STUDENT'S NAME:

TEACHER'S NAME:

TRIAL HIGHER SCHOOL CERTIFICATE **EXAMINATION**

Mathematics Extension 1 Assessment Task 4

Examiners

- Mrs Biczo
- Ms Crancher
- Mr Potaczala
- Ms Tarannum

General Instructions	 Reading time – 5 minutes Working time – 2 hours Write using black or blue pen NESA-approved calculators may be used A Reference sheet is provided for your use In Questions 11–14, show relevant mathematical reasoning and/or calculations
Total marks: 70	 Section I – 10 marks (pages 2 – 4) Attempt Questions 1–10 Allow about 15 minutes for this section
	 Section II -60 marks (pages 5 - 10) Attempt Questions 11-14 Allow about 1 hour and 45 minutes for this section

Section 1 10 marks Attempt Questions 1 - 10Allow about 15 minutes for this section. Use the multiple choice answer sheet provided for Questions 1 - 10

1. Which of the following is an expression for $\int 2\sin^2 x \, dx$? A. $x + \frac{1}{2}\sin 2x + c$ B. $x - \frac{1}{2}\sin 2x + c$ C. $x + \sin 2x + c$ D. $x - \sin 2x + c$

2. The general solution for $\cos \theta = -\frac{1}{2}$ is given by which of the following?

- A. $\theta = 2n\pi \pm \frac{\pi}{3}$, where *n* is real **B**. $\theta = 2n\pi \pm \frac{\pi}{3}$, where *n* is an integer **C**. $\theta = 2n\pi \pm \frac{2\pi}{3}$, where *n* is real **D**. $\theta = 2n\pi \pm \frac{2\pi}{3}$, where *n* is an integer
- 3. Which of the following functions best describes the graph below?

4. What is the inverse of the function $y = x^3 + 2$?

A. $y = x^3 - 2$ B. $y = \pm \sqrt[3]{x - 2}$

C.
$$x = y^3 - 2$$
 D. $y = \sqrt[3]{x-2}$

- 5. What is the coefficient of x^3 in the expansion of $(2x-3)^4$?
 - **A**. -96 **B**. 96 **C**. -216 **D**. 216

6. Suppose that X is the number of female children born into a family. Given that the distribution of X is binomial, with a probability of success of 0.48, what is the probability that a family with five children will have two female children?

A.
$$(0.48)^2$$
B. $(0.48)^2 (0.52)^3$ C. ${}^5C_2 (0.48)^2 (0.52)^3$ D. ${}^5C_2 (0.52)^2 (0.48)^3$

7. By considering the binomial expansion:

$${}^{n}C_{0} + {}^{n}C_{1}x + {}^{n}C_{2}x^{2} + \ldots + {}^{n}C_{n}x^{n} = (1+x)^{n},$$

to show $\sum_{r=0}^{n} {}^{n}C_{r} = 2^{n}$, what must you do?

- A. Differentiate both sides of the binomial expansion
- **B**. Substitute x = 1 into both sides of the binomial expansion
- C. Substitute x = -1 into both sides of the binomial expansion
- **D**. Substitute x = 0 into both sides of the binomial expansion

- 8. When the polynomial $P(x) = x^3 + ax^2 + 7$ is divided by x + 2, the remainder is 11. What is the value of *a*?
 - A. 3 B. -3 C. -4 D. 26
- 9. What is the solution to the inequality $\frac{x^2 4}{2x} < 0$? A. x < -2 and 0 < x < 2B. -4 < x < 0 and x > 2C. -2 < x < 0 and x > 2D. -2 < x < 0 and x > 4
- 10. In how many ways can 5 men and 5 women be arranged around a circular table if the women and men are to alternate?
 - **A**. 600 **B**. 2 880 **C**. 14 400 **D**. 86 400

End of Section 1

Section 2 60 marks Attempt Questions 11 – 14 Allow about 1 hours and 45 minutes for this section *Answer each question in a separate answer booklet.* In questions 11 – 14, your responses should include relevant mathematical reasoning and/or calculations.

