Year 12
 Mathematics Extension 1 HSC Trial Examination 2015

General Instructions

- Reading time - 5 minutes
- Working time - 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided on the back page of this question paper
- In Questions 11-14, show relevant mathematical reasoning and/or calculations

Total marks - 70

Section I

10 marks

- Attempt Questions 1 - 10
- Allow about 15 minutes for this section.

Section II

60 marks

- Attempt Questions 11-14
- Start each question in a new writing booklet
- Write your name on the front cover of each booklet to be handed in
- If you do not attempt a question, submit a blank booklet marked with your name and "N/A" on the front cover
- Allow about 1 hour and 45 minutes for this section

Section I

10 marks

Attempt Questions 1-10

Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1-10.

1 Which of the following is the correct domain and range for $y=2 \cos ^{-1}(x-1)$?
(A) Domain $0 \leq x \leq 2$, Range $0 \leq y \leq \pi$
(B) Domain $-1 \leq x \leq 1$, Range $0 \leq y \leq \pi$
(C) Domain $0 \leq x \leq 2$, Range $0 \leq y \leq 2 \pi$
(D) Domain $-1 \leq x \leq 1$, Range $0 \leq y \leq 2 \pi$

2 The diagram shows a circle with centre O. The line $P T$ is a tangent to the circle at the point $T . \angle T O P=4 x^{\circ}$ and $\angle T P O=x^{\circ}$.

What is the value of x ?
(A) 9
(B) 18
(C) 36
(D) 72

3 The point P divides the interval $A B$ in the ratio 3:7.
In what external ratio does A divide the interval $P B$?

(A) $3: 10$
(B) $3: 4$
(C) 7:3
(D) $10: 3$

4 The diagram shows the graph of a cubic function $y=f(x)$.

What is a possible equation of this function?
(A) $\quad f(x)=-x(x-2)(x+2)$
(B) $f(x)=x^{2}(x-2)$
(C) $f(x)=-x^{2}(x-2)$
(D) $f(x)=-x^{2}(x+2)$

5 Given that $t=\tan \frac{\theta}{2}$, which expression is equal to $\tan \theta-\tan \frac{\theta}{2}$?
(A) t
(B) $\frac{t\left(1+t^{2}\right)}{1-t^{2}}$
(C) $\frac{t}{1-t^{2}}$
(D) $\frac{t\left(3-t^{2}\right)}{1-t^{2}}$

6 What is the equation of the horizontal asymptote of the function $y=\frac{2 x}{4-x}$?
(A) $x=4$
(B) $y=2$
(C) $x=-2$
(D) $y=-2$

7 The parametric equations of a curve are $x=p+1$ and $y=p^{2}-1$. Which of the following is the Cartesian equation of the curve?
(A) $x^{2}=4 y$
(B) $y=x^{2}-2 x$
(C) $y=x^{2}-2$
(D) $y=(x-2)^{2}$

8 Four female and four male students are to be seated around a circular table. In how many ways can this be done if the males and females must alternate?
(A) $4!\times 4$!
(B) $3!\times 4$!
(C) $3!\times 3$!
(D) $2 \times 3!\times 3$!

9 The polynomial $P(x)=x^{3}+2 x+k$ has $(x-2)$ as a factor.
What is the value of k ?
(A) -12
(B) -10
(C) 10
(D) 12

10 Consider the triangle shown below.

Given $\tan \theta=v, \sin 2 \theta$ equals
(A) $\frac{2 v}{\sqrt{1+v^{2}}}$
(B) $\frac{2}{\sqrt{1+v^{2}}}$
(C) $\frac{v^{2}-1}{1+v^{2}}$
(D) $\frac{2 v}{1+v^{2}}$

Section II

60 marks
Attempt Questions 11-14
Allow about 1 hour and 45 minutes for this section
Answer each question in the appropriate writing booklet. Extra writing booklets are available.

