Year 12
 Mathematics Extension 1 HSC Trial Examination 2014

General Instructions

- Reading time - 5 minutes
- Working time - 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided on the back page of this question paper
- All necessary working should be shown in every question

Note: Any time you have remaining should be spent revising your answers.

Total marks - 70

Section I

10 marks

- Attempt Questions 1-10

Section II

60 marks

- Attempt Questions 11-14
- Start each question in a new writing booklet
- Write your name on the front cover of each booklet to be handed in
- If you do not attempt a question, submit a blank booklet marked with your name and "N/A" on the front cover

Section I

10 marks

Attempt Questions 1 - 10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Question 1 - 10.

1. How many numbers greater than 5000 can be formed with the digits $2,4,5,6$ and 9 if a digit cannot occur more than once in any number?
Hint: The numbers can have 4 or 5 digits.
(A) 72
(B) 120
(C) 144
(D) 192
2.

Find the derivative of $e^{\cos x}$
(A) $e^{\cos x}$
(B) $e^{\sin x}$
(C) $-\sin x e^{\cos x}$
(D) $\sin x e^{\cos x}$
3. The expansion needed to show $\sin 75^{\circ}=\frac{\sqrt{6}+\sqrt{2}}{4}$ is:
(A) $\sin \left(45^{\circ}+30^{\circ}\right)=\sin 45^{\circ} \cos 30^{\circ}+\cos 45^{\circ} \sin 30^{\circ}$
(B) $\sin \left(45^{\circ}+30^{\circ}\right)=\cos 45^{\circ} \cos 30^{\circ}+\sin 45^{\circ} \sin 30^{\circ}$
(C) $\sin \left(100^{\circ}-25^{\circ}\right)=\sin 100^{\circ} \cos 25^{\circ}+\cos 100^{\circ} \sin 25^{\circ}$
(D) $\tan \left(45^{\circ}+30^{\circ}\right)=\frac{\tan 45^{\circ} \tan 30^{\circ}}{1+\tan 45^{\circ} \tan 30^{\circ}}$
4. The Cartesian equation of the tangent to the parabola $x=t-3, y=t^{2}+2$ at $t=-3$ is:
(A) $6 x+y+25=0$
(B) $6 x+y+36=0$
(C) $6 x-y-25=0$
(D) $6 x+2 y-25=0$
5. A particle moves in a straight line. Its position at any time t is given by

$$
x=3 \cos 2 t+4 \sin 2 t .
$$

The acceleration in terms of x is:
(A) $\ddot{x}=-3 x$
(B) $\ddot{x}=-4 x$
(C) $\ddot{x}=-16 x^{2}$
(D) $\ddot{x}=-6 \cos 2 x+8 \sin 2 x$
6. $\int \frac{d x}{\sqrt{1-3 x^{2}}}=$
(A) $\left(\sin ^{-1} 3 x\right)+C$
(B) $\left(\tan ^{-1} 3 x\right)+C$
(C) $\frac{1}{\sqrt{3}}\left(\tan ^{-1} \sqrt{3} x\right)+C$
(D) $\frac{1}{\sqrt{3}}\left(\sin ^{-1} \sqrt{3} x\right)+C$
7. What is the domain and range of $y=\frac{1}{2} \cos ^{-1}\left(\frac{x}{2}\right)$?
(A) Domain: $-2 \leq x \leq 2$ Range: $0 \leq y \leq \pi$
(B) Domain: $-1 \leq x \leq 1$ Range: $0 \leq y \leq \pi$
(C) Domain: $-2 \leq x \leq 2$ Range: $0 \leq y \leq \frac{\pi}{2}$
(D) Domain: $-1 \leq x \leq 1$ Range: $0 \leq y \leq \frac{\pi}{2}$
8.

Which of the following is an expression for $\int \frac{x}{\left(2-x^{2}\right)^{3}} d x$?
Use the substitution $u=2-x^{2}$.
(A) $\frac{1}{2\left(2-x^{2}\right)^{2}}+C$
(B) $\frac{1}{4\left(2-x^{2}\right)^{2}}+C$
(C) $\frac{1}{4\left(2-x^{2}\right)^{4}}+C$
(D) $\frac{1}{8\left(2-x^{2}\right)^{4}}+C$
9. Find the acute angle between the lines $y=2 x$ and $x+y-5=0$. Answer correct to the nearest degree.
(A) 18°
(B) 32°
(C) 45°
(D) 72°
10. What are the coordinates of the point that divides the interval joining the points $A(-1,2)$ and $B(3,5)$ externally in the ratio $3: 1$?
(A) $(2.5,4.25)$
(B) $(2.5,6.5)$
(C) $(5,4.25)$
(D) $(5,6.5)$

Section II

60 Marks
 Attempt Questions 11-14.
 Allow about 1 hour 45 minutes for this section.

Answer each question in a separate writing booklet. Extra writing booklets are available. In Questions 11-14, your responses should include relevant mathematics reasoning and/ calculations.

Question 11

(a) What are the roots of the equation $4 x^{3}-4 x^{2}-29 x+15=0$ given that one root is the difference between the other two roots?
(b) Solve for x the inequality $\frac{2 x-5}{x-4} \geq x$.
(c) A class consists of 10 boys and 12 girls. How many ways are there of selecting a committee of 3 boys and 2 girls from this class?
(d) Point A is due south of a hill and the angle of elevation from A to the top of the hill is 35°. Another point B is a bearing 200° from the hill and the angle of elevation from B to the top of the hill is 46°. The distance $A B$ is 220 m .

