

Year 12 Mathematics Extension 1 HSC Trial Examination 2011

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided on the back page of this question paper
- All necessary working should be shown in every question
- **Note:** Any time you have remaining should be spent revising your answers.

Total marks – 84

- Attempt Questions 1 7
- All questions are of equal value
- Start each question in a new writing booklet
- Write your examination number on the front cover of each booklet to be handed in
- If you do not attempt a question, submit a blank booklet marked with your examination number and "N/A" on the front cover

DO NOT REMOVE THIS PAPER FROM THE EXAMINATION ROOM

BLANK PAGE

Total Marks – 84 Attempt Questions 1 - 7 All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Que	estion 1 (12 marks)	Marks
(a)	Factorise completely $x^4 + 2x^3 - 2x^2 - 4x$	2
(b)	Find the exact value of $\cos 15^\circ$.	2
(c)	The interval joining the points $A(9,12)$ and $B(1,b)$ is divided internally in the ratio 2:1 by the point $(a,0)$. Find a and b .	3

(d) Solve
$$\frac{3}{x-2} \le 4$$

(e) Find
$$\int \frac{dx}{\sqrt{36-x^2}}$$
 2

International Grammar School

/

Question 2(12 marks)Use a separate writing bookletMarks

- (a) If α , β and γ are the roots of $x^3 4x + 1 = 0$ find:
 - (i) $\alpha + \beta + \gamma$ 1
 - (ii) $\alpha\beta\gamma$ 1

(iii)
$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$$
 1

- (b) (i) Write $\sin x \sqrt{3} \cos x$ in the form $R\sin(x \alpha)$, where R > 0 and **2** where $0 \le \alpha \le \frac{\pi}{2}$.
 - (ii) Hence, or otherwise solve the equation $\sin x \sqrt{3} \cos x = 1$ for **2** $0 \le x \le 2\pi$
- (c) $P(2at, at^2)$ is any point on the parabola $x^2 = 4ay$. The line k is parallel to the tangent at P and passes through the focus S of the parabola.

(i)	Show that the equation of the line k is $y = tx + a$	2
(ii)	The line k intersects the x-axis at the point Q . Find the coordinates of the midpoint, M , of the interval QS .	2
(iii)	Find the equation of the locus of <i>M</i> .	1

Ques	tion 3	(12 Marks) Use a separate writing booklet	Marks
(a)	Let f	$(x) = e^{x+2}$	
	(i)	Explain why $f(x)$ has an inverse function.	1
	(ii)	Find the inverse function $f^{-1}(x)$	1
	(iii)	Sketch the graphs of $y = f(x)$ and $y = f^{-1}(x)$ on the same number plane. Show all the important features.	2
(b)	(i)	Show that $e^x - 2x^2 = 0$ has a root in the interval $2 < x < 3$.	2
	(ii)	One approximate solution of the equation $e^x - 2x^2 = 0$ is $x = 2.5$. Use one application of Newton's method to find another approximation to this solution. Give your answer correct to three decimal places.	2
(c)	(i)	Prove that $\frac{\sec^2 x}{\tan x} = \frac{\csc x}{\cos x}$	2
	(ii)	Use the substitution $u = \tan x$ to evaluate in exact form $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\cos ecx}{\cos x} dx$	2

Que	stion 4	(12 Marks) Use a separate writing booklet	Marks
(a)	rema	polynomial $P(x) = x^3 + ax + b$ has $(x - 5)$ as a factor and has a ninder of -60 when divided by $(x + 5)$. the values of a and b .	3
(b)		the method of mathematical induction to prove that $4^n + 8$ is ble by 6 for $n \ge 1$.	3
(c)	(i)	Sketch the graph of $y = 3\sin^{-1}\frac{x}{2}$, stating its domain and range.	3
	(ii)	Show that the area of the region bounded by $y = 3\sin^{-1}\frac{x}{2}$, the	3

x axis and the line x = 1 is given by $A = \frac{\pi}{2} + 3\sqrt{3} - 6 units^2$.

