## Question 1:

(a)(i) Find the derivative of $x^{2} \cos x$.

## QUESTION 2: (START A NEW PAGE)

(a) $\mathrm{P}(-7,3), \mathrm{Q}(9,15)$ and $\mathrm{B}(14,0)$ are three points and A divides the interval PQ in the ratio 3:1. Prove that PQ is perpendicular to AB .
(b) By using the substitution $u^{2}=x+1$ evaluate $\int_{0}^{3} \frac{x+2}{\sqrt{x+1}} d x$.
(c) Water flows from a hole in the base of a cylindrical vessel at a rate given by

$$
\frac{d h}{d t}=-k \sqrt{h}
$$

where $k$ is a constant and $h \mathrm{~mm}$ is the depth of water at time $t$ minutes.
If the depth of water falls from 2500 mm to 900 mm in 5 minutes, find how much longer it will take to empty the vessel.
(a) Find the value of the constant term in the expansion of $\left(3 x+\frac{2}{\sqrt{x}}\right)^{6}$.
(b) Three boys (Adam, Bruce, Chris) and three girls (Debra, Emma, Fay) form a single queue at random in front of the school canteen window. Find the probability that:
(i) the first two to be served are Emma and Adam in that order,
(ii) a boy is at each end of the queue,
(iii) no two girls stand next to each other.
(c) In the figure $A B M, D C M, B C N$ and $A D N$ are straight lines and $\angle A M D=\angle B N A$.
(i) Copy the diagram onto your answer sheet and prove that $\angle A B C=\angle A D C$.
(ii) Hence prove that AC is a diameter.


## QUESTION 4: (START A NEW PAGE)

(a)(i) Given that $\sin ^{2} A+\cos ^{2} A=1$, prove that $\tan ^{2} A=\sec ^{2} A-1$.
(ii) Sketch the curve $y=4 \tan ^{-1} x$ clearly showing its range.
(iii) Find the volume of the solid formed when the area bounded by the curve $y=4 \tan ^{-1} x$, the $y$-axis and the line $y=\pi$ is rotated one revolution about the $y$-axis.
(b)(i) An object has velocity $v m s^{-1}$ and acceleration $\ddot{x} m s^{-2}$ at position $x m$ from the origin, show that $\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=\ddot{x}$.
(ii) The acceleration (in $m s^{-2}$ ) of an object is given by $\ddot{x}=2 x^{3}+4 x$.
$(\alpha)$ If the object is initially $2 m$ to the right of the origin traveling with velocity $6 \mathrm{~ms}^{-1}$, find an expression for $v^{2}$ (the square of its velocity) in terms of $x$.
$(\beta)$ What is the minimum speed of the object? (Give a reason for your answer)
(a) The curves $y=e^{-2 x}$ and $y=3 x+1$ meet on the $y$-axis. Find the size of the acute angle between these curves at the point where they meet.
(b)(i) Sketch the function $y=f(x)$ where $f(x)=(x-1)^{2}-4$ clearly showing all intercepts with the co-ordinate axes. (Use the same scale on both axes)
(ii) What is the largest positive domain of $f$ for which $f(x)$ has an inverse $f^{-1}(x)$ ?
(iii) Sketch the graph of $y=f^{-1}(x)$ on the same axes as (i).
(c) In tennis a player is allowed a maximum of two serves when attempting to win a point. If the first serve is not legal it is called a fault and the server is allowed a second serve. If the second serve is also illegal then it is called a double fault and the server loses the point. The probability that Pat Smash’s first serve will be legal is 0.4. If Pat Smash needs to make a second serve then the probability that it will be legal is 0.7 .
(i) Find the probability that Pat Smash will serve a double fault when trying to win a point.
(ii) If Pat Smash attempts to win six points, what is the probability that he will serve at least two double faults? (Give answer correct to 2 decimal places)

## QUESTION 6: (START A NEW PAGE)

(a) A spherical bubble is expanding so that its volume is increasing at $10 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$.

Find the rate of increase of its radius when the surface area is $500 \mathrm{~cm}^{2}$.
$\left(\right.$ Volume $=\frac{4}{3} \pi r^{3}$, Surface area $\left.=4 \pi r^{2}\right)$
(b) Prove by Mathematical Induction that:
$2(1!)+5(2!)+10(3!)+\ldots+\left(n^{2}+1\right) n!=n(n+1)$ ! for positive integers $n \geq 1$.
(c) If $y=\frac{\log _{e} x}{x}$ find $\frac{d y}{d x}$ and hence show that $\int_{e}^{e^{2}} \frac{1-\log _{e} x}{x \log _{e} x} d x=\log _{e} 2-1$.