(i) Express $O A$ and $O B$ in terms of h.
(ii) Calculate the height h of the hill correct to three significant figures.
(e) $A B$ and $A C$ are tangents to a circle. D is a point on the circle such that $\angle B D C=\angle B A C$ and $2 \angle D B C=\angle B A C$.

Show that $D B$ is a diameter.

Question 12 (15 marks) Use a SEPARATE writing booklet
(a)
(i) Show that $3 \sin x \cos x=\frac{3}{2} \sin 2 x$
(ii) Hence or otherwise, find the exact value of $\int_{0}^{\frac{\pi}{2}} 9 \sin ^{2} x \cos ^{2} x d x$.
(b)

The tangent at the point $P\left(2 a p, a p^{2}\right)$ on the parabola $x^{2}=4 a y$ cuts the x-axis at A and the y-axis at B.
(i) Find the coordinates of A and B in terms of P.
(ii) Find the coordinates of M, the midpoint of A and B in terms of P.
(iii) Show that the locus of M is a parabola.
(iv) Find the coordinates of the focus of this parabola and the equation of the directrix.
(c) Greg designs a sky-diving simulator for a video game. He simulates the rate of change of the velocity of the skydivers as they fall by:
$\frac{d V}{d t}=-k(V-P)$, where k and P are constants.
The constant P represents the terminal velocity of the skydiver in the prone position which is $55 \mathrm{~m} / \mathrm{s}$.
(i) Show that $V=P+A e^{-k t}$ is solution of this differential equation.
(ii) Initially the velocity of the skydiver is $0 \mathrm{~m} / \mathrm{s}$ and the velocity after 2 10 seconds is $27 \mathrm{~m} / \mathrm{s}$. Find values for A and k.
(iii) Find the velocity of the skydiver after 17 seconds.
(iv) How long does it take the skydiver to reach a velocity of $50 \mathrm{~m} / \mathrm{s}$?
(d) Factorise $P(x)=x^{3}+3 x^{2}-9 x+5$.

Question 13 (15 marks) Use a SEPARATE writing booklet
(a) Find the exact value of $\sin \left[\cos ^{-1} \frac{2}{3}+\tan ^{-1}\left(-\frac{3}{4}\right)\right]$

2

3
(b) Prove by mathematical induction that
$a+a r+a r^{2}+a r^{3}+\ldots+a r^{n-1}=\frac{a\left(r^{n}-1\right)}{r-1}$
for all a and r, where n is a positive integer.
(c) For the function $f(x)=x^{2}+6 x$:
(i) Find the domain over which $f(x)$ is monotonic increasing.

1
(ii) Find an expression for the inverse function $f^{-1}(x)$ over this restricted domain.
(iii) Sketch the graph of $y=f^{-1}(x)$, and state the domain and range of $y=f^{-1}(x)$.
(d) By expressing $\sin x+\cos x$ in the form $r \sin (x+\alpha)$, solve the equation

4 $\sin x+\cos x=1$ for $0 \leq x \leq 2 \pi$.

Question 14 (15 marks) Use a SEPARATE writing booklet
(a) State the domain and range of $y=2 \sin ^{-1}(3 x+2)$ and hence sketch

3 $y=2 \sin ^{-1}(3 x+2)$.
(b) Find the area bounded by the curve $y=\frac{1}{9+x^{2}}$, the x axis and the lines $x=0$ and $x=\sqrt{3}$.
(c)

The diagram above shows a golf ball in the middle of a 1 metre deep bunker and 4 metres from the edge of the green at G. The ball is hit with an initial speed of $12 \mathrm{~m} / \mathrm{s}$ at an angle of elevation α. Putting the origin at O, the horizontal and vertical equations of motions are:

$$
x=12 t \cos \alpha \quad y=-5 t^{2}+12 t \sin \alpha-1
$$

(You are NOT required to prove these equations)
(i) Find the maximum height the ball reaches above G when $\alpha=30^{\circ}$
(ii) Find the range of values α may take so that the ball lands on the green at G or beyond. Give your answers to the nearest degree.
(d) A water trough has a vertical cross section in the shape of an equilateral triangle as shown in the diagram. It is initially empty and is being filled with water at the rate of 4 cubic metres per hour.

(i) By considering an equilateral triangle with side length x and perpendicular height D, show that $D^{2}=\frac{3}{4} x^{2}$.
(ii) Given that the trough is 5 metres high and 21 metres long, use the result in (i) to show that the volume of water in the trough at depth D metres is given by:

$$
V=7 \sqrt{3} D^{2}
$$

(ii) Find the exact rate at which the water level is rising when the water has a depth of 1.5 metres.

End of Examination

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; x \neq 0 \text {, if } n<0 \\
& \int \frac{1}{x} d x \quad=\quad \ln x, \quad x>0 \\
& \int e^{a x} d x \quad=\quad \frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\quad \frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\quad \frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\quad \frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\quad \frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\quad \ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { Note } \ln x=\log _{e} x, \quad x>0
\end{aligned}
$$

