Student's Name: _____

Teacher's Name: _____

TRIAL HIGHER SCHOOL CERTIFICATE **EXAMINATION**

Mathematics Extension 1

Assessment Task 4

Senior Examiner: Mr. S. Faulds

General Instructions	 Reading time – 5 minutes Working time – 2 hours Write using black pen NESA-approved calculators may be used A reference sheet is provided for your use during the examination.
	 In Questions 11–14, show relevant mathematical reasoning and/or calculations
Total marks: 70	 Section I – 10 marks (pages 2–4) Attempt Questions 1–10 Allow about 15 minutes for this section
	 Section II - 60 marks (pages 5-10) Attempt Questions 11-14 Allow about 1 hour and 45 minutes for this section
	• For each question, start a new answer booklet.

2018 HSC Mathematics Extension 1 Examination.

Section I

10 marks Attempt Questions 1 – 10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1 - 10. This answer sheet is attached to the back of your examination paper. It may be removed and handed in with your answer booklets for Section 2.

1.

In the diagram above, points A, B and C lie on the circumference of the circle, centre O. What is the size of $\angle ABC$?

2. What is the value of $\lim_{x \to 0} \frac{2 \sin 5x}{3x}$? A: $\frac{10}{3}$ B: $\frac{6}{5}$ C: $\frac{2}{3}$ D: 0

3. Which expression below is equal to $\int \frac{x}{x^2+1} dx$?

A:
$$\frac{1}{2}\ln(x^2+1)+c$$
 B: $\ln(x^2+1)+c$ C: $2\ln(x^2+1)+c$ D: $\ln x + \frac{x^2}{2}+c$

Hurlstone Agricultural High School

Page 2

2018 Mathematics Exension 1 Trial

4. Consider the function $f(x) = \sin^{-1}x$, the graph of which is shown below.

What is the domain of the function?

A:
$$-\pi \le y \le \pi$$
 B: $-1 \le x \le 1$ **C:** $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$ **D:** $-\frac{1}{2} \le x \le \frac{1}{2}$

- 5. What is the remainder when $P(x) = 2x^3 6x^2 + 4x + 3$ is divided by 2x 1?
 - **A**: 3 **B**: -9 **C**: $\frac{15}{4}$ **D**: $-\frac{3}{4}$

6. A curve is defined by the parametric equations x = sin 2t and y = cos 2t. Which of the following, in terms of t, equates to dy/dx?
A: -tan 2t
B: 2 cos 2t
C: 2 sin 4t
D: -cot 2t

- 7. A mathematics department consists of 5 female and 5 male teachers. How many committees of three teachers can be chosen which contain at least one female and at least one male?
 - **A:** 100 **B:** 120 **C:** 200 **D:** 250
- 8. Research into Alzheimer's disease suggests that the rate of loss of percentage brain function is proportional to the percentage brain function already lost. A particular Alzheimer's disease patient was initially diagnosed with a 20% loss of brain function.
 If L is the percentage brain function lost and k is a constant, which of the following equations represents the loss of percentage brain function for this particular patient?
 - **A:** $L = ke^{0.2t}$ **B:** $L = ke^{20t}$ **C:** $L = 20e^{kt}$ **D:** $L = 80e^{kt}$

Hurlstone Agricultural High School

2018 Mathematics Exension 1 Trial

9. In the figure, *ABC* is a triangle on a horizontal plane and *AD* is a vertical flag pole. If BC = a, which of the following expression is equal to *AD*?

A: $a\sin(\beta + \delta)$	B : $a\cos\beta\sin\delta$	C: $a\cos\beta \tan\delta$	D : $a\sin\beta$ tan δ
4	•	•	•

10. The letters of the word TWITTER are arranged randomly. How many of these arrangements would have all three T's seperated?

Section II starts on the next page.

Section II

90 marks Attempt Questions 11 – 14 Allow about 1 hours and 45 minutes for this section

Answer each question in a new answer booklet.

All necessary working should be shown in every question.

Question 11 (15 marks) **Start a new answer booklet.**

(a) Show that the acute angle between the lines
$$x - 2y = 0$$
 and $3x - y - 15 = 0$ is $\frac{\pi}{4}$ radians. 2

(b) Solve the inequality
$$\frac{x+1}{x-5} \le 0$$
.

