\qquad
\qquad

Mathematics Extension 1 Assessment Task 4

Examiners - Mrs Biczo
- Ms Crancher
- Mr Potaczala
- Ms Tarannum

General
Instructions

- Reading time - 5 minutes
- Working time - 2 hours
- Write using black or blue pen
- NESA-approved calculators may be used
- A Reference sheet is provided for your use
- In Questions 11-14, show relevant mathematical reasoning and/or calculations

Total marks: 70

Section I-10 marks (pages 2-4)

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II -60 marks (pages 5-10)

- Attempt Questions 11-14
- Allow about 1 hour and 45 minutes for this section

Section 1

10 marks
Attempt Questions 1 - 10
Allow about 15 minutes for this section.
Use the multiple choice answer sheet provided for Questions 1 - 10

1. Which of the following is an expression for $\int 2 \sin ^{2} x d x$?
A. $x+\frac{1}{2} \sin 2 x+c$
B. $x-\frac{1}{2} \sin 2 x+c$
C. $x+\sin 2 x+c$
D. $x-\sin 2 x+c$
2. The general solution for $\cos \theta=-\frac{1}{2}$ is given by which of the following?
A. $\quad \theta=2 n \pi \pm \frac{\pi}{3}$, where n is real
B. $\quad \theta=2 n \pi \pm \frac{\pi}{3}$, where n is an integer
C. $\theta=2 n \pi \pm \frac{2 \pi}{3}$, where n is real
D. $\theta=2 n \pi \pm \frac{2 \pi}{3}$, where n is an integer
3. Which of the following functions best describes the graph below?

A. $y=\sin ^{-1} x$
B. $y=-\sin ^{-1} x$
C. $y=\cos ^{-1} x$
D. $y=-\cos ^{-1} x$
4. What is the inverse of the function $y=x^{3}+2$?
A. $y=x^{3}-2$
B. $y= \pm \sqrt[3]{x-2}$
C. $x=y^{3}-2$
D. $y=\sqrt[3]{x-2}$
5. What is the coefficient of x^{3} in the expansion of $(2 x-3)^{4}$?
A. -96
B. 96
C. -216
D. 216
6. Suppose that X is the number of female children born into a family. Given that the distribution of X is binomial, with a probability of success of 0.48 , what is the probability that a family with five children will have two female children?
A. $(0.48)^{2}$
B. $(0.48)^{2}(0.52)^{3}$
C. ${ }^{5} C_{2}(0.48)^{2}(0.52)^{3}$
D. ${ }^{5} C_{2}(0.52)^{2}(0.48)^{3}$
7. By considering the binomial expansion:

$$
{ }^{n} C_{0}+{ }^{n} C_{1} x+{ }^{n} C_{2} x^{2}+\ldots+{ }^{n} C_{n} x^{n}=(1+x)^{n},
$$

to show $\sum_{r=0}^{n}{ }^{n} C_{r}=2^{n}$, what must you do?
A. Differentiate both sides of the binomial expansion
B. Substitute $x=1$ into both sides of the binomial expansion
C. Substitute $x=-1$ into both sides of the binomial expansion
D. Substitute $x=0$ into both sides of the binomial expansion
8. When the polynomial $P(x)=x^{3}+a x^{2}+7$ is divided by $x+2$, the remainder is 11 . What is the value of a ?
A. 3
B. -3
C. -4
D. 26
9. What is the solution to the inequality $\frac{x^{2}-4}{2 x}<0$?
A. $x<-2$ and $0<x<2$
B. $-4<x<0$ and $x>2$
C. $-2<x<0$ and $x>2$
D. $-2<x<0$ and $x>4$
10. In how many ways can 5 men and 5 women be arranged around a circular table if the women and men are to alternate?
A. 600
B. 2880
C. 14400
D. 86400

