Question 1:

(a)(i) Find the derivative of $x^2 \cos x$. 2 (ii) Evaluate $\int_{1}^{6} \frac{x}{x^2 + 4} dx$. 2

(b)(i) Sketch y = |x+1|. 1

2

2

6

(ii) Hence or otherwise solve |x+1| = 3x.

(c) If $f(x) = 2\sin^{-1}(3x)$, find

(i) the domain and range of f(x),

(ii)
$$f\left(\frac{1}{6}\right)$$
,
(iii) $f'\left(\frac{1}{6}\right)$.

QUESTION 2: (START A NEW PAGE)

(a) P(-7,3), Q(9,15) and B(14,0) are three points and A divides the interval PQ in the 3 ratio 3:1. Prove that PQ is perpendicular to AB.

(b) By using the substitution
$$u^2 = x + 1$$
 evaluate $\int_0^3 \frac{x+2}{\sqrt{x+1}} dx$. 3

(c) Water flows from a hole in the base of a cylindrical vessel at a rate given by

$$\frac{dh}{dt} = -k\sqrt{h}$$

where k is a constant and h mm is the depth of water at time t minutes. If the depth of water falls from 2500mm to 900mm in 5 minutes, find how much longer it will take to empty the vessel.

QUESTION 3: (START A NEW PAGE)

- (a) Find the value of the constant term in the expansion of $\left(3x + \frac{2}{\sqrt{x}}\right)^{6}$.
- (b) Three boys (Adam, Bruce, Chris) and three girls (Debra, Emma, Fay) form a single queue at random in front of the school canteen window. Find the probability that:
 - (i) the first two to be served are Emma and Adam in that order,
 - (ii) a boy is at each end of the queue,
 - (iii) no two girls stand next to each other.
- (c) In the figure ABM, DCM, BCN and ADN are straight lines and $\angle AMD = \angle BNA$.
 - (i) Copy the diagram onto your answer sheet and prove that $\angle ABC = \angle ADC$.
 - (ii) Hence prove that AC is a diameter.

QUESTION 4: (START A NEW PAGE)

(a)(i) Given that $\sin^2 A + \cos^2 A = 1$, prove that $\tan^2 A = \sec^2 A - 1$.	2
(ii) Sketch the curve $y = 4 \tan^{-1} x$ clearly showing its range.	2
(iii) Find the volume of the solid formed when the area bounded by the curve $y = 4 \tan^{-1} x$, the y-axis and the line $y = \pi$ is rotated one revolution about the y-axis.	2
(b)(i) An object has velocity $v ms^{-1}$ and acceleration $\ddot{x} ms^{-2}$ at position $x m$ from the origin, show that $\frac{d}{dx} (\frac{1}{2}v^2) = \ddot{x}$.	2
(ii) The acceleration (in ms^{-2}) of an object is given by $\ddot{x} = 2x^3 + 4x$.	
(α) If the object is initially 2 <i>m</i> to the right of the origin traveling with velocity 6 <i>ms</i> ⁻¹ , find an expression for v^2 (the square of its velocity) in terms of <i>x</i> .	2

А

 (β) What is the minimum speed of the object? (Give a reason for your answer)

В С 3 N D 2

Μ

3

2

1

1

2

2

<u>QUESTION 5</u>: (START A NEW PAGE)

(a) The curves $y = e^{-2x}$ and $y = 3x + 1$ meet on the y-axis. Find the size of the acute angle between these curves at the point where they meet.	3
(b)(i) Sketch the function $y = f(x)$ where $f(x) = (x-1)^2 - 4$ clearly showing all intercepts with the co-ordinate axes. (Use the same scale on both axes)	2
(ii) What is the largest positive domain of f for which $f(x)$ has an inverse $f^{-1}(x)$?	1
(iii) Sketch the graph of $y = f^{-1}(x)$ on the same axes as (i).	1
(c) In tennis a player is allowed a maximum of two serves when attempting to win a point. If the first serve is not legal it is called a fault and the server is allowed a second serve. If the second serve is also illegal then it is called a double fault and the server loses the point. The probability that Pat Smash's first serve will be legal is 0.4. If Pat Smash needs to make a second serve then the probability that it will be legal is 0.7.	
(i) Find the probability that Pat Smash will serve a double fault when trying to win a point.	2
(ii) If Pat Smash attempts to win six points, what is the probability that he will serve at least two double faults? (Give answer correct to 2 decimal places)	3
<u>QUESTION 6</u> : (START A NEW PAGE)	
(a) A spherical bubble is expanding so that its volume is increasing at $10 \text{ cm}^3 s^{-1}$.	3

Find the rate of increase of its radius when the surface area is 500 cm^2 .