(c) If
$$t = \tan \frac{\theta}{2}$$
, show that $\frac{\sin 2\theta (1 - \cos \theta)}{\cos \theta (1 - \cos 2\theta)} = t$. 3

(d) (i) Explain why the expression
$$\frac{k+1}{2}$$
 is an integer if k is an odd integer. 1

- (ii) Prove by mathematical induction that the expression $n^2 1$ is divisible 3 by 8 for all odd integral values of n.
- (e) In the diagram below, D is a point on the minor arc AC of the circle passing through A, B and C. AD is produced to E. A

- (i) Copy the diagram into your answer booklet and give a reason why $\angle CDE = \angle ABC$. 1
- (ii) Hence, show that if BC = AC, then DC bisects $\angle BDE$.

Hurlstone Agricultural High SchoolPage 52018 Mathematics Exension 1 Trial

3

Marks

Question 12 (15 marks) Start a new answer booklet.

(a) Let the cubic polynomial, $P(x) = x^3 - 3x^2 - 4x + 12$ have the roots α , β and γ .

(i) Find the value of
$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$$
. 2

- (ii) Given that two of its roots have a sum of zero, find the values of α , β and γ . 2
- (b) The function $f(x) = e^{x^2} x 3$ has a zero near x = 1.1. Using one application of Newton's Method, find a better approximation for the zero correct to 2 decimal places.

(c) Consider the expansion
$$(1+x)^n = \binom{n}{0} + \binom{n}{1}x + \binom{n}{2}x^2 + \dots + \binom{n}{n}x^n$$
.

(i) By first integrating both sides of the above expansion show that:

$$\binom{n}{0} + \frac{1}{2}\binom{n}{1} + \frac{1}{3}\binom{n}{2} + \dots + \frac{1}{n+1}\binom{n}{n} = \frac{2^{n+1}-1}{n+1}$$

$$\frac{1}{2}\binom{n}{1} + \frac{2}{3}\binom{n}{2} + \frac{3}{4}\binom{n}{3} + \dots + \frac{n}{n+1}\binom{n}{n} = \frac{2^n(n-1)+1}{n+1}$$

(d) The point $P(2t,t^2)$ lies on the parabola with equation $x^2 = 4y$ and focus at *F*. The point *M* divides the interval *FP* externally in the ratio 3:1. Show that the co-ordinates of *M* are x = 3t and $y = \frac{1}{2}(3t^2 - 1)$.

Hurlstone Agricultural High School

Marks

3

2

3

(a) Use the substitution
$$u = x + 2$$
 to find $\int x(x+2)^{99} dx$.

The gradient at any point (x, y) of a curve is given by $\frac{dy}{dx} = \cos^2 x$. If the curve passes **(b)** through the point $\left(\frac{\pi}{2}, \pi\right)$, find its equation.

The diagram shows the curve of $y = 3x - x^3$. (c)

(iii) Find
$$\frac{dx}{dy}$$
 of the function, $f^{-1}(x)$.

(d) (i) Differentiate
$$x \sin^{-1} x + \sqrt{1 - x^2}$$
. 2

(ii) Hence, evaluate
$$\int_{0}^{1} \sin^{-1} x \, dx$$
.

Question 13 continues on the next page...

Hurlstone Agricultural High School Page 7 2018 Mathematics Exension 1 Trial

2

3

2

Question 13 (continued)

(e) In the diagram, CD is a vertical pole 10 m high. CB is the shadow of the pole when the elevation of the sun is 60° and CA is the shadow of the pole when the elevation of the sun is 30° . A, B and C are all on level ground.

(i) Show that $BC = 10 \cot 60^{\circ}$.

(ii) Hence, find the distance of AB if $\angle ACB = 60^{\circ}$. (Give your answer to 3 significant figures.) Marks

(a) A bowl of soup is cooling in a room that has a constant temperature of 20° . At time *t*, measured in minutes, the temperature, *T*, of the soup is decreasing according to the differential equation:

$$\frac{dT}{dt} = -k\left(T - 20\right)$$

where k is a positive constant. The initial temperature of the soup is 100° and it cools to 70° C after 5 minutes.