Que	stion 5	(12 Marks) Use a separate writing booklet	Marks
(a)		where $x = 0$ and $y = 0$ to the nearest degree.	2
(b)	•	rticle is moving in a straight line such that its position at a time t en by the equation $x = 2\cos\left(3t + \frac{\pi}{3}\right)$	
	(i)	Show that it is undergoing simple harmonic motion.	2
	(ii)	State the period and amplitude of motion.	2
(c)	refrig of wa of the is exp when	ttle of water has a temperature of 20°C and is placed in a gerator whose temperature is 2°C. The cooling rate of the bottle ater is proportional to the difference between the temperature e refrigerator and the temperature <i>T</i> of the bottle of water. This pressed by the equation: $\frac{dT}{dt} = -k(T-2)$ re <i>k</i> is a constant of proportionality and <i>t</i> is the number of ites after the bottle of water is placed in the refrigerator.	
	(i)	Show that $T = 2 + Ae^{-kt}$ satisfies the equation.	1
	(ii)	After 20 minutes in the refrigerator the temperature of the bottle of water is 10° C. What is the value of A and k in the above equation?	3
	(iii)	How long will it take for the bottle of water to cool down to 5°C? Give your answer to the nearest minute.	2

Question 6 (12 Marks) Use a separate writing booklet

Marks

1

2

(a) In a word game, Carlo draws the 8 letter tiles shown below which he must arrange to make "words".

- (i) In how many distinct ways can Carlo arrange the eight tiles **1** in a line to make eight-letter "words"?
- (ii) Carlo randomly chooses four tiles from the eight. How many distinct ways can Carlo arrange the four tiles in a line to make four-letter "words"?
- (iii) Carlo randomly chooses four tiles from his 8 to swap with a second player. How many different groups of four tiles (in no particular order) can Carlo choose?
- (iv) After swapping with the second player Carlo has the eight tiles below. In how many distinct ways can Carlo arrange these eight tiles in a line to make eight-letter "words"?

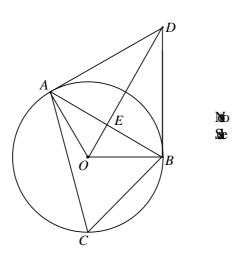
(v) In how many ways can the 8 tiles be arranged so that the "word" formed would start and end with M?

(b) Evaluate $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \cos^2 2x \, dx \text{ as an exact value.}$

Question 6 continues on the next page.

Question 6 continued.

(c) The diagram shows points *A*, *B* and *C* on a circle centre *O*. Tangents are drawn from *A* and *B* which meet at *D*. *O* is joined to *D* and the interval *OD* intersects *AB* at *E*.



Copy or trace the diagram into your workbook.

(i)	Prove that $\angle AOB = 2 \times \angle DAB$.	2
(ii)	Prove that <i>AOBD</i> is a cyclic quadrilateral.	1
(iii)	Prove that <i>E</i> is the midpoint of <i>AB</i> .	2

Marks

Question 7 (12 Marks) Use a separate writing booklet

(a) A ball is thrown from the origin *O* with a velocity *V* and angle of elevation of θ , where $\theta \neq \frac{\pi}{2}$. You may assume that

$$x = Vt \cos \theta$$
 and $y = -\frac{1}{2}gt^2 + Vt \sin \theta$

where *x* and *y* are the horizontal and vertical displacements of the ball in metres from the *O* at time *t* seconds after being thrown.

- (i) Let $h = \frac{V^2}{2g}$ and show the equation of flight of the ball is $y = x \tan \theta - \frac{1}{4h} x^2 (1 + \tan^2 \theta)$
- (ii) The point of intersection when two balls are thrown with an angle of elevation of θ_1 and θ_2 is (a,b). Show that $a^2 < 4h(h-b)$.

