$$
2017
$$

Mathematics Extension 1

Examiners

- Ms T Tarannum
- Mr G Rawson
- Mr J Dillon
- Ms P Biczo

General Instructions

- Reading time - 5 minutes
- Working time - 120 minutes
- Write using black or blue pen
- NESA-approved calculators may be used
- A Reference sheet is provided for your use

In Questions 11 to 14, show relevant mathematical reasoning and/or calculations

Total marks:

70

Section I-10 marks (pages 2-4)

- Attempt Questions 1 to 10
- Allow about 15 minutes for this section

Section II - 60 marks (pages 5-8)

- Attempt Questions 11 to 14
- Allow about 105 minutes for this section
\qquad
Teacher: \qquad

Section I

10 marks

Attempt Questions 1 - 10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1 - 10

1. $\lim _{x \rightarrow 0} \frac{1-\cos 2 x}{4 x^{2}}=$
(A) $\frac{1}{2}$
(B) 1
(C) 2
(D) 4
2. The angle θ satisfies $\sin \theta=\frac{5}{13}$ and $\frac{\pi}{2}<\theta<\pi$.

What is the value of $\sin 2 \theta$?
(A) $\frac{10}{13}$
(B) $-\frac{10}{13}$
(C) $\frac{120}{169}$
(D) $-\frac{120}{169}$
3. If $x=e^{y}+4$ then $\frac{d y}{d x}$ is
(A) e^{y}
(B) $\frac{1}{x-4}$
(C) $x-4$
(D) $\frac{1}{e^{y}+4}$
4. The polynomial $P(x)=x^{3}+2 x+k$ has $(x-2)$ as a factor.

What is the value of k ?
(A) $\quad-12$
(B) -10
(C) 10
(D) 12
5. The points A, B and C lie on a circle with centre O, as shown in the diagram.

The size of $\angle A O C$ is $\frac{4 \pi}{5}$ radians.

Not to scale

What is the size of $\angle A B C$ in radians?
(A) $\frac{3 \pi}{10}$
(B) $\frac{\pi}{2}$
(C) $\frac{3 \pi}{5}$
(D) $\frac{4 \pi}{5}$
6. A curve has parametric equations $x=t-3$ and $y=t^{2}+2$. What is the Cartesian equation of this curve?
(A) $y=x^{2}-x-1$
(B) $y=x^{2}+x-1$
(C) $y=x^{2}-6 x+11$
(D) $y=x^{2}+6 x+11$
7. Let $|a| \leq 1$. What is the general solution of $\sin 2 x=a$?
(A) $x=n \pi+(-1)^{n} \frac{\sin ^{-1} a}{2}, n$ is an integer
(B) $\quad x=\frac{n \pi+(-1)^{n} \sin ^{-1} a}{2}, n$ is an integer
(C) $\quad x=2 n \pi \pm \frac{\sin ^{-1} a}{2}, n$ is an integer
(D) $\quad x=\frac{2 n \pi \pm \sin ^{-1} a}{2}, n$ is an integer
8. At a dinner party, the host, hostess and their six guests sit at a round table. In how many ways can they be arranged if the host and hostess are separated?
(A) 720
(B) 1440
(C) 3600
(D) 5040
9. Which of the following is an expression for $\int \frac{e^{-2 x}}{e^{-x}+1} d x$ in terms of u ?

Use the substitution $u=e^{-x}+1$.
(A) $\int \frac{1-u}{u} d u$
(B) $\int \frac{u-1}{u} d u$
(C) $\int \frac{(1-u)^{3}}{u} d u$
(D) $\int \frac{(u-1)^{3}}{u} d u$
10. The functions $y=x$ and $y=x^{3}$ meet at the point $(1,1)$.

What is the acute angle between the tangents to these functions at this point?
Answer to the nearest degree.
(A) 10°
(B) 27°
(C) 45°
(D) 63°

End of Section I

Section II

60 marks

Attempt Questions 11 - 14

Allow about 105 minutes for this section

Answer each question in a new answer booklet.
All necessary working should be shown in every question.

Question 11 (15 marks) Start a new answer booklet.
(a) Solve the inequality: $\quad \frac{4 x}{x-3} \leq 1$
(b) Solve the inequality: $\quad|5 x-1|<\sqrt{2 x(1-x)}$
(c) A total of five players is selected at random from four sporting teams.