- (i) Verify that $T = 20 + Ae^{-kt}$ is a solution to the differential equation, where A 1 is a constant.
- (ii) Find the values of A and k.
- (iii) Find the temperature of the soup after 15 minutes, Give your answer to the nearest degree.

(b)

Themba is watching a weather balloon being released from a point G which is 100 meters away on horizontal ground. The weather balloon is rising vertically at a constant rate of 5 m/s. This information is illustrated on the diagram above.

Let θ radians be the angle of elevation of the weather balloon at time *t* seconds and let *x* metres be the distance the weather balloon has travelled in that time.

Find the rate of change of the angle of elevation of the weather balloon, when $\theta = \frac{\pi}{4}$.

Question 14 continues on the next page...

Hurlstone Agricultural High School

Page 9

2

1

Question 14 (continued)

(c) The rate of descent of a submarine, from the surface, into the ocean is given as:

$$\frac{dh}{dt} = 1 - \left(1 + t\right)^{-2}$$

where h is the depth of the submarine in metres and t the time in seconds.

Find the depth of the submarine after 1 minute, correct to one decimal place.

(d)

The graph above shows the average weight W of a herd of beef cattle over a period of time t, where t is in months. After a period of drought, the average weight of the herd stabilised.

Sketch the graph of the rate, $\frac{dW}{dt}$ at which W was changing over this period.

- (e) A group of friends, made up of four females and three males are to be seated in consecutive seats at a concert. If seat numbers are allocated randomly, what is the probability that exactly three of the girls will be sitting next to one another?
- (f) The probability of a certain brand of light globe being faulty is 0.9%. In a batch of 8 such light globes, find the probability, as a percentage to one decimal place, that at least 7 of the light globes will work.

END OF EXAMINATION

Hurlstone Agricultural High School

Page 10

2

2

2

Year 12 Mathematics T	rial HSC Exar	nination 2018	
Multiple Choice Questi	ons		
· .		Solutions	
	1	С	
	2	Α	
	3	Α	1 mark for each correct solution
	4	В	
	5	С	
	6	Α	
	7	Α	
	8	С	
	9	С	
	10	Α	

Year 12 Mathematics Extension 1 Trial HSC Examination 2018				
Question No. 11 Solutions and Marking Guidelines				
	Outcomes Addressed in this Question	1		
PE2 uses	s multi-step deductive reasoning in a variety of contexts			
HE2 use	s inductive reasoning in the construction of proofs			
Outcome	Solutions	Marking Guidelines		
PE2	Solutions (a) $x - 2y = 0 \implies m_1 = \frac{1}{2}$ $3x - y - 15 = 0 \implies m_2 = 3$ $\tan \alpha = \left \frac{m_1 - m_2}{1 + m_1 m_2}\right $ $= \left \frac{1}{2} - 3\right $ $= \left \frac{-3}{2}\right $ $= \left -1\right $ $= 1$ $\therefore \alpha = \frac{\pi}{4} \text{ radians (as required)}$ (b) $\frac{x + 1}{x - 5} \le 0, \qquad x \neq 5$ Multiplying both sides by $(x - 5)^2$ $(x + 1)(x - 5) \le 0, \qquad x \neq 5$ Consider the graph of $y = (x + 1)(x - 5)$ $(x + 1)(x - 5) \le 0, \qquad x \neq 5$ Consider the graph of $y = (x + 1)(x - 5)$ $(x + 1)(x - 5) \le 0, \qquad x \neq 5$ Consider the graph of $y = (x + 1)(x - 5)$ $(x + 1)(x - 5) \le 0, \qquad x \neq 5$ Consider the graph of $y = (x + 1)(x - 5)$ $(x + 1)(x - 5) \le 0, \qquad x \neq 5$ Consider the graph of $y = (x + 1)(x - 5)$ $(x + 1)(x - 5) \le 0, \qquad x \neq 5$ Consider the graph of $y = (x + 1)(x - 5)$ $(x + 1)(x - 5) \le 0, \qquad x \neq 5$ Consider the graph of $y = (x + 1)(x - 5)$ $(x + 1)(x - 5) \le 0, \qquad x \neq 5$ Consider the graph of $y = (x + 1)(x - 5)$ $(x + 1)(x - 5) \le 0, \qquad x \neq 5$ Consider the graph of $y = (x + 1)(x - 5)$ $(x + 1)(x - 5) \le 0, \qquad x \neq 5$ Consider the graph of $y = (x + 1)(x - 5)$ $(x + 1)(x - 5) \le 0, \qquad x \neq 5$ Consider the graph of $y = (x + 1)(x - 5)$ $(x + 1)(x - 5) \le 0, \qquad x \neq 5$ Consider the graph of $y = (x + 1)(x - 5)$ $(x + 1)(x - 5) = (x + 1)(x - 5)$ $(x $	Marking Guidelines 2 marks Correct solution. 1 mark Substantial progress towards correct solution including finding the gradient of the two lines. 2 marks Correct solution. 1 mark Substantial progress towards correct solution. 1 mark Substantial progress towards correct solution. 1 mark Substantial progress towards correct solution.		
	$-1 \le x \le 5$, but $x \ne 5$			
	\therefore Solution: $-1 \le x < 5$			
L				

