

Year 12 Mathematics Extension 1 HSC Trial Examination 2014

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided on the back page of this question paper
- All necessary working should be shown in every question
- **Note:** Any time you have remaining should be spent revising your answers.

Total marks – 70

Section I

10 marks

• Attempt Questions 1–10

Section II

60 marks

- Attempt Questions 11-14
- Start each question in a new writing booklet
- Write your name on the front cover of each booklet to be handed in
- If you do not attempt a question, submit a blank booklet marked with your name and "N/A" on the front cover

DO NOT REMOVE THIS PAPER FROM THE EXAMINATION ROOM

Section I

10 marks

Attempt Questions 1 – 10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Question 1 - 10.

- 1. How many numbers greater than 5 000 can be formed with the digits 2, 4, 5, 6 and 9 if a digit cannot occur more than once in any number? Hint: The numbers can have 4 or 5 digits.
 - (A) 72
 - (B) 120
 - (C) 144
 - (D) 192

2.

Find the derivative of $e^{\cos x}$

- (A) $e^{\cos x}$
- (B) $e^{\sin x}$
- (C) $-\sin x e^{\cos x}$
- (D) $\sin x e^{\cos x}$
- **3.** The expansion needed to show $\sin 75^\circ = \frac{\sqrt{6} + \sqrt{2}}{4}$ is:
 - (A) $\sin(45^{\circ} + 30^{\circ}) = \sin 45^{\circ} \cos 30^{\circ} + \cos 45^{\circ} \sin 30^{\circ}$
 - (B) $\sin(45^{\circ} + 30^{\circ}) = \cos 45^{\circ} \cos 30^{\circ} + \sin 45^{\circ} \sin 30^{\circ}$
 - (C) $\sin(100^{\circ} 25^{\circ}) = \sin 100^{\circ} \cos 25^{\circ} + \cos 100^{\circ} \sin 25^{\circ}$

(D)
$$\tan(45^{\circ} + 30^{\circ}) = \frac{\tan 45^{\circ} \tan 30^{\circ}}{1 + \tan 45^{\circ} \tan 30^{\circ}}$$

- **4.** The Cartesian equation of the tangent to the parabola x = t 3, $y = t^2 + 2$ at t = -3 is:
 - (A) 6x + y + 25 = 0
 - (B) 6x + y + 36 = 0
 - (C) 6x y 25 = 0
 - (D) 6x + 2y 25 = 0
- **5.** A particle moves in a straight line. Its position at any time *t* is given by

 $x = 3\cos 2t + 4\sin 2t.$

The acceleration in terms of *x* is:

(A)
$$\ddot{x} = -3x$$

(B) $\ddot{x} = -4x$

(C)
$$i = -16x^2$$

(D) $\ddot{x} = -6\cos 2x + 8\sin 2x$

6.
$$\int \frac{dx}{\sqrt{1-3x^2}} =$$
(A) $(\sin^{-1} 3x) + C$
(B) $(\tan^{-1} 3x) + C$
(C) $\frac{1}{\sqrt{3}}(\tan^{-1} \sqrt{3} x) + C$
(D) $\frac{1}{\sqrt{3}}(\sin^{-1} \sqrt{3} x) + C$

7. What is the domain and range of $y = \frac{1}{2}\cos^{-1}(\frac{x}{2})$?

- (A) Domain: $-2 \le x \le 2$ Range: $0 \le y \le \pi$
- (B) Domain: $-1 \le x \le 1$ Range: $0 \le y \le \pi$

(C) Domain:
$$-2 \le x \le 2$$
 Range: $0 \le y \le \frac{\pi}{2}$

- (D) Domain: $-1 \le x \le 1$ Range: $0 \le y \le \frac{\pi}{2}$
- 8. Which of the following is an expression for $\int \frac{x}{(2-x^2)^3} dx$? Use the substitution $u = 2 - x^2$.
 - (A) $\frac{1}{2(2-x^2)^2} + C$
 - (B) $\frac{1}{4(2-x^2)^2} + C$

(C)
$$\frac{1}{4(2-x^2)^4} + C$$

(D)
$$\frac{1}{8(2-x^2)^4} + C$$

- **9.** Find the acute angle between the lines y = 2x and x + y 5 = 0. Answer correct to the nearest degree.
 - (A) 18°
 - (B) 32°
 - (C) 45°
 - (D) 72°

- **10.** What are the coordinates of the point that divides the interval joining the points A(-1,2) and B(3,5) externally in the ratio 3:1?
 - (A) (2.5, 4.25)
 - (B) (2.5, 6.5)
 - (C) (5,4.25)
 - (D) (5,6.5)

Section II

60 Marks Attempt Questions 11 - 14. Allow about 1 hour 45 minutes for this section.

Answer each question in a separate writing booklet. Extra writing booklets are available. In Questions 11 - 14, your responses should include relevant mathematics reasoning and/ calculations.

Question 11				
(a)	What are the roots of the equation $4x^3 - 4x^2 - 29x + 15 = 0$ given that one root is the difference between the other two roots?	3		
(b)	Solve for x the inequality $\frac{2x-5}{x-4} \ge x$.	3		
(c)	A class consists of 10 boys and 12 girls. How many ways are there of selecting a committee of 3 boys and 2 girls from this class?	2		
(d)	Point <i>A</i> is due south of a hill and the angle of elevation from <i>A</i> to the top of the hill is 35°. Another point <i>B</i> is a bearing 200° from the hill and the angle of elevation from <i>B</i> to the top of the hill is 46°. The distance <i>AB</i> is 220 m.			