Each of the teams consists of ten players numbered from 1 to 10 .
(i) What is the probability that of the five selected players, three are numbered ' 6 ' and two are numbered ' 8 '?
(ii) What is the probability that the five selected players contain at least four players from the same team?
(d) Evaluate $\int_{0}^{1} \frac{2 x}{(2 x+1)^{2}} d x$ by using the substitution $u=2 x+1$
(a) Two circles intersect at P and Q.

The diameter of one circle is $P R$.

Copy, or trace, this diagram into your answer booklet.
(i) Draw a straight line through P, parallel to $Q R$ to meet the other circle at S. Prove that QS is a diameter of the second circle.
(ii) Prove that the circles have equal radii if $Q S$ is parallel to $P R$.
(b) $\quad P\left(2 a t, a t^{2}\right)$ is a variable point on the parabola $x^{2}=4 a y$, whose focus is S.
$Q(x, y)$ divides the interval from P to S in the ratio $t^{2}: 1$ [i.e., $\left.P Q: Q S=t^{2}: 1\right]$.
(i) Find the coordinates of Q in terms of a and t.
(ii) Show that $\frac{y}{x}=t$.
(iii) Prove that, as P moves on the parabola, Q moves on a circle, and state its centre and radius.
(c) It is given that $P(x)=(x-a)^{3}+(x-b)^{3}$, where $a \neq b$.
(i) Prove that $x=\frac{a+b}{2}$ is a zero of $P(x)$.
(ii) Prove that $P(x)$ has no stationary points.

Question 13 (15 marks) Start a new answer booklet.
(a)
(i) Express $3 \sin x+4 \cos x$ in the form $A \sin (x+\alpha)$, where $0 \leq \alpha \leq \frac{\pi}{2}$ and $A>0$.
(ii) Hence, or otherwise, solve $3 \sin x+4 \cos x=5$ for $0 \leq x \leq 2 \pi$. Give your answer, or answers, correct to two decimal places.
(b)
(i) Prove that $\tan ^{2} \theta=\frac{1-\cos 2 \theta}{1+\cos 2 \theta}$, provided that $\cos 2 \theta \neq-1$.
(ii) Hence find the exact value of $\tan \frac{\pi}{8}$.
(c) From a point A due south of a tower, the angle of elevation of the top of the tower T, is 23°. From another point B, on a bearing of 120° from the tower, the angle of elevation of T is 32°. The distance $A B$ is 200 metres.

Let the height of the tower $O T$ be h.
(i) Show that $O A=h \tan 67^{\circ}$ and $O B=h \tan 58^{\circ}$
(ii) Hence, find the height of the tower OT. Give your answer to the nearest metre.
(d) Use the principle of mathematical induction to prove that $4^{n}+14$ is a multiple of 6 for all integers $n \geq 1$.
(a) Consider the curves $y=\sin x$ and $y=\cos 2 x$ for $-\pi \leq x \leq \pi$.
(i) Find any points of intersection of the curves in the domain $-\pi \leq x \leq \pi$.
(ii) On the same number plane, sketch $y=\sin x$ and $y=\cos 2 x$ for $-\pi \leq x \leq \pi$, showing these points of intersection.
(iii) Calculate the area of the region bounded by the curves
$y=\sin x$ and $y=\cos 2 x$ for $-\frac{\pi}{2} \leq x \leq \frac{\pi}{6}$.
(b) Consider the curve $f(x)=x^{2}-4 x+5$
(i) Find the largest possible domain containing only positive numbers for which $f(x)$ has an inverse function $f^{-1}(x)$.
(ii) Find the point(s) of intersection of $y=f(x)$ and $y=f^{-1}(x)$ in the domain determined in part (i)
(iii) State the domain of $y=f^{-1}(x)$?
(iv) What is the equation of $y=f^{-1}(x)$?
(v) Sketch the parabola $y=f(x)$ for the restricted domain and sketch the inverse function $y=f^{-1}(x)$ on the same diagram, clearly showing any points of intersection. Clearly label each graph.

END OF EXAMINATION

Outcomes Addressed in this Question

PE3 solves problems involving permutations and combinations, inequalities
HE6 determines integrals by reduction to a standard form through a given
substitution

$|5 x-1|<\sqrt{2 x(1-x)}$
Squaring both sides
$(5 x-1)^{2}<2 x(1-x)$
$25 x^{2}-10 x+1<2 x-2 x^{2}$
$27 x^{2}-12 x+1<0$
$(9 x-1)(3 x-1)<0$
$\therefore \frac{1}{9}<x<\frac{1}{3}$
\therefore With the domain applied, $\frac{1}{9}<x<\frac{1}{3}$ is the solution
(c)
(i) There are 4 players numbered ' 6 ' and 4 players numbered ' 8 ' from a total of forty players.