	(c)	2
HE2	L.H.S. = $\frac{\sin 2\theta (1 - \cos \theta)}{\pi (1 - \cos \theta)}$	Correct solution showing all required
	$\cos\theta(1-\cos2\theta)$	steps.
	$=\frac{2\sin\theta\cos\theta(1-\cos\theta)}{(1-\cos\theta)}$	2 marks Substantial progress towards correct
	$\cos\theta \left(1 - \left(\cos^2\theta - \sin^2\theta\right)\right)$	solution, showing most of the required
	$=\frac{2\sin\theta(1-\cos\theta)}{2}$	steps.
	$\left(\sin^2\theta + \sin^2\theta\right)$	Some progress towards a correct
	$-\frac{2\sin\theta(1-\cos\theta)}{2}$	solution.
	$-\frac{2\sin^2\theta}{2\sin^2\theta}$	
	$=\frac{(1-\cos\theta)}{\cos\theta}$	
	$\sin\theta$ $1-t^2$	
	$-\frac{1-\frac{1-t^{2}}{1+t^{2}}}{1+t^{2}}$	
	$\frac{-2t}{2}$	
1	$1 + t^2$ $1 + t^2 - 1 + t^2$	
	$=\frac{1+t^2-1+t^2}{2t}$	
	$-2t^2$	
	$-\frac{1}{2t}$	
	=t	
	= K.H.S	
UE2	(d) (i) If k is odd then $k + 1$ must be even. If an even number is	1 mark
EL2	divided by 2 ie. $\frac{k+1}{2}$, there is no remainder and hence, the result	Correct explanation.
	is an integer.	
IIE2	(ii) Prove true for $n = 1$	
HE2	$n^2 - 1 = 1 - 1$	3 marks
	$= 0 \qquad \text{which is divisible by 8.}$ Hence, true for $n = 1$.	Steps.
	Assume true for $n = k$ where k is odd	2 marks
	1e. assume: $k^2 - 1 = 8M$, where M is an integer	Substantial progress towards correct
	Prove true for $n = k + 2$, where $k + 2$ is the	1 mark
	next odd integer. ie. Prove $[(k+2)^2 - 1]$ is divisible by 8	Some progress towards a correct
	$[(k+2)^2 - 1] = k^2 + 4k + 4 - 1$	is true for $n = 1$.
	$=k^2 - 1 + 4k + 4$ = 8M + 4k + 4	
	$\begin{pmatrix} k+1 \end{pmatrix}$	
	$= 8 \left(M + \frac{N+1}{2} \right)$	
	$\begin{pmatrix} & 2 \\ & k+1 \end{pmatrix}$	
	which is divisible by 8 since $\left(M + \frac{\kappa + 1}{2} \right)$ is an integer.	
1	If the result is true for $n = k$ it is also true for $n = k + 2$.	
	Since the result is true for $n = 1$ it is also true for	
1	Since the result is the form of this also the for	
	n = 1 + 2 = 3, $n = 3 + 2 = 5$, etc. Hence by the process of mathematical induction, the	