(b) (i) Find all the solutions to the inequality
$$\frac{x}{1-x^2} \ge 0$$
 3

(ii) Show that
$$\tan x \sec x = \frac{\sin x}{1 - \sin^2 x}$$
 1

(iii) Find all the solutions to $\tan x \sec x \ge 0$ when $0 \le x \le 2\pi$ **2**

END OF EXAMINATION

Marks

TABLE OF STANDARD INTEGRALS

 $\int x^n dx$ $=\frac{1}{n+1}x^{n+1}, n \neq -1; x \neq 0, \text{ if } n < 0$ $\int \frac{1}{x} dx$ $=\ln x, x>0$ $=\frac{1}{a}e^{ax}, a \neq 0$ $\int e^{ax} dx$ $\int \cos ax \, dx \qquad \qquad = \frac{1}{a} \sin ax, \ a \neq 0$ $\int \sin ax \, dx \qquad = -\frac{1}{a} \cos ax, \ a \neq 0$ $\int \sec^2 ax \, dx \qquad \qquad = \frac{1}{a} \tan ax, \ a \neq 0$ $\int \sec ax \tan ax \, dx \qquad = \frac{1}{a} \sec ax, \ a \neq 0$ $\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$ $\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$ $\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left(x + \sqrt{x^2 - a^2}\right), \ x > a > 0$ $\int \frac{1}{\sqrt{x^2 + a^2}} dx \qquad = \ln\left(x + \sqrt{x^2 + a^2}\right)$

NOTE: $\ln x = \log_e x, x > 0$

	Solution	Criteria
1(a)	$x^{4} + 2x^{3} - 2x^{2} - 4x = x^{3}(x+2) - 2x(x+2)$ $= (x^{3} - 2x)(x+2)$ $= x(x^{2} - 2)(x+2)$	2 Marks: Correct answer. 1 Mark: Finds one factor.
1(b)	$\cos(45-30) = \cos 45 \cos 30 + \sin 45 \sin 30$ $= \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \times \frac{1}{2}$ $= \frac{1}{\sqrt{2}} (\frac{\sqrt{3}}{2} + \frac{1}{2})$ $= \frac{\sqrt{3}+1}{2\sqrt{2}} = \frac{\sqrt{6} + \sqrt{2}}{4}$	2 Marks: Correct answer. 1 Mark: Uses difference formula or states one correct exact ratio.
1(c)	$x = \frac{mx_2 + nx_1}{m + n} \qquad y = \frac{my_2 + ny_1}{m + n}$ $a = \frac{2 \times 1 + 1 \times 9}{2 + 1} \qquad 0 = \frac{2 \times b + 1 \times 12}{2 + 1}$ $= \frac{11}{3} \qquad 0 = 2b + 12$ $b = -6$	3 Marks: Correct answer. 2 Marks: Correctly finds either <i>a</i> or <i>b</i> . 1 mark: Uses ratio division formula.
1(d)	$(x-2)^{2} \times \frac{3}{(x-2)} \le 4 \times (x-2)^{2}$ $(x-2)3 \le 4(x-2)^{2} x \ne 2$ $(x-2)(3-4x+8) \le 0$ $(x-2)(11-4x) \le 0$ $x < 2 \text{ and } x \ge \frac{11}{4}$	3 Marks: Correct answer. 2 Marks: Finds one correct solution. 1 Mark: Multiplies both sides of the inequality by $(x-2)^2$.
1(e)	$\int \frac{dx}{\sqrt{36 - x^2}} = \sin^{-1}\frac{x}{6} + C$	2 Marks: Correct answer. 1 Mark: Recognises inverse sine function.

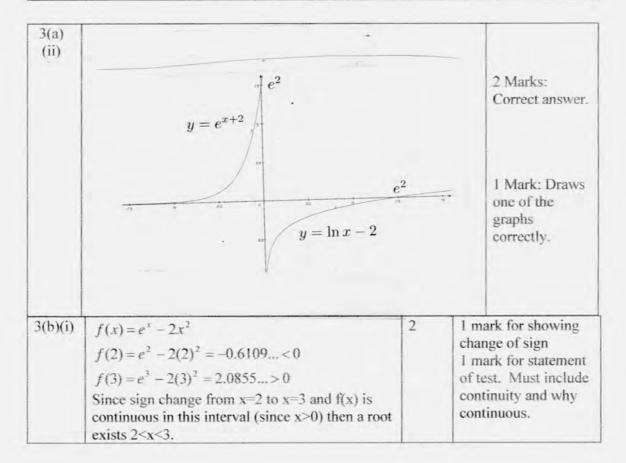
HSC Mathematics Extension 1 Yearly Examination