Three ' 6 ''s can be selected in ${ }^{4} C_{3}$ ways.
Two ' 8 ''s can be selected in ${ }^{4} C_{2}$ ways.
Five players can be selected in ${ }^{40} \mathrm{C}_{5}$ ways.
\therefore Required probability
$=\frac{{ }^{4} C_{3} \times{ }^{4} C_{2}}{{ }^{40} C_{5}}$
$=\frac{4 \times 6}{658008}$
$=\frac{1}{27417}$
(ii) "At least 4 players" means 4 or 5players:

5 players from one team can be selected in ${ }^{10} \mathrm{C}_{5}$ ways. But there are 4 teams, hence 5 players from the same team can be selected in ${ }^{4} C_{1} \times{ }^{10} C_{5}$ ways.

4 players from one team and one player from the remaining teams (30 players) can be selected in ${ }^{4} C_{1} \times{ }^{10} C_{4} \times{ }^{30} C_{1}$ ways.
\therefore Required probability
$=\frac{{ }^{4} C_{1} \times{ }^{10} C_{5}}{{ }^{40} C_{5}}+\frac{{ }^{4} C_{1} \times{ }^{10} C_{4} \times{ }^{30} C_{1}}{{ }^{40} C_{5}}$
$=\frac{4(252+210 \times 30)}{658008}$
$=\frac{28}{703}$

Award 2 marks for the correct answer.

Award 1 mark for substantial progress towards the solution

Award 3 marks for the correct answer.

Award 2 mark for substantial progress towards the correct solution.

Award 1 mark for some progress towards the correct solution.

(d)	$\begin{aligned} & u=2 x+1 \\ & \frac{d u}{d x}=2 \\ & \therefore d u=2 d x \\ & \text { and } x=\frac{u-1}{2} \\ & \text { W hen } x=0, u=1 \\ & \text { W hen } x=1, u=3 \\ & \int_{0}^{1} \frac{2 x}{(2 x+1)^{2} d x} \\ & =\int_{0}^{1} x \times \frac{1}{(2 x+1)^{2}} 2 d x \\ & =\int_{1}^{3} \frac{u-1}{2 u^{2}} d u \\ & =\frac{1}{2} \int_{1}^{3} \frac{u}{u^{2}}-\frac{1}{u^{2}} d u \\ & =\frac{1}{2} \int_{1}^{3} \frac{1}{u}-\frac{1}{u^{2}} d u \\ & =\frac{1}{2}\left[\ln u+u^{-1}\right]_{1}^{3} \\ & =\frac{1}{2}\left\lceil\left(\left[\ln 3+\frac{1}{3}\right)-\left(\ln 1+\frac{2}{3}\right]\right.\right. \\ & = \\ & = \end{aligned}$	Award 4 marks for the correct answer. Award 3 mark for the correct solution with minor errors. Award 2 mark for substantial progress towards the correct solution. Award 1 mark for some progress towards the correct solution.

Multiple Choice Answers

$\mathbf{1}$	A
$\mathbf{2}$	D
$\mathbf{3}$	B
$\mathbf{4}$	A
$\mathbf{5}$	C
$\mathbf{6}$	D
$\mathbf{7}$	B
$\mathbf{8}$	C
$\mathbf{9}$	A
$\mathbf{1 0}$	B

Outcome Addressed in this Question

PE3 solves problems involving permutations and combinations, inequalities, polynomials, circle geometry and parametric representations