(a) Prove that
$$\frac{1+\sin\theta-\cos\theta}{1+\sin\theta+\cos\theta} = \tan\frac{\theta}{2}$$
 2

(b) (i) Write
$$\cos x - \sqrt{3} \sin x$$
 in the form $r \cos(x + \alpha)$ 2

(ii) Hence, find the maximum value of
$$\cos x - \sqrt{3} \sin x$$
 and the first positive 2 value of x for which this occurs.

- (c) From the top of a vertical tower, of height *h*, the angle of depression to a man *M*,
 standing due south of the base *O* of the tower, is 42°. From the top of the tower, another man *G* is observed with angle of depression 32°. The men are standing 500 metres apart, with *G* due east of *M*. Find the height *h* of the tower, to the nearest metre.
- (d) The curves $f(x) = \sin x$ and $g(x) = \cos x$ meet at $x = \frac{\pi}{4}$. It is given that $f'\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$ and $g'\left(\frac{\pi}{4}\right) = \frac{-1}{\sqrt{2}}$. Calculate the acute angle between the curves at $x = \frac{\pi}{4}$. Give your answer in radians to two decimal places.

Question 11 is continued on the next page

Question 11 continued

(e) (i) Show that
$$\tan(x+h) - \tan x = \frac{\sinh h}{\cos(x+h)\cos x}$$
 2

(ii) Hence, using the first principles definition of the derivative,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
, show that if $f(x) = \tan x$, then $f'(x) = \sec^2 x$.

Question 12 is on the next page

Question 12 (15 marks) Start a new answer booklet.

(a) Consider the function
$$y = \tan^{-1} \frac{1}{x}$$
, where $x \neq 0$:

(i) Find
$$\frac{dy}{dx}$$
 2

(ii) Show that
$$\frac{d}{dx}\left(\tan^{-1}x + \tan^{-1}\frac{1}{x}\right) = 0$$
 1

(iii) Hence, or otherwise, sketch
$$y = \tan^{-1} x + \tan^{-1} \frac{1}{x}$$
 for $x > 0$ 1

(b) Using the substitution
$$u = \sqrt{x}$$
, find $\int_{1}^{9} \frac{dx}{x + \sqrt{x}}$. 3

(c) Show that the polynomial
$$P(x) = 2x^3 - 5x^2 - 9x + 18$$
 has a root x such that $1 < x < 2$.

(d) In a town, the annual growth rate of the population N is given by $\frac{dN}{dt} = k(N-125)$, where k is a constant.

(i) Show that
$$N = 125 + Ae^{kt}$$
 is a solution to $\frac{dN}{dt} = k(N - 125)$ 2

(e) Sketch the graph $y = \frac{x^2}{4-x^2}$, clearly showing any asymptotes or intercepts with the 2 co-ordinate axes. Your graph should be at least a quarter of a page.

Question 13 (15 marks) Start a new answer booklet.

(a) Prove that for all positive integers
$$n$$
, $9^{n+2} - 4^n$ is divisible by 5. 3

(b) (i) By using the binomial expansion, show that

$$(a+b)^{n} - (a-b)^{n} = 2\binom{n}{1}a^{n-1}b + 2\binom{n}{3}a^{n-3}b^{3} + 2\binom{n}{5}a^{n-5}b^{5} + \dots$$
(ii) What is the last two is the provided by the second sec

- (ii) What is the last term in the expansion when *n* is even?Give your answer in simplest form.
- (c) A fair six-sided die is randomly tossed *n* times.
 - (i) Suppose $0 \le r \le n$. What is the probability that exactly *r* 'sixes' appear in the uppermost position? 2

(ii) **By using the result of part (b), or otherwise**, show that the probability that an **2**

odd number of 'sixes' appears is
$$\frac{1}{2} \left\{ 1 - \left(\frac{2}{3}\right)^n \right\}$$

- (d) Let A be the point (-3,7) and let B be the point (1,6). Find the coordinates of the point P which divides the interval AB externally in the ratio 1 : 2.
- (e) A spherical balloon is being deflated so that the radius decreases at a constant rate of 3 mm/s. Calculate the rate at which the volume is changing at the instant when the radius is 100 mm.