## QUESTION 7:

(i) By considering the expansion of $\sin (X+Y)-\sin (X-Y)$ prove that $\sin A-\sin B=2 \cos \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right)$.
(ii) Also given that $\cos A-\cos B=2 \sin \left(\frac{A+B}{2}\right) \sin \left(\frac{B-A}{2}\right)$ prove that $\frac{\sin A-\sin B}{\cos A-\cos B}=-\cot \left(\frac{A+B}{2}\right)$.
(iii) Prove that the position of a projectile $t$ seconds after projection from ground level with initial horizontal and vertical velocity components of $V \cos \alpha$ and $V \sin \alpha$ respectively is given by $x=V t \cos \alpha$ and $y=-\frac{1}{2} g t^{2}+V t \sin \alpha$.
(Assume that there is no air resistance)
(iv) Two objects P and Q are projected from the same ground position at the same time with initial speed $V \mathrm{~ms}^{-1}$ at angles $\alpha$ and $\beta$ respectively $(\beta>\alpha)$.
$(\alpha)$ If at time $t$ seconds the line joining $P$ and $Q$ makes an acute angle $\theta$ with the horizontal prove that $\tan \theta=\left|\frac{\sin \beta-\sin \alpha}{\cos \beta-\cos \alpha}\right|$.
( $\beta$ ) Hence show that $\theta=\frac{1}{2}(\pi-\alpha-\beta)$.

QuESTION I
(a) (i) $y^{\prime}=2 x \cos x-x^{2} \operatorname{sen} x$
(ii) $\int_{1}^{6} \frac{x}{x^{2}+4} a^{3}=\frac{1}{2}\left[\ln \left(x^{2}+4\right)\right]_{1}^{6}$

$$
=2(\ln 40-\ln 5)
$$

$$
=\frac{2}{2} 8
$$

(b) (i)

(ii) $3 x-k+1$ (frombity

$$
\begin{aligned}
2 x & =1 \\
x & =1 / 2
\end{aligned}
$$

(c) (i)

$$
\begin{array}{ll}
\text { Domain } & -\frac{y}{3} \leq x \leq / 3 \\
\text { Komge } & -\pi \leqslant y \leq \pi
\end{array}
$$

(ii)

$$
\begin{aligned}
f(6) & =2 \sin ^{-1}(3 / 6) \\
& =\pi / 3
\end{aligned}
$$

(ii)

$$
\begin{aligned}
f^{\prime}(x) & =2 \cdot \frac{3}{\sqrt{1-9 x^{2}}} \\
f^{\prime}(6) & =\frac{6}{\sqrt{1-9 / 3 x}} \\
& =\frac{6}{\sqrt{3 / 4}} \\
& =\frac{12}{\sqrt{3}} \text { or } 4 \sqrt{3}
\end{aligned}
$$

Question 2.
(a)

$$
\begin{gathered}
F(-T, 3), Q(9,15) \\
A\left(\frac{-7+27}{4}, \frac{3+45}{4}\right)=A(5,12) \\
m(P Q)=\frac{15-3}{9+7} \\
=3 / 4 \\
m(A C)=\frac{12-0}{4-4} \\
=-4 / 3 \\
m(A Q)=A(A B)=3 / 4 \\
M
\end{gathered}
$$

(6)

$$
\begin{aligned}
& x=0 \quad u^{2}=1 \\
& u=1 \text { (take.....) } \\
& x=3, u^{2}=4 \\
& \text { u-2 (take } u \cdots \text { ) } \\
& u^{2}-1=x \\
& \frac{d x}{x^{\prime} u}=2 u \\
& 2 x^{\prime}=2 u d u \\
& \int_{0}^{3} \frac{x+2}{\sqrt{x+1}} d x=\int_{1}^{2} \frac{u^{2}+1}{\sqrt{u^{2}}} d u d u \\
& =2 \int_{1}^{2} \frac{u^{2}+1}{u} d u \\
& =2 \int_{1}^{2} u+\frac{1}{u} d u \\
& =2\left[\frac{1}{2} u^{2}+\ln u\right]_{1}^{2} \\
& =2\left\{\left(\frac{4}{2}+\ln 2\right)-(k+\ln 1)\right\} \\
& =3+2 / 2 x=\quad 6 \frac{2}{3}
\end{aligned}
$$