Part	Solutions	Marking Guidelines	
(a) (i)	Draw $P Q$ $\left.\begin{array}{l} \angle P Q R=90^{\circ} \quad\binom{\text { the angle at the circumeference subtended }}{\text { by a diameter equals } 90^{\circ}} \\ \angle S P Q \end{array}=\angle P Q R \quad \text { (alternate angles are equal, } S P \\| Q R\right)$ $\therefore S Q$ is a diameter $\binom{$ a right angle at the circuference subtends }{ a diameter }	Award 2 for correct solution Award 1 for substantial progress towards solution	
(ii)	If $Q S \\| S R$ then $P Q R S$ is a parallelogram (both pairs of opposite sides are parallel). $\therefore P R=Q S \quad$ (opposite sides of a parallelogram are equal) \therefore Both circles have equal diameters and hence, equal radii.	Award 2 for correct solution Award 1 for substantial progress towards solution	
(b) (i)	$Q \equiv\left(\frac{1 \cdot 2 a t+0 \cdot t^{2}}{t^{2}+1}, \frac{1 \cdot a t^{2}+a \cdot t^{2}}{t^{2}+1}\right)=\left(\frac{2 a t}{t^{2}+1}, \frac{2 a t^{2}}{t^{2}+1}\right)$	Award 2 for both coordinates correct Award 1 for only one correct coordinate (or equivalent merit)	
(ii)	From (i), $x=\frac{2 a t}{t^{2}+1}$ and $y=\frac{2 a t^{2}}{t^{2}+1}$ $\frac{y}{x}=\frac{\frac{2 a t^{2}}{t^{2}+1}}{\frac{2 a t}{t^{2}+1}}=\frac{2 a t^{2}}{2 a t}=t$	Award 1 for correct solution	
(iii)	From (i) and (ii), $x=\frac{2 a t}{t^{2}+1}=\frac{2 a\left(\frac{y}{x}\right)}{\left(\frac{y}{x}\right)^{2}+1}$	Award 3 for correct solution Award 2 for substantial progress towards solution Award 1 for limited progress towards solution	
	$\begin{aligned} & x\left(\left(\frac{y}{x}\right)^{2}+1\right)=2 a\left(\frac{y}{x}\right) \\ & \frac{y^{2}}{x}+x=\frac{2 a y}{x} \\ & x^{2}+y^{2}=2 a y \\ & x^{2}+y^{2}-2 a y=0 \\ & x^{2}+y^{2}-2 a y+a^{2}=a^{2} \\ & \therefore x^{2}+(y-a)^{2}=a^{2} \end{aligned}$ Which is a circle, centre $=(0, a)$ and radius $=a$		

(c) (i)

$$
\begin{aligned}
& P(x)=(x-a)^{3}+(x-b)^{3} \\
& \begin{aligned}
\therefore P\left(\frac{a+b}{2}\right) & =\left(\frac{a+b}{2}-a\right)^{3}+\left(\frac{a+b}{2}-b\right)^{3} \\
& =\left(\frac{b-a}{2}\right)^{3}+\left(\frac{a-b}{2}\right)^{3} \\
& =(-1)^{3}\left(\frac{a-b}{2}\right)^{3}+\left(\frac{a-b}{2}\right)^{3} \\
& =0
\end{aligned}
\end{aligned}
$$

$\therefore x=\frac{a+b}{2}$ is a zero of the polynomial
(c) (ii)
$P(x)=(x-a)^{3}+(x-b)^{3}$
$P^{\prime}(x)=3(x-a)^{2}+3(x-b)^{2}$
Stationary points occur where $P^{\prime}(x)=0$
$\therefore 3(x-a)^{2}+3(x-b)^{2}=0$
$(x-a)^{2}+(x-b)^{2}=0$
$x^{2}-2 a x+a^{2}+x^{2}-2 b x+b^{2}=0$
$2 x^{2}-(2 a+2 b) x+\left(a^{2}+b^{2}\right)=0$
$\Delta=(-(2 a+2 b))^{2}-4 \cdot 2 \cdot\left(a^{2}+b^{2}\right)$
$=4 a^{2}+8 a b+4 b^{2}-8 a^{2}-8 b^{2}$
$=-4 a^{2}+8 a b-4 b^{2}$
$=-4(a-b)^{2}$
<0 for all a and $b, a \neq b$
$\therefore P^{\prime}(x) \neq 0$ for any real values of x
$\therefore P(x)$ has no stationary points.