1

- (a) Four women and three men are available for selection in a team. A team of 4 players consists of two men and two women.
 - (i) How many different teams of four players can be selected?
 - (ii) Two players are husband and wife and wish to play in the same team. How 1 many different teams can now be selected with the husband and wife on the same team?

(b)

Diagram not to scale

In the diagram above, the points A, B, C and D lie on a circle with centre O. The line TA is a tangent to the circle. The chord BC is produced to R. The interval AO bisects $\angle BAD$ and BC = CD. Let $\angle DBC = \alpha$.

(i) Prove that $\angle DCR = 2\alpha$.	1
---	---

- (ii) Show that $\angle OAD = \alpha$.
- (iii) Prove that $\angle ABC$ is a right angle.

Question 14 is continued on the next page

1

Question 14 continued

(c) Let
$$\alpha, \beta$$
 and γ be the roots of $3x^3 + 8x^2 - 1 = 0$.
What is the value of $\left(\alpha + \frac{1}{\beta}\right) \left(\beta + \frac{1}{\gamma}\right) \left(\gamma + \frac{1}{\alpha}\right)$?

(d)
$$P(2ap, ap^2)$$
 and $Q(2aq, aq^2)$ are two points on the parabola $x^2 = 4ay$.

- (i) Show that the co-ordinates of *R*, the point of intersection of the normals at **2** *P* and *Q* are $\left(-apq\left(p+q\right), a\left(p^2+pq+q^2+2\right)\right)$.
- (ii) If pq = -2 find the cartesian equation of the locus of *R*.

End of Examination

3

Year 12 T Question	rial Higher School CertificateExtension 1 MathematicsNo. 11Solutions and Marking Guidelines	Examination 2019
	Outcomes Addressed in this Question	
PE2 Us	ses multi-step deductive reasoning in a variety of contexts	
PE6 Ma	akes comprehensive use of mathematical language, diagrams & r	otation for communicating
	a wide variety of situations	
HE1 Ap HE7 eva	preciates interrelationships between ideas drawn from different a aluates mathematical solutions to problems and communicates th	reas of mathematics em in an appropriate
for	m	F E - K
Outcome		Marking Guidelines
PE2	(a) Let $t = \tan \frac{\theta}{2}$	2 marks : correct
	$\frac{2}{1+\sin\theta-\cos\theta}$	solution
	Then LHS = $\frac{1 + \sin \theta - \cos \theta}{1 + \sin \theta + \cos \theta}$	1 mark: significant
		progress toward correct
	$=\frac{1+\frac{2t}{1+t^2}-\left(\frac{1-t^2}{1+t^2}\right)}{1+\frac{2t}{1+t^2}+\frac{1-t^2}{1+t^2}}$	solution
	$=\frac{1}{1+\frac{2t}{1+\frac{1-t^2}{2}}}$	
	1 1 1 1 1 1 1	
	$= \frac{1+t^2+2t-(1-t^2)}{1+t^2+2t+1-t^2} $ (multiplying by t^2)	
	$=\frac{2t^2+2t}{2+2t}$	
	$=\frac{2t(t+1)}{2(1+t)}$	
	=t	
	$= \tan \frac{\theta}{2}$	
	2	
	Note: a number of students did not state the expression on	
PE2	the LHS, instead starting from the second line. This can	
112	result in loss of marks in the HSC.	
	(b) (i) $\cos x - \sqrt{3} \sin x \equiv r \cos(x + \alpha)$	
		2 marks : correct
	$= 7 (\cos x \cos \alpha - \sin x \sin \alpha)$ where	solution
	$= r(\cos x \cos \alpha - \sin x \sin \alpha) \text{ where}$ $r = \sqrt{1^2 + (-\sqrt{3})^2} = 2$	1 mark : correct value for r or α
	$\cos x - \sqrt{3}\sin x \equiv 2\cos x \cos \alpha - 2\sin x \sin \alpha$	
	Equating like coefficients, $1 = 2\cos\alpha$, $\sqrt{3} = 2\sin\alpha$	*
	$\therefore \sin \alpha = \frac{\sqrt{3}}{2}, \qquad \cos \alpha = \frac{1}{2}$	
	As sin positive quadrants 1, 2 & cos positive in quadrants	
PE2	1, 4 α is in quadrant 1. $\therefore \alpha = \frac{\pi}{3}$	
1 1.7	$\therefore \cos x - \sqrt{3} \sin x \equiv 2 \cos \left(x + \frac{\pi}{3} \right)$	
	(ii) Maximum value of $\cos x - \sqrt{3} \sin x$ is when	
	$2\cos\left(x+\frac{\pi}{3}\right)$ is a maximum which occurs when	2 marks : correct answers
	$\cos\left(x+\frac{\pi}{3}\right)=1$. \therefore maximum value is $2\times 1=2$.	1 mark : one correct answer or equivalent