(Volume = $\frac{4}{3}\pi r^3$, Surface area = $4\pi r^2$)

(b) Prove by Mathematical Induction that:

$$2(1!) + 5(2!) + 10(3!) + \dots + (n^2 + 1)n! = n(n+1)!$$
 for positive integers $n \ge 1$.

(c) If
$$y = \frac{\log_e x}{x}$$
 find $\frac{dy}{dx}$ and hence show that $\int_e^{e^2} \frac{1 - \log_e x}{x \log_e x} dx = \log_e 2 - 1$. 5

<u>QUESTION 7</u>: (START A NEW PAGE)

(i) By considering the expansion of $\sin(X+Y) - \sin(X-Y)$ prove that $\sin A - \sin B = 2\cos\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right).$

(ii) Also given that
$$\cos A - \cos B = 2\sin\left(\frac{A+B}{2}\right)\sin\left(\frac{B-A}{2}\right)$$
 prove that
 $\frac{\sin A - \sin B}{\cos A - \cos B} = -\cot\left(\frac{A+B}{2}\right).$

3

2

2

3

2

- (iii) Prove that the position of a projectile t seconds after projection from ground level with initial horizontal and vertical velocity components of $V \cos \alpha$ and $V \sin \alpha$ respectively is given by $x = Vt \cos \alpha$ and $y = -\frac{1}{2}gt^2 + Vt \sin \alpha$. (Assume that there is no air resistance)
- (iv) Two objects P and Q are projected from the same ground position at the same time with initial speed $V ms^{-1}$ at angles α and β respectively ($\beta > \alpha$).
 - (α) If at time t seconds the line joining P and Q makes an acute angle θ with the horizontal prove that $\tan \theta = \left| \frac{\sin \beta \sin \alpha}{\cos \beta \cos \alpha} \right|$.

(
$$\beta$$
) Hence show that $\theta = \frac{1}{2}(\pi - \alpha - \beta)$.

THIS IS THE END OF THE EXAMINATION PAPER

 $\sqrt{\frac{3}{4}} = \frac{12}{\sqrt{3}} \quad 0^{-7} \quad 4\sqrt{3}$

$$\begin{aligned} \underbrace{\mathcal{Q}\cup\mathcal{E}STion\ 2}_{(a)} & \mathcal{P}(-7,3) \\ & \mathcal{Q}(9,15) \\ & \mathcal{R}(1,15) \\ & \mathcal{R$$

$$2(c) \quad dt = -\frac{1}{k} \cdot \frac{h^{-\frac{1}{k}}}{k}$$

$$t = -\frac{1}{k} \cdot \frac{2h^{-\frac{1}{k}}}{k} + c$$

$$t = -\frac{2}{k} \cdot \frac{2h^{-\frac{1}{k}}}{k} + c$$

$$t = -\frac{2}{k} \cdot \frac{5}{k} + c$$

$$t = -\frac{2}{k} \cdot \frac{5}{k} + c$$

$$t = -\frac{6}{k} + c$$

$$c = -\frac{6}{k} + c$$

$$c = -\frac{6}{k} + \frac{10}{k}$$

$$c = -\frac{6}{k} + \frac{10}{k}$$

$$\frac{5k}{k} = \frac{10}{k}$$

(3[°]