	(e) (i) $\angle CDE = \angle ABC$	1 mark
HE2	since the exterior angle of a cyclic quadrilateral (ABCD)	Correct reason.
	is equal to the interior opposite angle.	
	(ii)	
HF2	Let $\angle CDE = \theta$	3 marks
111.72	$\therefore \ \angle ABC = \theta \qquad \text{(shown above)}$	Correct solution showing all
		reasoning.
	Now, since $BC = AC$	2 marks
	$\angle BAC = \angle ABC$ (angles standing on equal chords)	Substantial progress towards correct
	0	solution showing relevant reasoning.
	-0	I mark
	Also, $\angle BDC = \angle BAC$ (angles standing on same chord)	solution
	$= \theta$	solution.
	Harras (RDC) (CDE) A	
	Hence, $\angle BDC = \angle CDE = \theta$	
	$\therefore DC$ bisects $\angle BDE$	

Year 12 Mathematics Extension 1 Half Yearly Examination 2005				
Question No. 12 Solutions and Marking Guidelines				
	4 . •	Outcomes Addressed in this Question		
HE2 uses 1	nductive	reasoning in the construction of proofs	Marshine Caribelines	
HE2	(a)(i)	$\alpha \beta \gamma = -12$	2 marks : correct solution 1 marks : substantial progress towards correct solution	
HE2	(ii)	$\alpha\beta + \alpha\gamma + \beta\gamma = -4$ $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\alpha\beta + \alpha\gamma + \beta\gamma}{\alpha\beta\gamma}$ $= \frac{-4}{-12}$ $= \frac{1}{3}$	2 marks : correct solution	
HE2		Let $\alpha + \beta = 0$ $\alpha = -\beta$ $\alpha + \beta + \gamma = 3$ $\therefore \gamma = 3$ $\alpha\beta\gamma = -12$ $-3\beta^2 = -12$ $\beta^2 = 4$ $\beta = \pm 2$ \therefore Roots are 2, -2 and 3	2 marks : correct solution 1 marks : substantial progress towards correct solution	
		$f(x) = e^{x^{2}} - x - 3$ $f'(x) = 2xe^{x^{2}} - 1$ $\therefore x_{1} = 1.1 - \frac{e^{1.21} - 1.1 - 3}{2.4e^{1.21} - 1}$ = 1.21705 $\therefore x_{1} = 1.22$	3 marks : correct solution 2 marks: substantial progress towards correct solution 1 mark : significant progress towards correct solution	

$$HE2 = HE2 = He2$$

HE2	(d) $x^{2} = 4ay \rightarrow x^{2} = 4ay$ $\therefore a = 1 \text{ and focus is } (0, 1)$ $P(2t, t^{2})$	3 marks : correct solution 2 marks: substantial progress towards correct solution 1 mark : significant progress towards correct solution
	Divide externally 3:1 $\therefore m: n = 3: -1$	
	$\therefore x = \frac{mx_2 + nx_1}{m + n} \text{and} y = \frac{my_2 + ny_1}{m + n}$ $x = \frac{3 \times 2t - 1 \times 0}{3 - 1} y = \frac{3 \times t^2 - 1 \times 1}{3 - 1}$ $\therefore x = 3t \therefore y = \frac{3t^2 - 1}{2}$	

'n

Year 12 2018Mathematics Extension 1 Task 4 HSC Trial				
Question No. 13 Solutions and Marking Guidelines				
	Outcomes Addressed in this Question			
PE1 Appreciates HE4 use the rela HE6 determines	the role of mathematics in the solution of practical problems tionship between functions, inverse functions and their derivatives integrals by reduction to a standard form through a given substitution			
Outcome	Solutions	Marking Guidelines		
HE6	(a) Let $u = x + 2$ $x = u - 2$ du = dx $\int x(x+2)^{99} dx$ $= \int (u-2)u^{99} du$ $= \int (u^{100} - 2u^{99}) du$ $= \frac{u^{101}}{101} - \frac{2u^{100}}{100} + C$ $(x+2)^{101} - (x+2)^{100}$	 2 marks for correct solution 1mark for substantial progress towards solution 		
HE4	$=\frac{(x+2)}{101} - \frac{(x+2)}{50} + C$ (b) $y = \int \cos^2 x dx$ $= \int \frac{1}{2} (1 + \cos 2x) x dx$ $= \frac{1}{2} x + \frac{1}{2} \frac{\sin 2x}{2} + C$ The curve passes through the point $\left(\frac{\pi}{2}, \pi\right)$	 3 marks for correct solution 2 marks for substantial progress towards solution 		
	$\pi = \frac{1}{2} \left(\frac{\pi}{2}\right) + \frac{\sin 2}{4} \left(\frac{\pi}{2}\right) + C$ $\pi = \left(\frac{\pi}{4}\right) + 0 + C$ $C = \pi - \left(\frac{\pi}{4}\right) = \frac{3\pi}{4}$ Hence, the equation is: $y = \frac{1}{2}x + \frac{\sin 2x}{4} + \frac{3\pi}{4}$	1 mark for limited progress towards solution		
	(c)(i) $-1 \le x \le 1$ (ii) When $x = 1$, $y = 3(1) - 13 = 2$ x = -1, $y = 3(-1) - 13 = -2domain of f^{-1}(x) is -2 \le x \le 2$	 mark for correct solution mark for correct solution 		