-2

Year 12 Question No	Mathematics Extension 1 Task 4 5.12 Solutions and Marking Guidelines	Examination 2019
Outcomes A H2 - constr PE3 - solve	Addressed in this Questions ucts arguments to prove and justify results s problems involving permutations and combinations, inequa	lities, polynomials, circle
HE3 - uses probability PE5 - deter	nd parametric representations a variety of strategies to investigate mathematical models of a projectiles, simple harmonic motion or exponential growth mines derivatives which require the application of more thar	and decay. 1 one rule of differentiation
H6 - uses tl	mines integrals by reduction to a standard form through a gi the derivative to determine the features of the graph of a funct uates mathematical solutions to problems and communicates	ion
Outcomes	Solutions	Marking Guidelines
PE5	a i) $y = \tan^{-1} u$ dy dy du	2 marks Correct solution with appropriate working
	$\frac{dy}{dx} = \frac{dy}{dy} \times \frac{du}{dx} \qquad \qquad u = \frac{1}{x}$ $= \frac{1}{1+u^2} \times \left(-\frac{1}{x^2}\right) \qquad \qquad \frac{du}{dx} = -\frac{1}{x^2}$	1 mark Error made
	$= -\frac{1}{1+x^2}$	*note: if answer was inferred from part ii then i mark was awarded in part ii and zero for part i
H2	ii) $\frac{dy}{dx}(\tan^{-1}x + \tan^{-1}\frac{1}{x}) = \frac{1}{1+x^2} - \frac{1}{1+x^2} = 0$	1 mark Correct solution
H6	iii) $y = \tan^{-1} x + \tan^{-1} \frac{1}{x}$ is a constant for $x > 0$ since $\frac{dy}{dx} = \frac{1}{2}$	0 1 mark Correct solution
	When $x = 1$ then $\tan^{-1} 1 + \tan^{-1} \frac{1}{1} = \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}$	
	-2 0 2	
	2 -	

 $\sigma_{\rm c}^{\rm ch}$

HEG
HEG

$$\begin{array}{c}
 b) \\
 x = a^{2} \\
 \frac{dx}{du} = 2u \\ x = 0 \rightarrow u = 3 \\
 dx = 2udu$$

$$\begin{array}{c}
 \frac{dx}{du} = 2u \\ x = 0 \rightarrow u = 3 \\
 dx = 2udu$$

$$\begin{array}{c}
 \frac{dx}{du} = 2u \\ x = 0 \rightarrow u = 3 \\
 dx = 2udu$$

$$\begin{array}{c}
 \frac{1}{2} \frac{2udu}{u^{2} + u} = \frac{1}{2} \frac{2du}{u^{2} + 1} \\
 = \frac{1}{2} 2\ln(1+u) \int_{1}^{3} \\
 = 2(\ln 4 - \ln 2) \\
 = 2\ln 2 \\
 = \ln 4
\end{array}$$
PE3

$$\begin{array}{c}
 P(1) = 2 - 5 - 9 + 18 = 6 \\
 P(2) = 16 - 20 - 18 + 18 = -4
\end{array}$$
A root lies between $1 < x < 2$ since $P(x)$ is continuous and $P(1)$ and

$$\begin{array}{c}
 P(2) \text{ have opposite signs.}
\end{array}$$

$$\begin{array}{c}
 1 \text{ mark} \\
 \text{Correct solution with appropriate reasoning incomplete for masks \\
 10 \\
 \text{HE3}
\end{array}$$