In Questions 11-14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks)

Marks

(a) Find $\lim _{x \rightarrow 0} \frac{\sin 2 x}{5 x}$
(b) Consider the polynomial $P(x)=2 x^{3}-7 x^{2}+7 x+k$, where k is a constant. The three zeroes of $P(x)$ are 1,2 and α.
Find the value of k.
(c) Sketch the graph of $y=2 \cos ^{-1} \frac{x}{6}$.
(d) Solve $\frac{x^{2}}{2-x}>1$.
(e) Evaluate $\int_{0}^{2} \frac{-1}{\sqrt{16-x^{2}}} d x$.

Question 11 continues over the page

(f) The diagram below shows two circles that touch at the point T. Points P, Q, R and S lie on the circles as shown.
$P T Q$ and RTS are straight lines. $X Y$ is the common tangent at T.

Prove that $P R$ is parallel to $S Q$.
(g) A soft drink taken from a cool room has a temperature of $3^{\circ} \mathrm{C}$. It is placed in a room of constant temperature $25^{\circ} \mathrm{C}$.

The temperature T of the soft drink after t minutes is given by $T=25-A e^{-0.04 t}$, where A is a positive constant.
(i) How long will it take for the soft drink to reach a temperature of $15^{\circ} \mathrm{C}$ to the nearest minutes?
(ii) Find the rate at which the soft drink is increasing in temperature at $15^{\circ} \mathrm{C}$.

End of Question 11

(a) The region bounded by $y=4 \sin 6 x$, the x axis and the line $x=\frac{\pi}{12}$ is rotated about the x axis to form a solid.

Find the exact volume of this solid.
(b) The acceleration of a particle moving along the x axis is $\ddot{x}=1+\frac{x}{x^{2}+1}$, where x is its displacement from the origin O after t seconds.

Given that the velocity $v=2$, when $x=2$, show that the velocity is given by $v=\sqrt{2 x+\ln \left(\frac{x^{2}+1}{5}\right)}$.

Question 12 continues over the page

(c) A particle moves in a straight line so that its displacement $x \mathrm{~cm}$ from the origin at time t seconds is given by $x=a \cos 4 t$.
(i) Show that the particle is moving in simple harmonic motion.
(ii) After a time $t=2 \pi$ seconds the particle travelled a distance of 80 cm . Explain why the amplitude $a=5 \mathrm{~cm}$.
(iii) What is the velocity of the particle when it passes through the origin for the first time?
(d) For the function $f(x)=x-\frac{1}{2} x^{2}$, restricting $f(x)$ to the domain $x \leq 1$ allows there to be an inverse function $f^{-1}(x)$.
(i) Show that $f^{-1}(x)=1-\sqrt{1-2 x}$
(ii) Sketch $y=f^{-1}(x)$

End of Question 12

(a) Use mathematical induction to prove that $3^{n}-2 n-1$ is divisible by 4 for all integers $n \geq 1$.
(b) The ODD function $f(x)=\frac{x}{x^{2}-1}$ has derivatives:

$$
f^{\prime}(x)=-\frac{\left(x^{2}+1\right)}{\left(x^{2}-1\right)^{2}} \text { and } f^{\prime \prime}(x)=\frac{2 x^{3}+6 x}{\left(x^{2}-1\right)^{3}} \quad \text { (Do NOT prove this) }
$$

(i) State the domain of $y=f(x)$.
(ii) Show that $y=f(x)$ has no stationary points.
(iii) Explain why $y=f(x)$ is always decreasing.
(iv) Find any point(s) of inflexion on $y=f(x)$.
(v) Find the value of y as $x \rightarrow \infty$. 1
(vi) Sketch $y=f(x)$ showing all important features.

Question 13 continues over the page

(c) The point $P\left(2 a p, a p^{2}\right)$ and $Q\left(-2 a p, a p^{2}\right)$ lie on the parabola $x^{2}=4 a y$. The tangents at P and Q intersect at A.

(i) Show that the coordinates of the point A are $\left(0,-a p^{2}\right)$.
(ii) $\quad M$ is the midpoint of $P Q$. State the coordinates of M.
(iii) Show that the origin O is the midpoint of $A M$.
(a) Charlie is attempting to throw a ball from the IGS canteen area to the balcony on level 4 of the Kelly Street building. Each time he throws the ball at a speed of $30 \mathrm{~m} / \mathrm{s}$ and an angle of α to the ground.
The balcony on level 4 is 25 metres high and Charlie is 15 metres from the base of the building. Assume $g=10 \mathrm{~ms}^{-2}$.