· s

$$\frac{Q_{UESTION 3}}{(a)} = \frac{6}{C_r} (3x)^{6-r} (\frac{2}{3x})^r$$

$$= \frac{6}{C_r} (3x)^{6-r} (\frac{2}{3x})^r$$

$$= \frac{6}{C_r} (3x)^{6-r} (\frac{2}{3x})^r$$

$$= \frac{6}{C_r} (3x)^{6-r} (\frac{2}{3x})^r$$

$$= \frac{6}{C_r} (3x)^{6-r} (\frac{2}{3x})^r$$

for constant term degree of n=0 : 6-12r=0

121=0 r = 4 $\therefore \text{ constant} = C_4 3.2$ = 2160 (b) (i) Prot = from or From = K. Ja = 30 = 1/30 (ii)Prot = 3.2.41. = 15 (Mace Bay the 2 3 4 0 3 0 G B G B G B (m) Jell Sups meth girls) Prob = 3! 4.3.2 6! = 1/-(c) (i) let $A\hat{M}D = A\hat{N}B = x^{2}$ $\varphi A\hat{B}\hat{C} = \beta^{2}$ BCAS = (p-a)" (exterior impli A BMC could orem of opporte unlever angles) DCN = (p-a)" (vertically opporte emplos, ADC = po lecteror angle of bars capado sum of Ali = And 10 it and

 $Q_3(c)(ii) \quad ABC + ADC = 180° \quad (opposite angle of cylic$ generic ABC = 0 ore supplimenting)2. ABC = 180° (ABC = ADC , part (i))ABC = 90° : Al 15 a deamiter (angle in semacercle) QUESTION 4 $\frac{Mm^2A}{\cos^2 A} + \frac{\cos^2 A}{\cos^2 A} = \frac{1}{\cos^2 A}$ (a)(i) fan A + 1 = MezA fam "A = Me "A - 1 (ii) Fu= 4 tem "k 5

(iii) $f_{fg} = ten^{-1}n$ $n = ten f_{fg}$ $V = \pi \left(\frac{\pi}{\chi^2} dy \right)$ $= \pi \int^{\pi} fan^{\nu} y dy$ = TT / PRC 44. -1 dy = TT [4 tan y/4 - y] $= \pi \frac{5}{4} \left(4 \tan \frac{1}{4} - \pi \right) - \left(4 \tan 0 - 0 \right) \frac{5}{4}$ $= \pi (4 - \pi) u^{3}$

King -211 × y × 21

(b)(i) $\frac{d}{dr}\left(\frac{d}{dr}V^2\right) = \frac{q}{dr}\left(\frac{d}{dr}V^2\right) \cdot \frac{dv}{dr}$ or dir Tu = dy dr = dy $(ii)(\alpha) = \frac{d}{dx}(\pm v^2) = 2x^3 \pm 4x$ 2 52 - x + 2x + c t=0, x=2, 15=6 18 = 8 + 8 + c $c \approx 2$ 35 = _ x + 4 x + 4 (B) 2² = (x2+2)² → x² ≥ 4 → x≠0 . abject never changes direction. always moves to sight with an seeming speed muce mietal set 20 7 accel 20 for x 20 ... men speed is inited speed : men, speed = 6 ms^-1 QUESTION 5

(a) $y' = -2e^{-2n}$ when x = 0, y'= -2e" 11=-2 $m_2 = 3$ $\overline{fang} = \left| \frac{3+2}{1+(3\sqrt{-2})} \right|$ 0 = T/4, or 45"

, -

-

QUESTION 6. (2) $dr = dr \cdot dv$ $V = \frac{1}{2}\pi r^3$ dt dv. dt dy = 4TTer 15 = <u>1</u> , 10 HTTP2 = 10 415when SA = 500 (=4772) $\frac{dc}{T_{\rm F}} = \frac{10}{cm}$ = 1/50 cm/s (b) when n=1 LHS = 2(1) RHS = 1(21) = 2 · the for n=1 assume france for a = k 12. 2(11) + 5(21) + - + (k+1) k! = k(k+1)! to prove the for Marketi 12 2(11) + 5/21) +--++ (k+1)k! + [(k+1) + i](k+1) = (K+1) (K+2)! Nau LHS = 2(11) + 5(21) + - + (k+1)k! + (k+2k+2)(k+1)! = h (R+1)! + (k2+2k+2)(k+1)! (by aroughon) Q?? = (k+1) : \$ k+k +2k+23 = (k+1) ! (k2+3R+2) = (k+i)!(k+i)(k+i)= (k+2)! (k+i)= RHT

. If there for n=k then there for n=k+1 of more true for net than true of all n 21.