	QUESTION 2	
2(a) (i)	$x^{3} + 0x^{2} - 4x + 1 = 0$ $\alpha + \beta + \chi = -\frac{b}{a} = -\frac{0}{1} = 0$	1 Mark: Correct answer.
2(a) (ii)	$\alpha\beta\chi = -\frac{d}{a} = -\frac{1}{1} = -1$	1 Mark: Correct answer.
2(a) (iii)	$\alpha\beta + \alpha\chi + \beta\chi = \frac{c}{a} = \frac{-4}{1} = -4$ $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\chi} = \frac{\alpha\beta + \alpha\chi + \beta\chi}{\alpha\beta\chi}$ $= \frac{-4}{-1}$ $= 4$	1 Mark: Correct answer.
b)(i)	If $\sin x - \sqrt{3} \cos x = R\sin(x - \alpha)$ then $R = \sqrt{1^2 + (\sqrt{3})^2}$ and $\tan \alpha = \sqrt{3}$ $\therefore R = 2$ and $\alpha = \frac{\pi}{3}$ So $\sin x - \sqrt{3} \cos x = 2 \sin\left(x - \frac{\pi}{3}\right)$	1 mark for R and 1 mark for α
b) (ii)	$sin x - \sqrt{3} cosx = 1$ $2 sin\left(x - \frac{\pi}{3}\right) = 1$ $sin\left(x - \frac{\pi}{3}\right) = \frac{1}{2}$ $x - \frac{\pi}{3} = \frac{\pi}{6}, \frac{5\pi}{6}$ $x = \frac{\pi}{2}, \frac{7\pi}{6}$	1 for writing in form $sin\left(x - \frac{\pi}{3}\right) = \frac{1}{2}$ 1 for solving for x

/

2(c)	To find the gradient of the tangent	
(i)	To find the gradient of the tangent	2 Marks: Correct answer.
	$y = \frac{1}{4a}x^2$	Contect answer.
	$\frac{dy}{dx} = \frac{1}{2a}x$	
	At $P(2at, at^2)$ $\frac{dy}{dt} = \frac{1}{2a} \times 2at = t$	1 Mark: Finds
	Line k has a gradient of t and passes through $S(0,a)$	or states the
		gradient of the
	$y - y_1 = m(x - x_1)$	tangent at <i>P</i> .
	y - a = t(x - 0)	
	y = tx + a	
2(c)	To find the coordinates of Q	2 Marks:
(ii)	Substitute $y = 0$ into $y = ty + a$ then $y = -\frac{a}{a}$ on $O(-\frac{a}{a})$	Correct answer.
	Substitute $y = 0$ into $y = tx + a$ then $x = -\frac{a}{t}$ or $Q(-\frac{a}{t}, 0)$	
	To find the coordinates of M	
	$x = \frac{x_1 + x_2}{2} \qquad \qquad y = \frac{y_1 + y_2}{2}$	
	$-\frac{a}{t}+0 = \frac{0+a}{2}$	
	$=\frac{t}{2}$	1 Mark: Finds
	$\frac{2}{a} = \frac{a}{2}$	the coordinates
	$=-\frac{a}{2t}$ 2	of <i>Q</i> .
	2t	
	$M(-\frac{a}{2t},\frac{a}{2})$	
2(c)	To find the equation of the locus eliminate <i>t</i> . However <i>y</i> is	1 Mark:
(iii)	independent of t.	Correct answer.
	$y = \frac{a}{2}$	
	⁵ 2	

	QUESTION 3	
3(a)(i)	$f'(x) = e^{x+2} > 0$ for all x, ie f(x) is monotonic increasing for all x and hence an inverse function exists Or for every value of y there is only one value of x, ie there is a 1-1 correspondance between y and x	1 mark for adequate explanation. Note that 'passes the horizontal line test" is not adequate without further explanation of what this means.
3(a) (ii)	$f(x) = e^{x+2} \text{ or } y = e^{x+2}$ Inverse function is $x = e^{y+2}$ $\log_e x = y+2$ $y = \log_e x-2$ $f^{-1}(x) = \log_e \dot{x} - 2$	1 Mark: Correc answer.