- (i) Express *OA* and *OB* in terms of *h*.
- (ii) Calculate the height *h* of the hill correct to three significant figures.

2

2

(e) *AB* and *AC* are tangents to a circle. *D* is a point on the circle such that $\angle BDC = \angle BAC$ and $2\angle DBC = \angle BAC$.

Show that *DB* is a diameter.

Question 12 (15 marks) Use a SEPARATE writing booklet

(a) (i) Show that
$$3\sin x \cos x = \frac{3}{2}\sin 2x$$

(ii) Hence or otherwise, find the exact value of $\int_{0}^{\frac{\pi}{2}} 9 \sin^{2}x \cos^{2}x \, dx$.

(b)

y

The tangent at the point $P(2ap, ap^2)$ on the parabola $x^2 = 4ay$ cuts the *x*-axis at *A* and the *y*-axis at *B*.

(i)	Find the coordinates of A and B in terms of P.	2
(ii)	Find the coordinates of M , the midpoint of A and B in terms of P .	1
(iii)	Show that the locus of M is a parabola.	1
(iv)	Find the coordinates of the focus of this parabola and the equation of the directrix.	1

Marks

(c) Greg designs a sky-diving simulator for a video game. He simulates the rate of change of the velocity of the skydivers as they fall by:

$$\frac{dV}{dt} = -k(V - P)$$
, where k and P are constants.

The constant P represents the terminal velocity of the skydiver in the prone position which is 55 m/s.

	(i)	Show that $V = P + Ae^{-kt}$ is solution of this differential equation.	1
	(ii)	Initially the velocity of the skydiver is 0 m/s and the velocity after 10 seconds is 27 m/s. Find values for <i>A</i> and <i>k</i> .	2
	(iii)	Find the velocity of the skydiver after 17 seconds.	1
	(iv)	How long does it take the skydiver to reach a velocity of 50 m/s?	1
(d)	Fact	orise $P(x) = x^3 + 3x^2 - 9x + 5$.	2

Question 13 (15 marks) Use a SEPARATE writing booklet

- (a) Find the exact value of $\sin\left[\cos^{-1}\frac{2}{3} + \tan^{-1}\left(-\frac{3}{4}\right)\right]$ 2
- (b) Prove by mathematical induction that **3** $a + ar + ar^{2} + ar^{3} + \dots + ar^{n-1} = \frac{a(r^{n} - 1)}{r - 1}$ for all *a* and *r*, where *n* is a positive integer.
- (c) For the function $f(x) = x^2 + 6x$:
 - (i)Find the domain over which f(x) is monotonic increasing.1(ii)Find an expression for the inverse function $f^{-1}(x)$ over this
restricted domain.2(iii)Sketch the graph of $y = f^{-1}(x)$, and state the domain and range
of $y = f^{-1}(x)$.3
- (d) By expressing $\sin x + \cos x$ in the form $r \sin(x + \alpha)$, solve the equation $\sin x + \cos x = 1$ for $0 \le x \le 2\pi$.

Question 14 (15 marks) Use a SEPARATE writing booklet

(a) State the domain and range of $y = 2\sin^{-1}(3x+2)$ and hence sketch $y = 2\sin^{-1}(3x+2)$.

(b) Find the area bounded by the curve $y = \frac{1}{9 + x^2}$, the *x* axis and the lines x = 0 and $x = \sqrt{3}$.

(c)

The diagram above shows a golf ball in the middle of a 1metre deep bunker and 4 metres from the edge of the green at G. The ball is hit with an initial speed of 12 m/s at an angle of elevation α . Putting the origin at O, the horizontal and vertical equations of motions are:

$$x = 12t \cos \alpha \qquad \qquad y = -5t^2 + 12t \sin \alpha - 1$$

(You are NOT required to prove these equations)

- (i) Find the maximum height the ball reaches above G when $\alpha = 30^{\circ}$
- (ii) Find the range of values α may take so that the ball lands on the green at **3** *G* or beyond. Give your answers to the nearest degree.

Marks

3

2

(d) A water trough has a vertical cross section in the shape of an equilateral triangle as shown in the diagram. It is initially empty and is being filled with water at the rate of 4 cubic metres per hour.

(i) By considering an equilateral triangle with side length x and perpendicular **1** height D, show that $D^2 = \frac{3}{4}x^2$.

2

(ii) Given that the trough is 5 metres high and 21 metres long, use the result in (i) to show that the volume of water in the trough at depth *D* metres is given by:

$$V = 7\sqrt{3}D^2$$

(ii) Find the exact rate at which the water level is rising when the water has a depth of 1.5 metres.

End of Examination

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \ x \neq 0, \ \text{if } n < 0$$

$$\int \frac{1}{x} dx = \ln x , \qquad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \qquad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \qquad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \qquad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \qquad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \qquad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \qquad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \qquad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - a^2}} dx = \sin^{-1} \frac{x}{a}, \qquad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$

Note
$$\ln x = \log_e x, \quad x > 0$$