(iii)
$$y = 3x - x^3$$

Inverse $x = 3y - y^3$
 $\frac{dx}{dy} = 3 - 3y^2$
(d)(6)
 $y = x \sin^{-1} x + \sqrt{1 - x^2}$
 $\frac{dy}{dx} = xx \frac{1}{\sqrt{1 - x^2}} + \sin^{-1} x x | + \frac{1}{2}(1 - x^2)^{\frac{-1}{2}}(-2x)$
 $= \frac{x}{\sqrt{1 - x^2}} + \sin^{-1} x - (1 - x^2)^{\frac{-1}{2}}(x)$
 $= \frac{x}{\sqrt{1 - x^2}} + \sin^{-1} x - \frac{x}{\sqrt{1 - x^2}}$
 $= \sin^{-1} x$
(ii) $\int_0^1 \sin^{-1} x \, dx = \left[x \sin^{-1} x + \sqrt{1 - x^2} \right]_0^1$
 $= \sin^{-1} x$
(iii) $\int_0^1 \sin^{-1} x \, dx = \left[x \sin^{-1} x + \sqrt{1 - x^2} \right]_0^1$
 $= \sin^{-1} (1) - 1$
 $= \frac{\pi}{2} - 1$
(c) (i) In ΔDCB
 $\tan 60^\circ = \frac{10}{BC}$
 $\therefore BC = \frac{10}{\tan 60^\circ} = 10 \cot 60^\circ$
Similarly for $ADAC$, $AC = 10 \cot 30^\circ$
(iii) In ΔDAC ,
 $AB^2 = AC^2 + BC^2 - 2AC \cdot BC \cos 60^\circ$
 $= (10 \cot 30^\circ)^2 + (10 \cot 60^\circ)^2 - 2(10 \cot 30^\circ)(10 \cot 60^\circ) \cos 60^\circ$
 $= 300 + \frac{100}{3} - 200 \times \frac{1}{2}$
 $= \frac{700}{3}$
 $\therefore AB = 15 \cdot 275$
 $= 15 \cdot 3m$