.

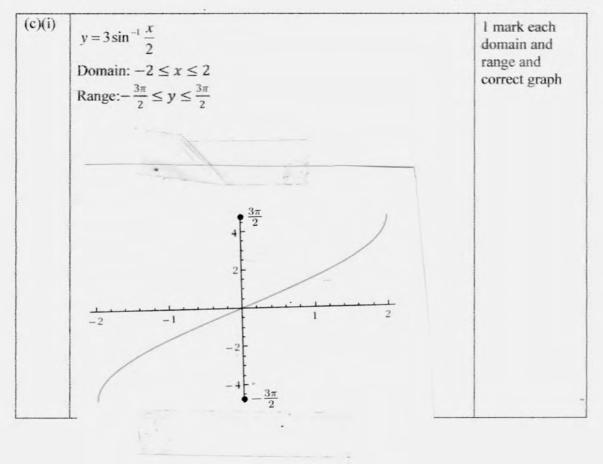
3(b)(ii)	Root of $y = e^{x} - 2x^{2}$ using $x = 2.5$ $f(x) = e^{x} - 2x^{2}$	2	1 for values of $f(2.5)$ and $f'(2.5)$
	$f'(x) = e^x - 4x$		
	f(2.5) = -0.318		
	f'(2.5) = 2.182		
	$x_1 = 2.5 - \frac{f(2.5)}{f'(2.5)}$		
	$= 2.5 - \frac{-0.318}{2.182}$		1 use of N M to obtain answer.
	= 2.5 - (-0.145)		
	= 2.645		

3(c) (i)	$LHS = \frac{\sec^2 x}{\tan x}$	2 Marks: Correct answer.
	$= \frac{1}{\cos^2 x} \div \tan x$ $= \frac{1}{\cos^2 x} \times \frac{\cos x}{\sin x}$ $= \frac{1}{\cos x} \times \csc x$ $= \frac{\csc x}{\cos x}$ $= \text{RHS}$	1 Mark: Makes significant progress towards the solution.
3(c) (ii)	$u = \tan x \qquad u = \tan \frac{\pi}{3} = \sqrt{3} \qquad u = \tan \frac{\pi}{6} = \frac{1}{\sqrt{3}}$ $du = \sec^2 x dx$	2 Marks: Correct answer.
	$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\cos ecx}{\cos x} dx = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sec^2 x}{\tan x} dx$ = $\int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{1}{u} du$ = $[\log_e u]_{\frac{1}{\sqrt{3}}}^{\sqrt{3}}$ = $\log_e \sqrt{3} - \log_e \frac{1}{\sqrt{3}}$ = $\log_e 3$	1 Mark: Recognises the use of part (i) or makes progress in the substitution.

QUESTI	QUESTION 4					
	$p(x) = x^{3} + ax + b \text{ has } (x - 5) \text{ as one of its factors}$ $\therefore \qquad p(5) = 0$ 125 + 5a + b = 0	3	1 mark for use of factor theorem			
s s	Remainder = -60 when divided by $(x + 5)$. p(-5) = -60 -125 - 5a + b = -60 Solve simultaneously to find <i>a</i> and <i>b</i> . 5a + b + 125 = 0 ①		1 mark for use of remainder theorem			
	-5a + b - 65 = 0 2 2b + 60 = 0 0 + 2 2b = -60 b = -30		1 mark for solving simultaneously			
5	5a - 30 + 125 = 0 5a = -95 a = -19		Part marks as appropriate if other approaches taken			