End of Section 1

Section 2

60 marks
Attempt Questions 11-14
Allow about 1 hours and 45 minutes for this section
Answer each question in a separate answer booklet.
In questions $11-14$, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Start a new answer booklet.
(a) Prove that $\frac{1+\sin \theta-\cos \theta}{1+\sin \theta+\cos \theta}=\tan \frac{\theta}{2}$
(b) (i) Write $\cos x-\sqrt{3} \sin x$ in the form $r \cos (x+\alpha)$
(ii) Hence, find the maximum value of $\cos x-\sqrt{3} \sin x$ and the first positive value of x for which this occurs.
(c) From the top of a vertical tower, of height h, the angle of depression to a man M, standing due south of the base O of the tower, is 42°. From the top of the tower, another man G is observed with angle of depression 32°. The men are standing 500 metres apart, with G due east of M. Find the height h of the tower, to the nearest metre.
(d) The curves $f(x)=\sin x$ and $g(x)=\cos x$ meet at $x=\frac{\pi}{4}$. It is given that $f^{\prime}\left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}$ and $g^{\prime}\left(\frac{\pi}{4}\right)=\frac{-1}{\sqrt{2}}$. Calculate the acute angle between the curves at $x=\frac{\pi}{4}$. Give your answer in radians to two decimal places.

Question 11 is continued on the next page

Question 11 continued
(e) (i) Show that $\tan (x+h)-\tan x=\frac{\sinh }{\cos (x+h) \cos x}$
(ii) Hence, using the first principles definition of the derivative, $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$, show that if $f(x)=\tan x$, then $f^{\prime}(x)=\sec ^{2} x$.
(a) Consider the function $y=\tan ^{-1} \frac{1}{x}$, where $x \neq 0$:
(i) Find $\frac{d y}{d x}$

1
(b) Using the substitution $u=\sqrt{x}$, find $\int_{1}^{9} \frac{d x}{x+\sqrt{x}}$.
(c) Show that the polynomial $P(x)=2 x^{3}-5 x^{2}-9 x+18$ has a root x such that $1<x<2$.
(d) In a town, the annual growth rate of the population N is given by $\frac{d N}{d t}=k(N-125)$, where k is a constant.
(i) Show that $N=125+A e^{k t}$ is a solution to $\frac{d N}{d t}=k(N-125)$
(ii) If the initial population was 25,650 , find k given the population was 31,100 after 5 years. Round your answer to three decimal places.
(e) Sketch the graph $y=\frac{x^{2}}{4-x^{2}}$, clearly showing any asymptotes or intercepts with the 2 co-ordinate axes. Your graph should be at least a quarter of a page.
(a) Prove that for all positive integers $n, 9^{n+2}-4^{n}$ is divisible by 5 .
(b) (i) By using the binomial expansion, show that

$$
(a+b)^{n}-(a-b)^{n}=2\binom{n}{1} a^{n-1} b+2\binom{n}{3} a^{n-3} b^{3}+2\binom{n}{5} a^{n-5} b^{5}+\ldots
$$

(ii) What is the last term in the expansion when n is even?

Give your answer in simplest form.
(c) A fair six-sided die is randomly tossed n times.
(i) Suppose $0 \leq r \leq n$.

What is the probability that exactly r 'sixes' appear in the uppermost position?
(ii) By using the result of part (b), or otherwise, show that the probability that an odd number of 'sixes' appears is $\frac{1}{2}\left\{1-\left(\frac{2}{3}\right)^{n}\right\}$
(d) Let A be the point $(-3,7)$ and let B be the point $(1,6)$. Find the coordinates of the point P which divides the interval $A B$ externally in the ratio $1: 2$.
(e) A spherical balloon is being deflated so that the radius decreases at a constant rate of 3 $8 \mathrm{~mm} / \mathrm{s}$. Calculate the rate at which the volume is changing at the instant when the radius is 100 mm .
(a) Four women and three men are available for selection in a team. A team of 4 players consists of two men and two women.
(i) How many different teams of four players can be selected?
(ii) Two players are husband and wife and wish to play in the same team. How many different teams can now be selected with the husband and wife on the same team?
(b)

Diagram not to scale
In the diagram above, the points A, B, C and D lie on a circle with centre O. The line $T A$ is a tangent to the circle. The chord $B C$ is produced to R. The interval $A O$ bisects $\angle B A D$ and $B C=C D$. Let $\angle D B C=\alpha$.
(i) Prove that $\angle D C R=2 \alpha$.
(ii) Show that $\angle O A D=\alpha$.
(iii) Prove that $\angle A B C$ is a right angle.