2(c)

$$
\begin{gather*}
\frac{d t}{d h}=-\frac{1}{h} \cdot h^{-\frac{1}{2}} \\
t=-\frac{1}{h} \cdot 2 h^{1 / 2}+c \\
t=\frac{-2 \sqrt{h}}{k}+c \\
t=0 h=2500 \\
0=\frac{-100}{k}+c \\
t=s h=900 \\
5=-\frac{60}{k}+c
\end{gather*}
$$

$\Leftrightarrow-\infty \quad j=-\frac{62}{k}+\frac{16}{k}$

$$
\begin{gathered}
5 k=x 0 \\
k=b
\end{gathered}
$$

$\tan 0 c=\frac{y}{8}$

$$
\therefore t=\frac{-\sqrt{6}}{4}+12.5
$$

when $h=0 \quad t=12.15$
$\therefore$ extro than $=12 \cdot 5-5$

$$
=7.5 \mathrm{~m} . \mathrm{m} .
$$

Question 3.
(a)

$$
\begin{aligned}
T_{i 1} & =\theta_{r}(3 x)^{6-r}\left(\frac{2}{6 x}\right)^{r} \\
& =\operatorname{tr}_{r} 3^{6-r} 2^{r} \cdot x^{6-r} x^{-1 / 2} \\
& =\operatorname{tir} 3^{6-r} 2^{6-1 / 2 r}
\end{aligned}
$$

for constant teme dearee of $x=0$

$$
\therefore \quad 6-12 r=0
$$

$$
\begin{aligned}
& 1 \frac{1}{2} r=6 \\
& r=4 \\
& \therefore \text { canctant }=643^{2} \cdot 24 \\
&=2160
\end{aligned}
$$

(b) (i)

$$
\begin{array}{ll}
\text { (1) (1) (4) (2) O } \\
\begin{array}{rlr}
\text { Prat } & =\frac{y!}{6!} & =0 \\
& =1 / 30 & \\
& =1 / 30
\end{array}
\end{array}
$$

(ii)

$$
\begin{aligned}
& \text { (3) } \otimes 3 \otimes 0<1 \\
& P_{m} t=\frac{3.1 .4!}{6!} \\
& =1 / 5
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \begin{array}{l}
2 \text { (3) }+230 \\
=B \& B H E
\end{array} \\
& \text { frob }=\frac{3!4.3 .2}{6!} \\
& =1 / 5 \\
& \text { (Alice Bup then } \\
& \text { HAlfopo mutt } \\
& \text { ginls) }
\end{aligned}
$$

(c) (i)

$$
\begin{aligned}
& \text { lot } \hat{A M D}=\hat{A N B}=\alpha^{\circ} \\
& \text { * } A \hat{B C}=\beta^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ingur) } \\
& \hat{C D}=(\beta-\alpha) \quad 1 \text { veritenelly spates }
\end{aligned}
$$





Q 3 (c)(ii) $\hat{A B C}+A D C=180^{\circ}$ (opposine anglen y in he yomar ABCD are supplinontaj)

$$
\begin{aligned}
& 2 A B^{2} C=180^{\circ} \quad(\hat{C B}=A \hat{B C} \text {, ent }(\hat{B})) \\
& A B C=90^{\circ}
\end{aligned}
$$

$\therefore A C$ is deamiter (angeinisemsuria) $1090^{\circ}$

Question 4
(a) (i)

$$
\begin{gathered}
\frac{\operatorname{san}^{2} A}{\cos ^{2} A}+\frac{\cos ^{2} A}{\cos ^{2} A}=\frac{1}{\cos ^{2} A} \\
\tan ^{2} A+1=\tan ^{2} A \\
\tan ^{2} A=\sec ^{2} A-1
\end{gathered}
$$

(ii)

(iii)

$$
\begin{aligned}
\mathscr{D} / 4 & =\tan ^{-1} x \\
V & =\pi \int_{0}^{\pi} x^{2} d y \\
& =\pi \int_{0}^{\pi} \tan ^{2} y d y \\
& =\pi \int_{0}^{\pi} x^{2} x_{y}-1 d y \\
& =\pi[4 \tan 4 / 4-y]_{0}^{\pi} \\
& =\pi\left\{\left(4 \tan \pi 4_{4}-\pi\right)-(4 \tan 0-0)\right\} \\
& =\pi(4-\pi) u^{3}
\end{aligned}
$$