Charlie calculates the equations of motion to be:

$$
x=30 t \cos \alpha \quad y=-5 t^{2}+30 t \sin \alpha \quad \text { (Do NOT prove this) }
$$

(i) Show that the equation of the path of the ball is:

$$
y=-\frac{x^{2}}{180} \tan ^{2} \alpha+x \tan \alpha-\frac{x^{2}}{180}
$$

(ii) Charlie wants to hit the rail of the level 4 balcony perfectly. Calculate the angle(s) that Charlie needs to throw the ball to accomplish this.
(b) (i) Show that $\sin 3 x=3 \sin x-4 \sin ^{3} x$.
(ii) Hence, evaluate $\int 2 \sin x-4 \sin ^{3} x d x$.
(c) Use an initial estimate of $x=1$ and one application of Newton's method to solve the equation $2 \sin \left(\frac{x}{2}\right)+x-\pi=0$ to 2 decimal places.
(d) In the triangle $\triangle A B C$ below. $A B=x \mathrm{~cm}$ and $\angle A B C=90^{\circ}$.

(i) Show that the perimeter of $\triangle A B C$ is given by the equation:

$$
P=x(1+\sec A+\tan A)
$$

(ii) If $x=20 \mathrm{~cm}$ and $\angle A$ is increasing at a constant rate of 0.1 radians/second, find the rate at which the perimeter of the triangle is increasing when $\angle A=\frac{\pi}{6}$ radians.

End of Examination

Year 12 Mothenatics El Trial 2015

1) $D:$

$$
\begin{gathered}
-1 \leq x-1 \leq 1 \\
0 \leq x \leq 2 .
\end{gathered}
$$

$$
R: 0 \leq y \leq 2 \pi \text {. }
$$

2)

$$
\begin{aligned}
& \angle P T O=90 \\
& 5 x=90 \\
& x=18^{\circ} \\
& B
\end{aligned}
$$

3)

$$
\begin{aligned}
& A 3 \dot{P} \quad \text { B } \\
& 3: 10 \\
& A
\end{aligned}
$$

4) D
5)

$$
\begin{aligned}
\frac{2 t}{1-t^{2}}-t & =\frac{2 t-t\left(1-t^{2}\right)}{1-t^{2}} \\
& =\frac{t^{3}+2 t-t}{1-t^{2}} \\
& =\frac{\left(t^{3}+t\right)}{1-t^{2}} \sqrt{B} \\
& =\frac{t\left(t^{2}+1\right)}{1-t^{2}}
\end{aligned}
$$

6)

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\frac{2 x}{x}}{\frac{4}{x}-\frac{x}{x}} & =\frac{2}{-1} \\
y & =-2
\end{aligned}
$$

D.
7)

$$
\begin{aligned}
& \text { E }{ }^{2}=x-1 \\
& y=(x-1)^{2}-1 \\
& =x^{2}-2 x+1-1 \\
& =x^{2}-2 x . \\
& B
\end{aligned}
$$

8) B
9)

$$
\begin{aligned}
& \alpha, \beta, 2 \\
& \alpha+\beta+2=0 \quad \alpha+\beta=-2 \\
& \alpha \beta+2 \alpha+2 \beta=+2 \\
& \alpha \beta-4=2 \\
& \alpha \beta=6 \\
& \alpha \beta \gamma=6 \times 2 \\
& =12 \\
& k=-12 \\
& A
\end{aligned}
$$

10)

$$
\begin{aligned}
\sin 2 \theta & =2 \sin \theta \cos \theta \\
& =2 \times \frac{v}{\sqrt{v^{2}+1}} \times \frac{1}{\sqrt{v^{2}+1}} \\
& =\frac{2 v}{v^{2}+1}
\end{aligned}
$$