$$\begin{array}{c}
 \text{di} \\
 \text{HE3} \\
 \text{HE3}
\end{array}$$

$$\begin{array}{c}
 \text{di} \\
 \text{100} = 125 + 25252e^{4t} \\
 \frac{1239}{1021} = e^{4t} \\
 \text{h} \frac{1239}{1021} = 5k \ln e \\
 \frac{1239}{1021} = 5k \ln e \\
 \frac{1239}{1021} = 5k \ln e \\
 \frac{1239}{1021} = 0.039
\end{array}$$

$$\begin{array}{c}
 \text{anarks} \\
 \text{Correct solution with appropriate reasoning incomplete for masks \\
 \text{Correct solution with appropriate reasoning incomplete for masks \\
 \text{Correct solution with appropriate reasoning incomplete for masks \\
 \text{Correct solution with appropriate reasoning incomplete for masks \\
 \text{Correct solution with appropriate reasoning incomplete for masks \\
 \text{Correct solution with appropriate reasoning incomplete for masks \\
 \text{Correct solution in the propriate reasoning incomplete for masks \\
 \text{Correct solution in the propriate reasoning incomplete for masks \\
 \text{Correct solution in the propriate reasoning incomplete for masks \\
 \text{Correct solution in the propriate reasoning incomplete for masks \\
 \text{Correct solution in the propriate reasoning incomplete for masks \\
 \text{Correct solution in the propriate reasoning incomplete for masks \\
 \text{Correct solution in the propriate reasoning incomplete for masks \\
 \text{Correct solution in the propremask$$

. 5.

.

with ning

olete /

	(0)	
HE3	i) $\left(\frac{5}{6} + \frac{1}{6}\right)^n$ is the binomial probability, since probability of a	2 marks: complete correct solution
	six $=\frac{1}{6}$. \therefore Probability of exactly <i>r</i> sixes, $P(r) = {n \choose r} {\left(\frac{5}{6}\right)^{n-r}} {\left(\frac{1}{6}\right)^r}$	1 mark: substantial work that could lead to a correct solution
HE3	ii) Probability of an odd number of sixes = $P(1) + P(3) + P(5) +$	
	$= \binom{n}{1} \left(\frac{5}{6}\right)^{n-1} \left(\frac{1}{6}\right) + \binom{n}{3} \left(\frac{5}{6}\right)^{n-3} \left(\frac{1}{6}\right)^3 + \dots$	2 marks: complete correct solution
	$=\frac{1}{2}\left[\left(\frac{5}{6}+\frac{1}{6}\right)^{n}-\left(\frac{5}{6}-\frac{1}{6}\right)^{n}\right], \qquad \text{from b})$ $1\left[\left(\frac{1}{6}+\frac{1}{6}\right)^{n}\right]$	1 mark: for substantial work that could lead to a
	$=\frac{1}{2}\left[1-\left(\frac{2}{3}\right)^n\right]$	correct solution
HE7	d) A(-3,7) B(1,6) -1:2	
	P has coordinates	
		1 mark: for x
	$\left(\frac{(2)(-3)+(-1)(1)}{2-1},\frac{(2)(7)+(-1)(6)}{2-1}\right)$	coordinate
	=(-7,8)	1 mark: for y coordinate
HE7	e)	
	We are given $\frac{dr}{dt} = -8$ and we wish to find $\frac{dV}{dt}$	
	$V = \frac{4}{3}\pi r^3$	
	$\frac{dV}{dr} = 4\pi r^2$	3 marks: complete correct solution
	$\therefore \frac{dV}{dt} = \frac{dV}{dr} \times \frac{dr}{dt}$	2 marks: for finding
	$= 4\pi r^2 (-8)$	$\therefore \frac{dV}{dt} = \frac{dV}{dr} \times \frac{dr}{dt}$
	$=-32\pi r^2$	$ \begin{aligned} dt & dr & dt \\ &= 4\pi r^2 (-8) \end{aligned} $
	and when $r = 100$	
	$\frac{dV}{dt} = -32\pi (100)^2$	1 mark: for finding $\frac{dV}{dr} = 4\pi r^2$
	$=-320000\pi\mathrm{mm^3/s}$	ur
		1