Year 12 Tri	al Higher School Certificate Extension 1 Mathematics	Examination 2018
Question No	b. 14 Solutions and Marking Guidelines	
DE2	Outcomes Addressed in this Question	1 • 1 • 1
PES SOIN	metry and parametric representations	s, polynomials, circle
HE3 uses	s a variety of strategies to investigate mathematical models of situation	ns involving
bind	mial probability, projectiles, simple harmonic motion, or exponenti	al growth and
deca	ly l	0
HE5 app	lies the chain rule to problems including those involving velocity and	acceleration as functions of
displacemen	nt	
HE7 eva	luates mathematical solutions to problems and communicates them in	an appropriate
Outcome	Solutions	Marking Guidelines
HE3	$(2)(i) T - 20 + 4e^{-kt}$	Marking Guidennes
IIL0	$ \begin{array}{c} (a)(1) \ T = 20 + Ae \\ dT \end{array} $	1 mark: correct solution
	$\frac{dI}{dt} = A - k e^{-kt}$	
	dT	
	$\therefore \frac{dT}{dt} = -k \cdot A e^{-kt}$	
	dT	
	$\therefore \frac{dT}{dt} = -k(T-20)$	
	(ii) When $t = 0$ $T = 100$ using $T = 20 + 4e^{-kt}$	
HE3	$100 - 20 \pm 4e^0$: $4 - 80$	2 marks: A & k correct
	$T = 20 + 80 e^{-kt}$	1 mark : one of above
	1.1 - 20 + 50e	correct
	when $t = 5$, $t = 70$, $70 = 20 + 80e$	
	$\frac{5}{2} = e^{-5k}$	
	8	
	$1.6 = e^{3\pi}$	
	$5k = \ln 1.6 \qquad \therefore k = \frac{1}{5} \ln 1.6$	
HE3	(iii) $T = 20 + 80e^{-\frac{1}{5}(\ln 1.6)t}$	
neo	When $t = 15$, $T = 20 + 80e^{-3\ln 1.6}$	1 mark : correct answer
	$=40^{\circ}$ (to nearest degree)	
HE5	(b) $\tan \theta = \frac{x}{100}$, $\therefore x = 100 \tan \theta$	
HE7	dx 100 dx 100	3 marks : correct solution
	$\frac{1}{d\theta} = 100 \sec^2 \theta = \frac{1}{\cos^2 \theta}$	2 marks: substantial
	$\frac{d\theta}{d\theta} = \frac{d\theta}{dx} \times \frac{dx}{dx}$	progress towards correct
	$dt = dx \hat{d}t$	solution
	$\therefore \frac{d\theta}{d\theta} = \frac{\cos^2\theta}{\cos^2\theta} \times 5 = \frac{\cos^2\theta}{\cos^2\theta}$	progress towards correct
	dt = 100 20	solution
	When $\theta = \frac{\pi}{4}$,	
	$\cos^2\left(\frac{\pi}{2}\right)$	
	$\frac{d\theta}{dt} = \frac{d\theta}{dt} = \frac{1}{20}$	
	at = 20 = 40	
	\therefore at this instant, angle changing at $\frac{1}{40}$ radians/sec	

HE7	dh	2 marks : correct solution
	(c) $\frac{dn}{dt} = 1 - (1+t)^{-2}$	1 marks : substantial
	dt	progress towards correct
	$h = \int 1 - (1+t)^{-2} dt$	solution
	J ()	
	$\begin{bmatrix} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & & $	
	$\dots n = \begin{bmatrix} t - \frac{1}{-1} \end{bmatrix}_{n}$	
	$\therefore h = \left t + \frac{1}{1+\epsilon} \right ^{5}$	
	$\begin{bmatrix} 1+t \end{bmatrix}_0$	
	$\therefore h = \left t + \frac{1}{t} \right ^{t}$	
	$\lfloor 1+t \rfloor_0$	
	= 59.0 m	
HE7	(d)	2 marks : correct solution
	$\frac{dW}{dW}$	1 marks : substantial
	dt	progress towards correct
		solution
	t t	
		2 marks : correct solution
PE3	(e) Total number of ordered arrangements: 7!	1 mark : substantial
	Number of groups of different groups of 3 girls: ${}^{4}C_{3}$	progress towards correct
	Tie the 3 girls together as X : 3! Ordered ways	solution
	As this group of 3 girls can not be seated next to the other	
	Girl, seat the 3 boys first, creating gaps between them: 3!	
	ways of seating the boys	
	_ B _ B _ B _	
	Group X have 4 spots they could go in, then the other girl	
	has 3 spots to go in.	
	: number of ordered arrangements with exactly three of	
	the girls together is $\therefore {}^{4}C_{3} \times 3! \times 3! \times 4 \times 3 = 1728$	
	1728 12	
	\therefore required probability is $\frac{7!}{7!} = \frac{35}{35}$	2 marks : correct solution
		1 mark : substantial
HE3	(f) At least 7 faulty = 7 work or 8 work	progress towards correct
	P(work) = 99.1% $P(not work) = 0.9%$	solution
	P(at least 7) = P(exactly 7) + P(exactly 8)	
	$= {}^{8}C_{r} (99.1\%)^{7} (0.9\%)^{1} + {}^{8}C (99.1\%)^{8} (0.9\%)^{0}$	
	$= 0.0078 (t_0 4 \frac{1}{3})$	
	= 0.9978 (to 4 ap)	