D

Question II
a) $\frac{2}{5}$
b)

$$
\begin{array}{r}
\alpha+3=\frac{7}{2} \\
\alpha=\frac{1}{2} \\
1 \times 2 \times \frac{1}{2}=\frac{-k}{2} \\
k=-2
\end{array}
$$

c)

d)

$$
\begin{gathered}
\frac{x^{2}}{2-x}>1 \quad x \neq 2 \\
x^{2}=2-x \\
x^{2}+x-2=0 \\
(x+2)(x-1)=0 \\
x=-2,1
\end{gathered}
$$

shope/daminis

- domainlrange y-intercelts correct.
to quadiatic equation

$$
x<-2,1<x<2
$$

e)

$$
\begin{aligned}
\int_{0}^{2} \frac{-1}{\sqrt{16-x^{2}}} d x & =\left[\cos ^{-1} \frac{x}{4}\right]_{0}^{2} \\
& =\cos ^{-1} \frac{1}{2}-\cos ^{-1} 0 \\
& =\frac{\pi}{3}-\frac{\pi}{2} \\
& =-\frac{\pi}{6}
\end{aligned}
$$

$f)$

$\angle S Q T=\angle S T X$ (L in alt segment)
$\angle S T X=\angle Y T R \quad$ (vert opp)
$\angle Y T R=\angle T P R$ (L in alt segment)

$$
\therefore \angle T P R=\angle S Q T
$$

$P R \| S Q$ (alt L's on II limes).
9)

$$
\begin{aligned}
& A=22 \\
& T=25-22 e^{-0.04 t}=15 \\
& \frac{10}{22}=e^{-0.04 t}
\end{aligned}
$$

\forall correct. integration
$\sqrt{ }$ correct answer.
correcturith correcticircle geomnasorn.
reason

Correct expression fore or correct by ln.

$$
\begin{aligned}
\ln \frac{5}{11} & =-0.04 t \\
t & =\frac{\ln \frac{5}{11}}{-0.04} \\
& =19.7 \mathrm{~min} \\
& =20 \mathrm{~min}
\end{aligned}
$$

ii)

$$
\begin{aligned}
\frac{d T}{d t} & =0.04 \times 22 e^{-0.04 t} \\
& =0.04(25-15) \\
& =0.4^{\circ} \mathrm{C} / \mathrm{min}
\end{aligned}
$$

Question 12
a)

$$
\begin{aligned}
V & =\pi \int_{0}^{\frac{\pi}{12}} 16 \sin ^{2} 6 x d x \\
& =16 \pi \int_{0}^{\frac{\pi}{2}} \sin ^{2} 6 x d x \\
& =16 \pi \int_{0}^{\frac{\pi}{12}} \frac{1}{2}(1-\cos 12 x) d x \\
& =8 \pi\left[x-\frac{\sin 12 x}{12}\right]_{0}^{\frac{\pi}{2}} \\
& =8 \pi\left[\frac{\pi}{12}-0-0\right] \\
& =\frac{2 \pi^{2}}{3}
\end{aligned}
$$

b)

$$
\begin{aligned}
\frac{1}{2} v^{2} & =\int 1+\frac{x}{x^{2}+1} d x \\
& =x+\frac{1}{2} \ln \left(x^{2}+1\right)+C \\
v^{2} & =2 x+\ln \left(x^{2}+1\right)+C
\end{aligned}
$$

$$
@ v=2, x=2
$$

$$
4=4+\ln 5+C
$$

$$
C=-\ln 5
$$

$$
v^{2}=2 x+\ln \left(x^{2}+1\right)-\ln 5
$$

$v^{2}=2 x+\ln \left(\frac{x^{2}+1}{5}\right) \quad$ of v

Since $v>0$
Since $\begin{aligned} & v>0 \\ & \text { for } x>0\end{aligned}$

$$
v=\sqrt{2 x+\frac{\ln \left(\frac{x^{2}+1}{5}\right)}{}}
$$

Ci)

$$
\begin{align*}
x & =a \cos 4 t \tag{8}\\
\dot{x} & =-4 a \sin 4 t \\
\dot{x} & =-16 a \cos 4 t \\
& =-16 x .
\end{align*}
$$