(b) (i)

$$
\begin{aligned}
\frac{d}{d k}\left(\frac{1}{2} v^{2}\right) & =\frac{9}{d v}\left(\frac{1}{2} r^{2}\right) \cdot \frac{d r}{d x} \\
& =v \frac{d v}{d x} \\
& =\frac{d x}{d x} \cdot \frac{d^{2}}{d x} \\
& =\frac{d v}{d x} \\
& =x
\end{aligned}
$$

(ii) $(x) \frac{d}{d x}\left(\frac{1}{x} v^{2}\right)=2 x^{3}+4 x$

$$
\begin{gathered}
\frac{t^{2}}{2} v^{2}=\frac{x^{4}}{2}+2 x^{2}+c \\
t=x=2,4=6 \\
18=8+8+c \\
c=2 \\
x^{2}=x^{4}+4 x^{2}+4
\end{gathered}
$$

(e) $v^{2}=\left(x^{2}+2\right)^{2}$ $\therefore r^{2} \geqslant 4 \quad 2 \neq 0$
$\cdots$ obpect never changen biection.



- men speer as mithel apped
$\therefore$ meser. spued $=6$ mas $^{-1}$
Question 5
(a) $y^{\prime}=-2 e^{-2 x}$

$$
\begin{gathered}
\text { wha } x=0, y^{\prime}=-2 e^{\circ} \\
m_{1}=-2 \\
m_{2}=3 \\
\tan \theta=\left|\frac{3+2}{1+(3)-3)}\right| \\
\theta=\frac{1}{4} \text {, or } 45^{\circ}
\end{gathered}
$$

(b) (i) /(iii)

(ii) $x \geqslant 1$
(iij) ser ginpt.
(c)
(i)


$$
\begin{aligned}
P(\text { doulte } \text { diudt }) & =0.6 \times 0.3 \\
& =0.18
\end{aligned}
$$

(i)

$$
(0.82+0.18)^{6}
$$

$P(c, t$ leset 2 domble domlty $)=1-\{P(0$ doulte dowith $)$ + Pl lowoute Sama

$$
\begin{aligned}
& =1-\left\{\sum_{0}^{6}(0.82)^{6}(0.18)^{0}+E_{1}(0.82)^{3}(0.8)^{1}\right\} \\
& =0.30
\end{aligned}
$$

Question 6.
（a）

$$
\begin{array}{rlrl}
\frac{d r}{d t} & =\frac{d r}{d v} \cdot \frac{d v}{d t} & V=4 / 3 \pi r^{3} \\
& =\frac{1}{4 \pi r^{2}} \cdot 10 \\
& =\frac{10}{4 \pi r^{2}}
\end{array}
$$

whe $s i=500 \quad\left(=\varphi_{\pi} \pi r^{2}\right)$

$$
\begin{aligned}
\frac{d r}{d t} & =\frac{10}{50} \\
& =/ 50 . \mathrm{cm} / \mathrm{s} .
\end{aligned}
$$

（b）when $x=1, \operatorname{cit}=2(1)$

$$
R_{i+s}=1(2!)
$$

$$
=2
$$

$$
=2
$$

$\therefore$ true of $1=1$
wsiumen truee of $a=1=1$

$$
(2(1)+5(a)+\cdots+(k+) k!=k(k+1)!
$$


$\therefore$ if trae for $n=k$ the true for $n=1$ or proce true for $n=1$ ltan true of ell $m \geqslant 1$ ．

$$
\begin{aligned}
& \text { (1) } 2(1)+5(k!)+\cdots+(k+1) k!+\left[(k+)^{2}+j\right)(k+)^{\prime}! \\
& =(t+1)(t+3)! \\
& \text { Naw }\langle\text { 位 }=2(11)+5(2 i)+\cdots+/ k+)^{k!}+(k+2 k+2)(k+y! \\
& =k(k+1)!+\left(k^{2}+2 k+2\right)(k+y)!(k \operatorname{ancmatiom}) Q ? ? \\
& =(k+1)\left\{k+k^{2}+a^{2} k+2\right\} \\
& =(k+j)!\left(k^{2}+3 k+2\right) \\
& =(k+1)!(k+i)(k+i) \\
& =(k+2)!(k+i) \\
& =8 \text { 㐫 }
\end{aligned}
$$