	Year 12 Mathematics Extension 1 Trial 20	
	Question No. 14 Solutions and Marking Outcomes Addressed in this Question	Guidelines
PE2 us	es multi-step deductive reasoning in a variety of contexts	
PE3 so	lves problems involving permutations and combinations, inequ	alities, polynomials, circle
	and parametric representations	
Outcome		Marking Guidelines
PE3	(a) (i) $4C2 \times 3C2 = 18$	Award 1 mark for the correct solution.
	(ii) $3C1 \times 2C1 = 6$	Award 1 mark for the correct solution.
	(b)	
PE2	(i) Given $BC = CD$	
	ΔBCD is Isosceles triangle (two equal sides in a triangle)	
	$\angle DBC = \angle BDC = \alpha$ (angles opposite equal sides	Award 1 mark for the correc
	in an Isosceles triangle are equal)	solution.
	$\angle DCR = 2\alpha$ (exterior angle equals to the sum of interior	
	opposite angles)	
DEA	(ii) $\angle BAD \therefore = \angle DCR$ (exterior angle equals to the	
PE2	opposite interior angle in cyclic quadrilateral <i>BADC</i>)	
	$\therefore \angle BAD = 2\alpha$	
	$\therefore \angle BAD = 2\alpha$ $\therefore AO \text{ bisects } \angle BAD$	Award 1 mark for the correc
		solution.
	$\angle OAD = \alpha$	
DEG	(iii)	Award 3 marks for the
PE2	$\angle TAO = 90^{\circ}$ (angle between the tangent and radius	correct answer.
	at the point of contact)	Award 2 mark for substantia
	$\angle TAD = 90^{\circ} - \alpha$ (adjacent anlge sum)	progress towards the correct
	$\angle ABD = 90^{\circ} - \alpha$ (Alternate Segment Theorem)	solution.
	$\angle ABC = \angle ABD + \angle DBC = 90^{\circ} - \alpha + \alpha = 90^{\circ}$	Award 1 mark for some
	(c)	progress towards the correct
	$\alpha + \beta + \gamma = -\frac{8}{3}$	solution.
DEA		
PE3	$\alpha\beta + \beta\gamma + \alpha\gamma = \frac{0}{3} = 0$	
		Award 3 marks for the
	$\alpha\beta\gamma = -\left(\frac{-1}{3}\right) = \frac{1}{3}$	correct answer.
		Amoud 7 moul- for to to
	$\left(\alpha + \frac{1}{\beta}\right)\left(\beta + \frac{1}{\gamma}\right)\left(\gamma + \frac{1}{\alpha}\right)$	Award 2 mark for substantia progress towards the correct
	$\left(\beta \prod_{i=1}^{n} \gamma \prod_{i=1}^{n} \alpha \right)$	solution.
	$= \left(\alpha\beta + \frac{\alpha}{\gamma} + 1 + \frac{1}{\beta\gamma}\right) \left(\gamma + \frac{1}{\alpha}\right)$	
	$\Big - \Big(\frac{\alpha \rho + \gamma + 1 + \beta \gamma}{\gamma} \Big) \Big \Big(\frac{\gamma + \alpha}{\alpha} \Big)$	Award 1 mark for some
	$= \alpha^{2} \alpha + \beta + \alpha + \frac{1}{2} + \alpha + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$	progress towards the correct solution.
	$= \alpha\beta\gamma + \beta + \alpha + \frac{1}{\gamma} + \gamma + \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\alpha\beta\gamma}$	