1, Correct \ddot{x} with x showing. jj $\alpha-x$. or other equivalent explanation.
ii)

$$
T=\frac{2 \pi}{4}=\frac{\pi}{2}
$$

Particle went through 4 Complete

$$
\begin{aligned}
\therefore \text { Amplitude } & =80 \div 4 \div 4 \\
& =5 \mathrm{~cm} .
\end{aligned}
$$

iii)

$$
\begin{array}{r}
@ x=0, t=? \\
5 \cos 4 t=0 \\
4 t=\frac{\pi}{2} \\
t=\frac{\pi}{8}
\end{array}
$$

$$
\begin{aligned}
\dot{x} & =-20 \sin 4+ \\
& =-20 \sin \frac{\pi}{2} \\
& =-20 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$\therefore 20 \mathrm{~m} / \mathrm{s}$ in the negative direction
inti)

$$
\left.\begin{array}{l}
y=x-\frac{1}{2} x^{2} . \quad x\left(1-\frac{1}{2} x\right) \\
x=y-\frac{1}{2} y^{2} . \\
2 x=2 y-y^{2} . \\
y^{2}-2 y=-2 x . \\
y^{2}-2 y+1=-2 x+1 \\
(y-1)^{2}=1-2 x . \\
y-1= \pm \sqrt{1-2 x}
\end{array}\right\} \checkmark
$$

Since $x \leqslant 1$ for $f(x), y \leqslant 1$ for $f^{-1}(x)$

$$
\begin{aligned}
\therefore y-1 & =-\sqrt{1-2 x} \\
y & =1-\sqrt{1-2 x}
\end{aligned}
$$

ii)

1. Correct shape. intercept $(0,0)$.
a) $3^{n}-2 n-1=4 P$.
1)

$$
\begin{aligned}
& n=2 . \\
& 9-4-1=4 \therefore \text { true } n=2 .
\end{aligned}
$$

1 mark
ii)

$$
\begin{aligned}
& n=k \\
& 3^{k}-2 k-1=4 Q
\end{aligned}
$$

u)

$$
\begin{aligned}
& n=k+1 \\
& 3^{k+1}-2(k+1)-1=3 \cdot 3^{k}-2 k-3 \\
&=3\left(3^{k}-2 k-1\right)+6 k+3-2 k-3 \\
&=3 \times 4 Q+4 k \\
&=4(12 Q+k) \therefore \text { dursible by } 4
\end{aligned}
$$

\therefore true by mathematical Induction.
v) $x \rightarrow \infty, f(x) \rightarrow 0$.

1 maw correct

$$
\therefore y=0
$$

val.

c)1) $y=\frac{x^{2}}{4 a}$

$$
y^{\prime}=\frac{x}{2 a}
$$

$$
\text { at } P\left(2 a p, a p^{2}\right) m_{T}=P
$$

eq tang: $y-a p^{2}=p(x-2 a p)$

$$
=p x-2 a p^{2}
$$

$$
p x-y=a p^{2}
$$

sumlery at Q (-2ap, ap ${ }^{2}$)

$$
\begin{gathered}
m_{T}=-p \\
y-a p^{2}=-p(x+2 a p) \\
y-a p^{2}=-p x-2 a p^{2} \\
p x+y=-a p^{2}
\end{gathered}
$$

for (A).

$$
\begin{align*}
& p x-y=a p^{2} \tag{1}\\
& p x+y=-a p^{2}
\end{align*}
$$

exjesf tangent at Q correct.

$$
\text { (1) + (2) } \quad 2 p x=0
$$

$$
x=0
$$

wug fic pout of

$$
\text { (0)-(1) } \quad 2 y=-2 a p^{2}
$$

$$
y=-a p^{2} \quad \therefore A\left(0_{1}-a p^{2}\right)
$$

$\frac{\text { Now. }}{\text { Nad }}$ ascrebed. weves of whe sech
ii) M : $\left(0, a p^{2}\right)$

V corroct undpt.
ii) Molp+ AM $\left(\frac{0+0}{2}, \frac{-a p^{2}+a p^{2}}{2}\right)=(0,0)$