1

Question 14 continued

(c) Let α, β and γ be the roots of $3 x^{3}+8 x^{2}-1=0$.

What is the value of $\left(\alpha+\frac{1}{\beta}\right)\left(\beta+\frac{1}{\gamma}\right)\left(\gamma+\frac{1}{\alpha}\right)$?
(d) $\quad P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ are two points on the parabola $x^{2}=4 a y$.
(i) Show that the co-ordinates of R, the point of intersection of the normals at

$$
P \text { and } Q \text { are }\left(-a p q(p+q), a\left(p^{2}+p q+q^{2}+2\right)\right) .
$$

(ii) If $p q=-2$ find the cartesian equation of the locus of R.

End of Examination

Year 12 Question	ial Higher School Certificate Extension 1Mathematics No. 11 Solutions and Marking Guidelines	Examination 2019
Outcomes Addressed in this Question		
PE2Pses multi-step deductive reasoning in a variety of contextsPE6Makes comprehensive use of mathematical language, diagrams \& notation for communicatingHE1Appreciates interrelationships between ideas drawn from different areas of mathematicsHE7evaluates mathematical solutions to problems and communicates them in an appropriateform		
Outcome	Solutions	Marking Guidelines
PE2	(a) Let $t=\tan \frac{\theta}{2}$ $\begin{aligned} \text { Then LHS } & =\frac{1+\sin \theta-\cos \theta}{1+\sin \theta+\cos \theta} \\ & =\frac{1+\frac{2 t}{1+t^{2}}-\left(\frac{1-t^{2}}{1+t^{2}}\right)}{1+\frac{2 t}{1+t^{2}}+\frac{1-t^{2}}{1+t^{2}}} \\ & =\frac{1+t^{2}+2 t-\left(1-t^{2}\right)}{1+t^{2}+2 t+1-t^{2}} \text { (multiplying by } t^{2} \text {) } \\ & =\frac{2 t^{2}+2 t}{2+2 t} \\ & =\frac{2 t(t+1)}{2(1+t)} \\ & =t \\ & =\tan \frac{\theta}{2} \end{aligned}$ Note: a number of students did not state the expression on the LHS, instead starting from the second line. This can result in loss of marks in the HSC. $\begin{aligned} & \text { (i) } \begin{aligned} & \cos x-\sqrt{3} \sin x \equiv r \cos (x+\alpha) \\ & \equiv r(\cos x \cos \alpha-\sin x \sin \alpha) \text { where } \\ & r=\sqrt{1^{2}+(-\sqrt{3})^{2}}=2 \\ & \cos x-\sqrt{3} \sin x \equiv 2 \cos x \cos \alpha-2 \sin x \sin \alpha \end{aligned} \end{aligned}$ (b) (i) Equating like coefficients, $1=2 \cos \alpha, \quad \sqrt{3}=2 \sin \alpha$ $\therefore \sin \alpha=\frac{\sqrt{3}}{2}, \quad \cos \alpha=\frac{1}{2}$ As sin positive quadrants $1,2 \&$ cos positive in quadrants $1,4 \alpha$ is in quadrant $1 . \quad \therefore \alpha=\frac{\pi}{3}$ $\therefore \cos x-\sqrt{3} \sin x \equiv 2 \cos \left(x+\frac{\pi}{3}\right)$ (ii) Maximum value of $\cos x-\sqrt{3} \sin x$ is when $2 \cos \left(x+\frac{\pi}{3}\right)$ is a maximum which occurs when $\cos \left(x+\frac{\pi}{3}\right)=1 . \therefore$ maximum value is $2 \times 1=2$.	2 marks : correct solution 1 mark: significant progress toward correct solution 2 marks : correct solution 1 mark : correct value for r or α 2 marks : correct answers