Award 2 for correct solution
Award 1 for substantial progress towards solution

Award 3 for correct solution
Award 2 for substantial progress towards solution

Award 1 for limited progress towards solution

Year 12	Mathematics Extension 12017	TRIAL
Question N	13 Solutions and Marking Guidelines	
Outcomes Addressed in this Question		
PE2 - uses multi-step deductive reasoning in a variety of contexts HE2 - uses inductive reasoning in the construction of proofs		
Part / Outcome	Solutions	Marking Guidelines
(a)	$\begin{aligned} \text { (i) } \begin{aligned} & A \sin (x+\alpha)=A \sin x \cos \alpha+A \cos x \sin \alpha \\ &=3 \sin x+4 \cos x \\ & \text { so, } A \cos \alpha=3 \quad \text { and } \quad A \sin \alpha=4 \\ & \frac{A \sin \alpha}{A \cos \alpha}=\frac{4}{3} \\ & \tan \alpha=\frac{4}{3} \\ & \alpha=\tan ^{-1}\left(\frac{4}{3}\right) \text { and } A=\sqrt{4^{2}+3^{2}}=5 \\ & \text { so, } 3 \sin x+4 \cos x=5 \sin \left[x+\tan ^{-1}\left(\frac{4}{3}\right)\right] \end{aligned}, l \end{aligned}$ (ii) $\begin{aligned} 3 \sin x+4 \cos x & =5 \\ 5 \sin \left[x+\tan ^{-1}\left(\frac{4}{3}\right)\right] & =5 \\ \sin \left[x+\tan ^{-1}\left(\frac{4}{3}\right)\right] & =1 \\ x+\tan ^{-1}\left(\frac{4}{3}\right) & =\frac{\pi}{2} \\ x & =\frac{\pi}{2}-\tan ^{-1}\left(\frac{4}{3}\right) \\ & =\frac{\pi}{2}-0.92720 \ldots \\ & =0.64 \quad(\text { to } 2 \text { dec pl. }) \end{aligned}$ (i) $\text { note }\left\{\begin{array} { l } { \operatorname { c o s } 2 \theta = 1 - 2 \operatorname { s i n } ^ { 2 } \theta } \\ { \operatorname { s i n } ^ { 2 } \theta = \frac { 1 - \operatorname { c o s } 2 \theta } { 2 } } \end{array} \quad \text { and } \left\{\begin{array}{l} \cos 2 \theta=2 \cos ^{2} \theta-1 \\ \cos ^{2} \theta=\frac{1+\cos 2 \theta}{2} \end{array}\right.\right.$ $\begin{aligned} \text { LHS } & =\tan ^{2} \theta \\ & =\frac{\sin ^{2} \theta}{\cos ^{2} \theta} \\ & =\frac{\frac{1-\cos 2 \theta}{2}}{\frac{1+\cos 2 \theta}{2}} \\ & =\frac{1-\cos 2 \theta}{1+\cos 2 \theta}=\text { RHS } \end{aligned}$	2 marks - Correct solution 1 mark - Substantially correct Note: working in degrees gives values which are outside the stated domain 2 marks - Correct solution 1 mark - Substantially correct 2 marks - Correct solution 1 mark - Substantially correct

(ii) Let $\theta=\frac{\pi}{8}$

$$
\begin{aligned}
\tan ^{2} \frac{\pi}{8} & =\frac{1-\cos 2\left(\frac{\pi}{8}\right)}{1+\cos 2\left(\frac{\pi}{8}\right)} \\
& =\frac{1-\cos \frac{\pi}{4}}{1+\cos \frac{\pi}{4}} \\
& =\frac{1-\frac{1}{\sqrt{2}}}{1+\frac{1}{\sqrt{2}}} \\
& =\frac{\sqrt{2}-1}{\sqrt{2}+1} \times \frac{\sqrt{2}-1}{\sqrt{2}-1} \\
& =(\sqrt{2}-1)^{2}
\end{aligned}
$$

$$
\tan \frac{\pi}{8}=\sqrt{2}-1 \quad\left(\tan \frac{\pi}{8}>0 \text { as } \frac{\pi}{8} \text { is in } 1^{\text {st }} \text { quad }\right)
$$

(c)
(i) in $\triangle O A T$,

$$
\begin{aligned}
\angle O T A & =90^{\circ}-23^{\circ} \\
& =67^{\circ} \\
\tan 67^{\circ} & =\frac{O A}{h} \\
O A & =h \tan 67^{\circ}
\end{aligned}
$$

in $\triangle O B T$,

$$
\begin{aligned}
\angle O T B & =90^{\circ}-32^{\circ} \\
& =58^{\circ} \\
\tan 58^{\circ} & =\frac{O A}{h} \\
O B & =h \tan 58^{\circ}
\end{aligned}
$$