 $\frac{dy}{dx} = \frac{(\chi)(1/\chi) - (\eta)(1/\chi)}{\chi^2}$. Q6(с) 1 - ln x 22 $\int \frac{e^2}{x \ln x} \frac{1 - \ln x}{c \ln x} dx = \int \frac{e^2}{\frac{1 - \ln x}{2c^2}} dx$ $= \int h_1 \left(\frac{h_1 \kappa}{\kappa} \right) \int_{-\infty}^{e^2}$ = In (Ine") - In (Ine) = lm (7/2) - lm (1/2) = ln (3/2 x 9) = ln (7/0) =ln 2 - ln l - la ? - 1

Ð

QUESTION 7

(i) $\operatorname{Am}(X+Y) - \operatorname{Am}(X-Y) = \operatorname{Am}(X + \operatorname{con} Y + \operatorname{con} X \sin y) - \operatorname{Am}(X + \operatorname{con} Y + \operatorname{con} X \sin y)$ $= 2 \operatorname{con} X \operatorname{Am} Y$ $\operatorname{let} X + Y = A \quad a \quad X - Y = B$ $\therefore 2X = A + B \quad 2Y = A - B$ $X = \frac{A + B}{2} \quad f \quad Y = \frac{A - B}{2} \quad f$ $\operatorname{Ami}(A - \operatorname{Am})B = 2 \operatorname{con}\left(\frac{A + B}{2}\right) \operatorname{Ami}\left(\frac{A - B}{2}\right)$ (ii) $\operatorname{Ami}(A - \operatorname{Ami})B = 2 \operatorname{con}\left(\frac{A + B}{2}\right) \operatorname{Ami}\left(\frac{A - B}{2}\right)$ $= \frac{2 \operatorname{con}\left(\frac{A + B}{2}\right) \operatorname{Ami}\left(\frac{A - B}{2}\right)}{2 \operatorname{Ami}\left(\frac{A - B}{2}\right)}$ $= \frac{\operatorname{con}\left(\frac{A + B}{2}\right) \operatorname{Ami}\left(\frac{A - B}{2}\right)}{-\operatorname{Ami}\left(\frac{A - B}{2}\right)} \quad f$

 $= -\cot\left(\frac{A+B}{2}\right)$ $\begin{array}{c} (iii) & \ddot{\mathbf{x}} = \mathbf{0} \\ \dot{\mathbf{x}} = \mathbf{0} \\ \dot{\mathbf{x}} = \mathbf{0} \end{array}$ ÿ = -9 g=-gt +C3 t=o ij= Vsind t=0 x=Vcan YAMOX = C3 ··· VLOQ = C, g = -gt + Vsnot x = Vcona y = fat + rtsind +cy X= Vt cong + Cz t=0, y=0 ~ (y=0 E=0 x=0 .1(2=0 x=Vtuna () g=-ygt + vtsing (1 (iv) (a) Particle P gp = - 2gt + Vtsma Xp = Vt cox Particle Q $x_{a} = Vtcor \beta$ $\Im a = -\frac{1}{2}gt^{*} + Vtpm \beta$ $= \frac{(-k_0t + Vtsinp) - (-k_0t + Vtsinx)}{Vtcor\beta - Vtcorx}$ fand = plope PR $= \frac{Vt(m\beta-m\alpha)}{Vt(cop-con)}$ \overline{U} $= \int \frac{Mm[B-Mmax]}{cosps-corea} = 0$ (B) terre = $\left| -\cot\left(\frac{\alpha+\beta}{2}\right) \right|^{\frac{\alpha}{2}} \int tom(ii) \quad (ii)$ = $\tan\left(\frac{\pi}{2} - \left(\frac{\alpha+\beta}{2}\right)\right) \quad (i \neq \beta) \quad a \text{ cute}$ $- \Theta = \pi I_2 - \left(\frac{\alpha t^2}{2}\right)$ $0 = \frac{1}{2}(\pi - \alpha - \beta)$