Question 14
ai) $t=\frac{x}{30 \cos \alpha \text {. }}$

$$
\begin{aligned}
\therefore y & =-5\left(\frac{x}{30 \cos \alpha}\right)^{2}+30 \sin \alpha\left(\frac{x}{30 \cos \alpha}\right) . \\
& =-\frac{5 x^{2}}{900 \cos ^{2} \alpha}+x \tan \alpha . \\
& =\frac{-5 x^{2}}{900}\left(1+\tan ^{2} \alpha\right)+x \tan \alpha . \\
& =\frac{-x^{2}}{180} \tan ^{2} \alpha+x \tan \alpha-\frac{8 x^{2}}{180}
\end{aligned}
$$

ii)

$$
\begin{aligned}
& x=15, y=25^{\circ} \\
& 25=\frac{-(15)^{2}}{180} \tan ^{2} \alpha+\sqrt{2} \tan \alpha-\frac{15^{2}}{180} \\
& 25=-\frac{5}{4} \tan ^{2} \alpha+15 \tan \alpha-\frac{5}{4} \\
& 20=-\tan ^{2} \alpha+12 \tan \alpha-1 \\
& \tan ^{2} \alpha-12 \tan \alpha+21=0
\end{aligned}
$$

$$
\begin{align*}
\tan \alpha & =\frac{12 \pm \sqrt{144-4 \times 21}}{2} \tag{15}\\
& =\frac{12 \pm \sqrt{60}}{2} \\
& =6 \pm \sqrt{15} \\
\therefore \alpha & =84^{\circ} 13^{\prime}, 64^{\circ} 49^{\prime}
\end{align*}
$$

bi)

$$
\begin{aligned}
\sin 3 x & =\sin (2 x+x) \\
& =2 \sin x \cos x \cdot \cos x+\cos 2 x \cdot \sin x \\
& =2 \sin x \cos ^{2} x+\sin x(1-2 \sin 3 x) \\
& =2 \sin x\left(1-\sin ^{3} x\right)+\sin x-2 \sin ^{3} x \\
& =2 \sin x-2 \sin ^{3} x+\sin x-2 \sin ^{3} x \\
& =3 \sin x-4 \sin ^{3} x
\end{aligned}
$$

ii)

$$
\begin{aligned}
& \int 2 \sin x-4 \sin ^{3} x d x=\int 3 \sin x-4 \sin ^{3} x-\sin x d x \\
& =\int \sin 3 x-\sin x d x \\
& =-\frac{\cos 3 x}{3}+\cos x+c
\end{aligned}
$$

c)

$$
\begin{aligned}
f(x) & =2 \sin \frac{x}{2}+x-\pi \\
f^{\prime}(x) & =\cos \frac{x}{2}+1 \\
x & =1-\frac{2 \sin \frac{1}{2}+1-\pi}{\cos \frac{1}{2}+1} \\
& =1.63
\end{aligned}
$$

d.)

$$
\begin{aligned}
& B C=x \tan A \\
& A C=\frac{x}{\cos A}=x \sec A
\end{aligned}
$$

$$
\begin{aligned}
\therefore P & =x+x \tan A+x \sec A \\
& =x(1+\tan A+\sec A)
\end{aligned}
$$

$$
\begin{gathered}
\text { Corrat } \\
\text { use of formula }
\end{gathered}
$$

furdurg correct exprossicin for $B C+A C$ readung resint
correctly

$$
\text { ii) } \begin{aligned}
\frac{d P}{d t} & =\frac{d P}{d A} \times \frac{d A}{d t} \\
\frac{d P}{d A} & =x\left(-\left({\cos A)^{-2}}^{-2}-\sin A+\sec ^{2} A\right)\right. \\
& =x \cdot\left(\frac{\sin A}{\cos ^{2} A}+\frac{1}{\cos ^{2} A}\right) \\
& =x\left(\frac{\sin A+1}{\cos ^{2} A}\right) \\
\frac{d P}{d t} & =x\left(\frac{\sin A+1}{\cos ^{2} A}\right) \times 0.1 \\
& =20 \times\left(\frac{\sin \frac{\pi}{6}+1}{\cos ^{2} \frac{\pi}{6}}\right) \times 0.1 \\
& =20 \times\left(\frac{1.5}{0.75}\right) \times 0.1 \\
& =4 \mathrm{~cm} / \mathrm{s}
\end{aligned}
$$