	$= \alpha\beta\gamma + \frac{1}{\alpha\beta\gamma} + \alpha + \beta + \gamma + \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$	
РЕЗ	$= \alpha\beta\gamma + \frac{1}{\alpha\beta\gamma} + \alpha + \beta + \gamma + \frac{\alpha\beta + \beta\gamma + \alpha\gamma}{\alpha\beta\gamma}$	
	$= \left(\frac{1}{3}\right) + \frac{1}{\left(\frac{1}{3}\right)} + \left(-\frac{8}{3}\right) + \frac{0}{\left(\frac{1}{3}\right)} = \frac{1}{3} + 3 - \frac{8}{3} = \frac{2}{3}$	
	 (d) (i) (i) The equation of the normal to the parabola at P and Q is 	
	given by the equations $x + py = ap^3 + 2ap$ and $x + qy = aq^3 + 2aq$ respectively.	Award 2 marks for the correct answer.
	Solving simultaneously $x + py = ap^3 + 2ap \rightarrow A$	Award 1 mark for substantial progress towards the correct
	$x + qy = aq^3 + 2aq \to B$ $A - B$	solution.
	$(p-q)y = a(p^3-q^3) + 2a(p-q)$	
	$(p-q)y = a(p-q)(p^{2} + pq + q^{2}) + 2a(p-q)$	
	$y = a\left(p^2 + pq + q^2\right) + 2a$	
	$\therefore y = a\left(p^2 + pq + q^2 + 2\right)$	
	Sub $y = a(p^2 + pq + q^2 + 2)$ in <i>A</i>	
	$x + pa(p^{2} + pq + q^{2} + 2) = ap^{3} + 2ap$	
	$x = ap^{3} + 2ap - pa(p^{2} + pq + q^{2} + 2)$	
	$x = ap^{3} + 2ap - ap^{3} - ap^{2}q - apq^{2} - 2ap$ $\therefore x = -apq(p+q)$	
	$\therefore R(-apq(p+q), a(p^2+pq+q^2+2))$	
	(\mathbf{ii})	Award 3 marks for the
	x = -apq(p+q), given $pq = -2$	correct answer.
PE3	x = 2a(p+q)	Award 2 mark for substantial
PES	$\left(p+q\right)=\frac{x}{2a}$	progress towards the correct solution.
	$y = a\left(p^2 + pq + q^2 + 2\right)$	Award 1 mark for some
	$y = a\left(p^2 - 2 + q^2 + 2\right)$	progress towards the correct solution.
	$y = a\left(p^2 + q^2\right)$	
	$y = a\left(\left(p+q\right)^2 - 2pq\right)$	
	$y = a \left(\left(\frac{x}{2a} \right)^2 - 2(-2) \right)$	
	$y = \frac{x^2}{4a} + 4a$	

.

Q1 B

 $\sin^2(x) = \frac{1}{2}(1 - \cos(2x))$ (rearranging $\cos 2x = 1 - 2\sin^2 x$)

∫2sin²x dx

 $=\int 2(\frac{1}{2}(1-\cos(2x)))$

 $= \int (1 - \cos(2x)) \, dx$

 $= \int 1 \, dx - \int \cos(2x) \, dx$

 $=x-\frac{1}{2}sin2x+c$

 $\cos\theta = -\frac{1}{2}$

$$=\cdots,\frac{2\pi}{3},\frac{4\pi}{3},\frac{8\pi}{3},\frac{10\pi}{3}$$

or
$$\theta = 2\pi n \pm \cos^{-1}\left(-\frac{1}{2}\right) = 2\pi n \pm \left(\pi - \cos^{-1}\left(\frac{1}{2}\right)\right)$$
$$= 2\pi n \pm \left(\pi - \frac{\pi}{3}\right)$$

1)

 $\therefore 2n\pi \pm \frac{2\pi}{3}$, where n is an integer

Q3. B

Q4 D

 $y = x^3 + 2$

swap the varibles (x and y)

 $x = y^3 + 2$

Solve the equation for y

 $y^3 = x - 2$

 $y = \sqrt[3]{x-2}$

Q5. A

Binomial expansion of $(a + y)^4$

 $= a^4 + 4a^3y + 6a^2y^2 + 4ay^3 + y^3$

When a = 2x, y = 3

 $= 16x^4 - 96x^3 + 216x^2 - 216x + 81$

∴ -96

Q6 C

$P(2F)=5C2 (0.48)^2 (0.52)^3$ = combinate 2F3M × 2 Female × 3 males

4 100%

 $\epsilon^{\prime} \bar{\epsilon}$

Q7 B Sub in x = 1 to binomial expansion given

 $\therefore \sum_{r=0}^{n} nCr = 2^{n}$

Q8. A

$$P(-2) = -8 + 4a + 7 = 11$$

 $4a - 1 = 11$

a = 3

0 < x < 2

Q10. B

 $5! \times 4! = 2880$