b)	Step 1 show true of $n = 1$	4	
	$4^1 + 8 = 12$		1 mark for
	12 is divisible by 6		step 1
	\therefore true for $n = 1$		
	Step 2 Assume true for $n = k$		
	Ie $4^k + 8 = 6p$ (p is a positive integer)		
	Step 3: hence prove true for $n = k + 1$		
	$4^{k+1} = 6q$ (q is a positive integer)		2 marks for step 3 Or 1 mark for
	$LHS = 4^{k+1} + 8$		significant progress or a
	$= 4(4^k) + 8$		simple error
	$= 4(4^k + 8 - 8) + 8$		in step 3
	$= 4(4^k + 8) - 32 + 8$		
	= 4(6p) - 24		
	= 24p - 24		
	= 6(4p-4)		
	= 6q (q is positive integer > 1 since p > 1)		
	= RHS		
	Conclusion Using the principle of induction Since true for $n = 1$, and since if true for $n = k$ is also		
	true for $n = k + 1$, by induction is true for all $n \ge 1$.		

HSC Mathematics Extension 1



.

c)(ii) Atea under
$$y = 38m^{-1}\frac{x}{2}$$
 from $z=0$ to $z=1$.
 $z=0$ $y=0$
 $x=1$ $y=38m^{-1}(\frac{1}{2})$ $s^{\frac{1}{2}}\frac{z}{2}$
 $=3.\frac{\pi}{4}$
 $=\frac{\pi}{4}$.
Underse of $y=38m^{-1}\frac{x}{4}$ is $y=28m\frac{x}{3}$.
(nuerse of $y=38m^{-1}\frac{x}{4}$ is $y=28m\frac{x}{3}$.
 $1 \qquad 0$ has needed is the
source as rectangle
 $1 \qquad x \qquad y = 28m\frac{x}{3}$.
 $1 \qquad 0$ has needed is the
source as rectangle
 $1 \qquad x \qquad y = 28m\frac{x}{3}$.
 $1 \qquad x \qquad y = 28m\frac{x}{$

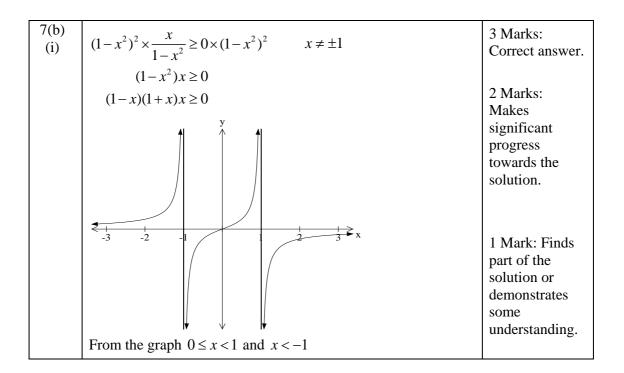
	QUESTION 5		
5(a)	$\begin{aligned} x - 3y - 2 &= 0 & x - 2y = 0 \\ 3y &= x - 2 & 2y = x \\ y &= \frac{x}{3} - \frac{2}{3} & y = \frac{x}{2} \end{aligned}$ Gradient $= \frac{1}{3}$ Gradient $= \frac{1}{2}$. $tan \theta = \left \frac{m_1 - m_2}{1 + m_1 m_2} \right $ $= \left \frac{\frac{1}{2} - \frac{1}{3}}{1 + \frac{1}{2} \cdot \frac{1}{3}} \right $ $= \left \frac{\frac{1}{6}}{\frac{7}{6}} \right $ $= \frac{1}{7}$ $\theta = tan^{-1} \left(\frac{1}{7} \right)$ $= 8^{\circ} \text{ (nearest degree)}$	2	1 for gradients of the two lines 1 for evaluating the angle
b) i)	$x = 2 \cos\left(3t + \frac{\pi}{3}\right)$ $\dot{x} = -2 \sin\left(3t + \frac{\pi}{3}\right) \cdot 3$ $\dot{x} = -6 \sin\left(3t + \frac{\pi}{3}\right)$ $\ddot{x} = -6 \cos\left(3t + \frac{\pi}{3}\right) \cdot 3$ $= -18 \cos\left(3t + \frac{\pi}{3}\right)$ $\ddot{x} = -9\left(2\cos\left(3t + \frac{\pi}{3}\right)\right)$ $\ddot{x} = -3^{2} x$ which is of the form $\ddot{x} = -n^{2} x$ $\therefore \text{ particle is in SHM}$	2	1 mark for correct differentiations 1 mark for writing in the correct form and stating a conclusion
ii)	Period $=\frac{2\pi}{n}$ $=\frac{2\pi}{3}$	1	
	3 Amplitude =2 units	1	

