution 1 Mark for partial correct solution

HE4
(c)
let $\theta=\tan ^{-1}\left(\frac{3}{4}\right) \quad \therefore \tan \theta=\frac{3}{4}$
now,

$$
\begin{aligned}
\tan \left(2 \tan ^{-1} \frac{3}{4}\right) & =\tan (2 \theta) \\
& =\frac{2 \tan \theta}{1-\tan ^{2} \theta} \\
& =\frac{2\left(\frac{3}{4}\right)}{1-\left(\frac{3}{4}\right)^{2}} \\
& =\frac{24}{7}
\end{aligned}
$$

(d)

$$
\begin{aligned}
& 2 \cos x=\sqrt{3} \\
& \cos x=\frac{\sqrt{3}}{2} \\
& \therefore x=2 n \pi \pm \cos ^{-1} \frac{\sqrt{3}}{2} \\
& \quad=2 n \pi \pm \frac{\pi}{6}, \text { where } n \text { is any integer. }
\end{aligned}
$$

(e)

$$
\begin{aligned}
\frac{d}{d x}\left(\tan ^{-1} \frac{x}{3}\right)^{2} & =2\left(\tan ^{-1} \frac{x}{3}\right)\left(\frac{\frac{1}{3}}{1+\frac{x^{2}}{9}}\right) \\
& =2\left(\tan ^{-1} \frac{x}{3}\right)\left(\frac{3}{9+x^{2}}\right) \\
& =6\left(\frac{\tan ^{-1} \frac{x}{3}}{9+x^{2}}\right)
\end{aligned}
$$

now,

$$
\begin{aligned}
\int_{0}^{\sqrt{3}}\left(\frac{\tan ^{-1} \frac{x}{3}}{9+x^{2}}\right) d x & =\frac{1}{6} \int_{0}^{\sqrt{3}} 6\left(\frac{\tan ^{-1} \frac{x}{3}}{9+x^{2}}\right) d x \\
& =\frac{1}{6}\left[\left(\tan ^{-1} \frac{x}{3}\right)^{2}\right]_{0}^{\sqrt{3}} \\
& =\frac{1}{6}\left(\left(\tan ^{-1} \frac{\sqrt{3}}{3}\right)^{2}-\left(\tan ^{-1} \frac{0}{3}\right)^{2}\right) \\
& =\frac{1}{6}\left(\left(\frac{\pi}{6}\right)^{2}-0\right) \\
& =\frac{\pi^{2}}{216}
\end{aligned}
$$

2 Marks for complete correct solution

1 Mark for partial correct solution

2 Marks for complete correct solution

1 Mark for partial correct solution

3 Marks for complete correct solution

2 Mark for substantial working that could lead to a correct solution with only one error.

1 Mark for correctly differentiating $\frac{d}{d x}\left(\tan ^{-1} \frac{x}{3}\right)^{2}$

Year 12 Trial Higher School Ce	ion 1 Mathematics	Examination 2015
Question No. 13 Solutions and Marking Guidelines		
Outcomes Addressed in this Question		
PE3 solves problems involving polynomials and parametric representations		
PE5 determines derivatives which require the application of more than one rule of differentiation		
H6 uses the derivative to determine the features of the graph of a function		
HE7 evaluates mathematical solution	oblems and communicat	in an appropri

HE7 evaluates mathematical solutions to problems and communicates them in an appropriate

 form.| Outcome | Solutions | Marking Guidelines |
| :---: | :---: | :---: |
| PE3 | (a) (i) $O P \perp O Q, \therefore m O P \times m O Q=-1$. $\begin{aligned} & \therefore \frac{a p^{2}}{2 a p} \times \frac{a q^{2}}{2 a q}=-1 \\ & \therefore \frac{p}{2} \times \frac{q}{2}=-1 \end{aligned}$ | 2 marks : correct solution 1 mark : significant progress towards correct solution |
| PE3 | (ii) Midpoint $P Q=\left(a p+a q, \frac{a p^{2}+a q^{2}}{2}\right)$
 As the diagonals bisect one another in a rectangle, $O R$ will also have the same midpoint as $P Q$.
 If $0(0,0), R$ has midpoint $\left(a p+a q, \frac{a p^{2}+a q^{2}}{2}\right)$, then R is $\left(2 a(p+q), a\left(p^{2}+q^{2}\right)\right)$. | 2 marks : correct solution
 1 mark: significant progress towards correct solution |
| PE3 | (iii) At $R, \begin{cases}p q=-4 & {[1]} \\ x=2 a(p+q) & {[2]} \\ y=a\left(p^{2}+q^{2}\right) & {[3]}\end{cases}$
 From $\begin{aligned} {[2], x^{2} } & =4 a^{2}(p+q)^{2} \\ \therefore x^{2} & =4 a^{2}\left(p^{2}+q^{2}+2 p q\right) \end{aligned}$
 Substituting [1] and [3], $\quad x^{2}=4 a^{2}\left(\frac{y}{a}+2 x-4\right)$, $\therefore x^{2}=4 a(y-8 a)$, which is a concave up parabola with vertex $(0,8 a)$.
 (b) | 2 marks : correct solution
 1 mark: significant progress towards correct solution |
| PE3 | $\begin{gathered} \frac{x+3}{x - 3 \longdiv { x ^ { 2 } + 0 x + 4 } -} \begin{array}{c} \frac{x^{2}-3 x}{3 x+4}- \\ \frac{3 x-9}{13} \end{array}, \end{gathered}$
 Remainder is 13 . | 2 marks : correct solution
 1 mark : significant progress towards correct solution |
| | $\begin{aligned} & \text { (c) From } x^{3}-3 x^{2}-6 x-1=0, \\ & \qquad \alpha+\beta+\gamma=\frac{-b}{a}=3, \alpha \beta+\beta \gamma+\alpha \lambda=\frac{c}{a}=-6 . \\ & (\alpha+\beta+\gamma)^{2}=\alpha^{2}+\beta^{2}+\gamma^{2}+2(\alpha \beta+\beta \gamma+\alpha \gamma) \end{aligned}$ | 2 marks : correct solution 1 mark : significant progress towards correct solution |

Outcomes Addressed in this Question

PE3 solves problems involving circle geometry
HE2 uses inductive reasoning in the construction of proofs
HE4 uses the relationship between functions, inverse functions and their derivatives
HE6 determines integrals by reduction to a standard form through a given substitution