Q6(c)

$$
\begin{aligned}
\frac{\operatorname{city}}{d x} & =\frac{(x)\left(\frac{1}{x}\right)-(1)(\ln x)}{x^{2}} \\
& =\frac{1-\ln x}{x^{2}} \\
\int_{e}^{e^{2}} \frac{1-\ln x}{x \ln x} d x & =\int_{e}^{e^{2}} \frac{\frac{1-\ln x}{x^{2}}}{\frac{\ln x}{x}} d \ln x \\
& =\left[\ln \left(\frac{\ln x}{x}\right)\right]_{e}^{e^{2}} \\
& =\ln \left(\frac{\ln e^{2}}{e^{2}}\right)-\ln \left(\frac{\ln e}{e}\right) \\
& =\ln \left(\frac{2}{e}\right)-\ln (\text { e }) \\
& =\ln \left(\frac{2}{e}+\frac{e}{l}\right) \\
& =\ln (t e) \\
& =\ln 2-\ln e \\
& =\ln x-1
\end{aligned}
$$

Quesmon 7
(i)

$$
\begin{aligned}
& \sin (x+y)-\sin (x-y)=(\sin x \cos y+\cos x \sin y)-(\sin x \cos y-\cos x \sin y) \\
&=2 \cos x \sin y \\
& \operatorname{let} x+y=A \quad x \quad x-y=B \\
& \therefore x=A+B \quad 2 y=A-B \\
& x=\frac{A+B}{2} \quad\left(1 \quad y=\frac{A-B}{2} \quad\right. \\
& \therefore \sin A-\sin B=2 \cos \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B)}{2}\right)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\frac{\sin -A-\sin B}{\cos A-\cos \theta}= & \frac{2 \cos \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right)}{2 \sin \left(\frac{A+B}{2}\right) \sin \left(\frac{B-A}{2}\right)} \\
= & \frac{\cos \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right)}{-\sin \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{\theta}\right)}
\end{aligned}
$$

$$
=-\cot \left(\frac{A+B}{2}\right)
$$

(iii)

$$
\begin{aligned}
& \begin{array}{l}
\ddot{x}=0 \\
\dot{x}=0
\end{array} \\
& t=0, \dot{x}=\text { Vaca } \\
& v_{\text {cosa }}=c_{i} \\
& \dot{x}=\dot{v} \cos x \\
& x=v \tan x+c_{2} \\
& \epsilon=0, x=0 \quad \therefore c_{2}=0 \\
& x=V t \cos \alpha \\
& \ddot{y}=-9 \\
& \dot{y}=-y t+c_{3} \\
& t=0, \dot{y}=r \sin \alpha \\
& \gamma \text { smax }=c_{3} \\
& y=-y t+r \sin x \\
& \dot{y}=\frac{1}{2} y^{2} t^{2}+r t \sin \alpha+c_{x} \\
& t=0, y=0 \quad c_{4}=0 \\
& y=-\frac{2}{2} g t^{2}+v t \sin x \text { ( }
\end{aligned}
$$

(iv) (a) Partide $P$

$$
x_{p}=V t \cos \alpha \quad \ddot{\partial f}=-\hat{k} g t^{2}+v t \sin \alpha
$$

Partin $Q$

$$
\begin{aligned}
& x_{2}=V t \cos \beta \quad \bar{y}_{d}=-\frac{1}{2} t^{\circ}+v t \sin \beta \\
& \tan A=\operatorname{Hepar} P \\
& =\left|\frac{\left(-v^{2}+(\operatorname{tin} \beta)-\left(-\operatorname{sig} t^{2}+v \operatorname{tin} \alpha\right)\right.}{1+\cos \beta-V+\cos \alpha}\right| \\
& =\left|\frac{V t(\sin \beta-\sin \alpha)}{v t(\cos \beta-\cos \alpha)}\right| \\
& =\left|\frac{\sin \beta-\sin \alpha}{\cos \beta-\cos \alpha}\right|
\end{aligned}
$$

( $\beta$ ) $\tan \alpha=\left|-\cot \left(\frac{\alpha+\beta}{2}\right)\right|^{\theta}$ from (ii)

$$
\begin{aligned}
& =\tan \left(\frac{\pi}{2}-\left(\frac{\alpha+\beta}{2}\right)\right)(\alpha \beta \theta \alpha \cot \pi \\
\theta & =\pi / 2-\left(\frac{\alpha+\beta}{2}\right) \\
\theta & =\frac{1}{2}(\pi-\alpha-\beta)
\end{aligned}
$$