5(c) (i)	$T = 2 + Ae^{-kt} \qquad \text{or } Ae^{-kt} = T - 2$	1 Mark: Correct answer.
	$\frac{dT}{dt} = -kAe^{-kt}$	Confect answer.
	=-k(T-2)	
5(b)	Initially $t = 0$ and $T = 20$	3 Marks:
(ii)	$T = 2 + Ae^{-kt}$	Correct answer.
	$20 = 2 + Ae^{-k \times 0}$	
	A = 18	
	Also $t = 20$ and $T = 10$	2 Marks: Finds the value of A
	$T = 2 + 18e^{-kt}$	and an
	$10 = 2 + 18e^{-k \times 20}$	expression for <i>k</i> .
	$e^{-k\times 20} = \frac{8}{18}$	к.
	$-20k = \log_e \frac{4}{9}$	1 Mark: Finds
	$k = -\frac{1}{20}\log_e \frac{4}{9}$	the value of <i>A</i> .
	$=\frac{1}{20}\log_e\frac{9}{4}$	
	= 0.04054651081	
5(b)	We need to find <i>t</i> when $T = 5$	2 Marks:
(iii)	$T = 2 + 18e^{-kt}$	Correct answer.
	$5 = 2 + 18e^{-kt}$	
	$e^{-kt} = \frac{3}{18}$	
	$-kt = \log_e \frac{1}{6}$	1 Mark: Makes
	$t = \frac{1}{k} \log_e 6$	some progress towards the
	$=20\frac{\log_e 6}{\log_e \frac{9}{4}}$	solution.
	= 44.19022583	
	It will take about 44 minutes for the bottle to cool to 5°C?	

	QUESTION 6		
6 a)	Ways of arranging 8 different tiles = 8!	1	
(i)	= 40320	1	
(ii)	Ways of arranging 4 chosen from $8 = {}^{8}\mathbf{P}_{4}$ = 1680	1	
(iii)	Ways of choosing 4 from $8 = {}^{8}C_{4}$ = 70	1	
(iv)	Ways of arranging 8 different tiles with 2 M's and 3 I's = $\frac{8!}{3! \times 2!} = 3360$	1	
(v)	With M's placed at the ends, leaves 6 to arrange, with 3 I's. Ways of arranging 6 different tiles with 3 I's $= \frac{6!}{3!} = 120$	1	
6(b)	$\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \cos^2 2x dx = \frac{1}{2} \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} 1 + \cos 4x dx$ $= \frac{1}{2} \left[x + \frac{1}{4} \sin 4x \right]_{\frac{\pi}{3}}^{\frac{\pi}{2}}$ $= \left(\frac{\pi}{4} + \frac{1}{8} \sin 2\pi \right) - \left(\frac{\pi}{6} + \frac{1}{8} \sin \frac{4\pi}{3} \right)$	2	1 mark for obtaining integral
	$= \frac{\pi}{4} + \frac{1}{8} \times 0 - \frac{\pi}{6} - \frac{1}{8} \times \frac{\sqrt{3}}{2}$ $= \frac{\pi}{12} - \frac{\sqrt{3}}{16}$ (= 0.154)		1 mark for correct substitution
c) (i)		2	2 marks for complete proof. 1 mark if some relevant facts are stated or proof is
	Aim prove $\angle AOB = 2 \times \angle DAB$		incomplete
	$\angle DAB = \angle ACB$ (\angle bet tangent & chord = \angle in alt segment) $\angle AOB = 2 \times \angle ACB$ (\angle at centre is twice \angle at circ on same are $\therefore \angle AOB = 2 \times \angle DAB$ (since $\angle DAB = \angle ACB$)		