HE7	e)	2 marks Correct solution, including smooth graph and correct behaviour of curves at asymptotes 1 mark Error made

HE3 i) $\left._{\text {c) }}^{6}+\frac{5}{6}\right)^{n}$ is the binomial probability, since probability of a
$\operatorname{six}=\frac{1}{6}$.
\therefore Probability of exactly r sixes, $P(r)=\binom{n}{r}\left(\frac{5}{6}\right)^{n-r}\left(\frac{1}{6}\right)^{r}$

HE3
ii) Probability of an odd number of sixes
$=P(1)+P(3)+P(5)+\ldots$
$=\binom{n}{1}\left(\frac{5}{6}\right)^{n-1}\left(\frac{1}{6}\right)+\binom{n}{3}\left(\frac{5}{6}\right)^{n-3}\left(\frac{1}{6}\right)^{3}+.$.
$=\frac{1}{2}\left[\left(\frac{5}{6}+\frac{1}{6}\right)^{n}-\left(\frac{5}{6}-\frac{1}{6}\right)^{n}\right], \quad$ from $\left.b\right)$
$=\frac{1}{2}\left[1-\left(\frac{2}{3}\right)^{n}\right]$

HE7
$A(-3,7) \quad B(1,6)$
$-1: 2$
P has coordinates
$\left(\frac{(2)(-3)+(-1)(1)}{2-1}, \frac{(2)(7)+(-1)(6)}{2-1}\right)$
$=(-7,8)$

HE7
e)

We are given $\frac{d r}{d t}=-8$ and we wish to find $\frac{d V}{d t}$

$$
V=\frac{4}{3} \pi r^{3}
$$

$$
\frac{d V}{d r}=4 \pi r^{2}
$$

$\therefore \frac{d V}{d t}=\frac{d V}{d r} \times \frac{d r}{d t}$

$$
=4 \pi r^{2}(-8)
$$

$$
=-32 \pi r^{2}
$$

and when $r=100$
$\frac{d V}{d t}=-32 \pi(100)^{2}$
$=-320000 \pi \mathrm{~mm}^{3} / \mathrm{s}$