(ii) from diagram, $\angle A O B=180^{\circ}-120^{\circ}$

$$
=60^{\circ}
$$

Using the cosine rule in $\triangle A O B$

$$
\begin{aligned}
A B^{2} & =O A^{2}+O B^{2}-2(O A)(O B) \cos 60^{\circ} \\
200^{2} & =h^{2} \tan ^{2} 67^{\circ}+h^{2} \tan ^{2} 58^{\circ}-2 h^{2} \tan 67^{\circ} \tan 58^{\circ} \times \frac{1}{2} \\
& =h^{2}\left(\tan ^{2} 67^{\circ}+\tan ^{2} 58^{\circ}-\tan 67^{\circ} \tan 58^{\circ}\right)
\end{aligned}
$$

$$
h^{2}=\frac{200^{\circ}}{\tan ^{2} 67^{\circ}+\tan ^{2} 58^{\circ}-\tan 67^{\circ} \tan 58^{\circ}}
$$

$$
h=\sqrt{\frac{40000}{4 \cdot 3409 \ldots}}
$$

2 marks - Correct solution

1 mark - Substantially correct

1 mark - Correct solution

3 marks - Correct solution

2 marks - Substantially correct solution

$$
=\sqrt{9214.5535 \ldots}
$$

$$
=96 \mathrm{~m}(\text { to nearest } \mathrm{m})
$$

$$
\begin{aligned}
4^{n}+14 & =4^{1}+14 \\
& =18 \\
& =6(3) \quad \therefore \text { true for } n=1
\end{aligned}
$$

Assume true for $n=k$
ie, $\quad 4^{k}+14=6 M, \quad$ where M is an integer

Prove true for $n=k+1$

$$
\begin{aligned}
4^{k+1}+14 & =4^{k} \times 4+14 \\
& =(6 M-14) \times 4+14 \\
& =6 \times 4 M-4 \times 14+14 \\
& =6 \times 4 M-42 \\
& =6(4 M-7) \\
& =6 N, \quad \text { where } N \text { is an integer }
\end{aligned}
$$

\therefore true by the Principle of Maffamadikal Inducement

1 mark - significant progress towards correct solution

3 marks - Correct solution

2 marks - Substantially correct solution

1 mark - significant progress towards correct solution

Outcomes Addressed in this Question

HE4 Uses the relationship between functions, inverse functions and their derivatives.
H5 Applies appropriate techniques from the study of calculus, geometry, probability, trigonometry and series to solve problems
H8 Uses techniques of integration to calculate areas and volumes.
H9 Communicates using mathematical language, notation, diagrams and graphs.

Outcome	Solutions	Marking Guidelines
H5	(a)(i) $y=\sin x$ and $y=\cos 2 x$ meet when $\sin x=\cos 2 x$. $\begin{aligned} & \therefore \sin x=1-2 \sin ^{2} x \\ & 2 \sin ^{2} x+\sin x-1=0 \\ & 2 \sin ^{2} x+2 \sin x-\sin x-1=0 \\ & 2 \sin x(\sin x+1)-(\sin x+1)=0 \\ & (\sin x+1)(2 \sin x-1)=0 \end{aligned}$ $\sin x=-1$ and $\sin x=\frac{1}{2}$ For $-\pi \leq x \leq \pi, x=-\frac{\pi}{2}, \frac{\pi}{6}$ and $\pi-\frac{\pi}{6}$. $\therefore x=-\frac{\pi}{2}, \frac{\pi}{6}, \frac{5 \pi}{6}$. (ii)	3 marks : correct solution 2 marks : substantially correct solution 1 mark : significant progress towards correct solution
H9	 (iii) $\begin{aligned} A & =\int_{-\frac{\pi}{2}}^{\frac{\pi}{6}}(\cos 2 x-\sin x) d x \\ & =\left[\frac{1}{2} \sin 2 x-(-\cos x)\right]_{-\frac{\pi}{2}}^{\frac{\pi}{6}} \end{aligned}$	2 marks : correct graph 1 mark : significant progress towards correct graph 2 marks : correct solution 1 mark : significant progress towards correct solution
H8	$\begin{aligned} & =\frac{1}{2} \sin \frac{\pi}{3}+\cos \frac{\pi}{6}-\left(\frac{1}{2} \sin (-\pi)+\cos \left(-\frac{\pi}{2}\right)\right) \\ & =\frac{\sqrt{3}}{4}+\frac{\sqrt{3}}{2} \\ & =\frac{3 \sqrt{3}}{4} \text { square units. } \end{aligned}$	

HE4

HE4

1 mark : correct answer

2 marks : correct
solution
1 marks : substantial progress towards correct solution

1 mark : correct answer

2 marks : correct solution 1 mark : substantial progress towards correct solution

2 marks : correct graph 1 mark : significant progress towards correct graph