(ii)	$\angle DAO = \angle DBO = 90^{\circ}$ (tangent perpendicular to rad $\therefore \angle DAO + \angle DBO = 180^{\circ}$ (sum of two right angles) \therefore opposite angles of <i>AOBD</i> are supplementary $\therefore AOBD$ is a cyclic quadrilateral.	1	1 mark as long as statement that opposite angles are supplement ary, and why.
(iii)	 Aim: Prove that <i>E</i> is the midpoint of <i>AB</i>. <i>AO</i> = <i>BO</i> (equal radii) <i>AD</i> = <i>BD</i> (tangents from an external point are equal in length.) ∴ <i>AOBD</i> is a kite ∴ <i>OD</i> bisects AB (symmetry of a kite) ∴ E is midpoint of AB. 	2	Can also be done by isosceles triangles 2 marks for complete proof. 1 mark if some relevant facts are stated or proof is incomplete

	QUESTION 7	
7(a) (i)	$x = Vt \cos \theta \qquad (1)$ $y = -\frac{1}{2}gt^{2} + Vt \sin \theta \qquad (2)$	3 Marks: Correct answer.
	From eqn (1) $t = \frac{x}{V\cos\theta}$ sub into eqn (2) $y = -\frac{1}{2}g(\frac{x}{V\cos\theta})^2 + V(\frac{x}{V\cos\theta})\sin\theta$ $= -\frac{gx^2}{2V^2\cos^2\theta} + \frac{\sin\theta x}{\cos\theta}$	2 Marks: Makes significant progress towards the solution.
	$= -\frac{gx^{2} \sec^{2} \theta}{2V^{2}} + \tan \theta x$ $= -\frac{2gx^{2} \sec^{2} \theta}{4V^{2}} + \tan \theta x$ $= -\frac{x^{2} \sec^{2} \theta}{4h} + \tan \theta x$ Using $h = \frac{V^{2}}{2g}$ $= x \tan \theta - \frac{1}{4h} x^{2} (1 + \tan^{2} \theta)$	1 Mark: Makes t the subject of eqn (1) or equivalent progress.
7(a) (ii)	Now (<i>a</i> , <i>b</i>) satisfies the equation $y = x \tan \theta - \frac{1}{4h} x^2 (1 + \tan^2 \theta)$	3 Marks: Correct answer.
	$b = a \tan \theta - \frac{1}{4h}a^{2}(1 + \tan^{2} \theta)$ $4hb = 4ha \tan \theta - a^{2}(1 + \tan^{2} \theta)$ $(1 + \tan^{2} \theta)a^{2} - 4ha \tan \theta + 4hb = 0$ $a^{2} \tan^{2} \theta - 4ha \tan \theta + 4hb + a^{2} = 0$ Quadratic equation has 2 solutions if the discriminate is greater than zero.	2 Marks: Makes significant progress towards the solution.
	$b^{2} - 4ac > 0$ $(-4ha)^{2} - 4a^{2}(4hb + a^{2}) > 0$ $16h^{2}a^{2} - 16a^{2}hb - 4a^{4} > 0$ $4a^{2}(4h^{2} - 4hb - a^{2}) > 0$ $4h^{2} - 4hb - a^{2} > 0$ $a^{2} < 4h^{2} - 4hb$ $a^{2} < 4h(h - b)$	1 Mark: Substitutes (a,b) into equation of flight and simplifies.



7(c)	LHS = tan x sec x	1 Mark: Correct
(ii)	$= \frac{\sin x}{\cos x} \times \frac{1}{\cos x}$ $= \frac{\sin x}{\cos^2 x}$ $= \frac{\sin x}{1 - \sin^2 x}$ $= RHS$	answer.
7(c) (iii)	Using parts (i) and (ii) $0 \le \sin x < 1$ and $\sin x < -1$ $0 \le x < \frac{\pi}{2}$ No solution Solution also in the second quadrant $0 \le x < \frac{\pi}{2}$ and $\frac{\pi}{2} < x \le \pi$	2 Marks: Correct answer. 1 mark: Makes some progress using parts (i) and (ii).