2 marks: complete correct solution

1 mark: substantial work that could lead to a correct solution

2 marks: complete correct solution

1 mark: for substantial work that could lead to a correct solution

1 mark: for x coordinate

1 mark: for y coordinate

3 marks: complete correct solution

2 marks: for finding

$$
\therefore \frac{d V}{d t}=\frac{d V}{d r} \times \frac{d r}{d t}
$$

$$
=4 \pi r^{2}(-8)
$$

1 mark: for finding $\frac{d V}{d r}=4 \pi r^{2}$

Year 12 Mathematics Extension 1 Trial 2019Question No. 14		
PE2 us PE3 sol geometry	Outcomes Addressed in this Question multi-step deductive reasoning in a variety of contexts es problems involving permutations and combinations, inequa and parametric representations	lities, polynomials, circle
Outcome	Solutions	Marking Guidelines
PE3	(a) (i) $4 C 2 \times 3 C 2=18$	Award 1 mark for the correct solution.
	(ii) $3 \mathrm{Cl} \times 2 \mathrm{Cl}=6$ (b) (i)	Award 1 mark for the correct solution.
PE2	Given $B C=C D$ $\triangle B C D$ is Isosceles triangle (two equal sides in a triangle) $\angle D B C=\angle B D C=\alpha$ (angles opposite equal sides in an Isosceles triangle are equal) $\angle D C R=2 \alpha$ (exterior angle equals to the sum of interior opposite angles)	Award 1 mark for the correct solution.
PE2	(ii) $\angle B A D \therefore=\angle D C R$ (exterior angle equals to the opposite interior angle in cyclic quadrilateral $B A D C$) $\therefore \angle B A D=2 \alpha$ $\because A O \text { bisects } \angle B A D$ $\angle O A D=\alpha$	Award 1 mark for the correct solution.
PE2	(iii) $\angle T A O=90^{\circ}$ (angle between the tangent an	Award 3 marks for the correct answer.
	at the point of contact) $\angle T A D=90^{\circ}-\alpha$ (adjacent anlge sum) $\angle A B D=90^{\circ}-\alpha$ (Alternate Segment Theorem) $\angle A B C=\angle A B D+\angle D B C=90^{6}-\alpha+\alpha=90^{\circ}$ (c) $\alpha+\beta+\gamma=-\frac{8}{3}$	Award 2 mark for substantial progress towards the correct solution. Award 1 mark for some progress towards the correct solution.
PE3	$\begin{aligned} & \alpha \beta+\beta \gamma+\alpha \gamma=\frac{0}{3}=0 \\ & \alpha \beta \gamma=-\left(\frac{-1}{3}\right)=\frac{1}{3} \end{aligned}$	Award 3 marks for the correct answer.
	$\left(\alpha+\frac{1}{\beta}\right)\left(\beta+\frac{1}{\gamma}\right)\left(\gamma+\frac{1}{\alpha}\right)$	Award 2 mark for substantial progress towards the correct solution.
	$\begin{aligned} & =\left(\alpha \beta+\frac{\alpha}{\gamma}+1+\frac{1}{\beta \gamma}\right)\left(\gamma+\frac{1}{\alpha}\right) \\ & =\alpha \beta \gamma+\beta+\alpha+\frac{1}{\gamma}+\gamma+\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\alpha \beta \gamma} \end{aligned}$	Award 1 mark for some progress towards the correct solution.

Q1 B

- -96
$\sin ^{2}(x)=\frac{1}{2}(1-\cos (2 x)) \quad$ (rearranging $\left.\cos 2 x=1-2 \sin ^{2} x\right)$
$\int 2 \sin ^{2} x d x$
$=\int 2\left(\frac{1}{2}(1-\cos (2 x))\right.$
$=\int(1-\cos (2 x)) d x$
$=\int 1 d x-\int \cos (2 x) d x$
$=x-\frac{1}{2} \sin 2 x+c$

Q2. D
$\cos \theta=-\frac{1}{2}$
$=\cdots, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{8 \pi}{3}, \frac{10 \pi}{3} \ldots$

$$
\text { or } \begin{aligned}
\theta=2 \pi n \pm \cos ^{-1}\left(-\frac{1}{2}\right) & =2 \pi n \pm\left(\pi-\cos ^{-1}\left(\frac{1}{2}\right)\right) \\
& =2 \pi n \pm\left(\pi-\frac{\pi}{3}\right)
\end{aligned}
$$

$\therefore 2 n \pi \pm \frac{2 \pi}{3}$, where n is an integer

Q3. B

Q4D
$y=x^{3}+2$
swap the varibles (x and y)
$x=y^{3}+2$
Solve the equation for y
$y^{3}=x-2$
$y=\sqrt[3]{x-2}$

Q5. A
Binomial expansion of $(a+y)^{4}$
$=a^{4}+4 a^{3} y+6 a^{2} y^{2}+4 a y^{3}+y^{3}$
When $a=2 x, y=3$
$=16 x^{4}-96 x^{3}+216 x^{2}-216 x+81$

Q6C
$\mathrm{P}(2 \mathrm{~F})=5 \mathrm{C} 2(0.48)^{2}(0.52)^{3}$
$=$ combinate $2 F 3 M \times 2$ Female $\times 3$ males

Q7 B
Sub in $x=1$ to binomial expansion given
$\therefore \sum_{r=0}^{n} n C r=2^{n}$

Q8. A
$P(-2)=-8+4 a+7=11$
$4 a-1=11$
$a=3$

