JRAHS 2006 TRIAL HSC - EXT I

Question 1.

Marks
(a) Solve for x : $\frac{1}{x-2} \geq 2$.
(b) Find: $\lim _{h \rightarrow 0}\left(\frac{\cos 2 h-1}{h}\right)$.
(c) The point P divides $A(-1,5)$ and $B(3,-2)$ in the ratio $r: 1$.
(i) Find the coordinates of P in terms of r.
(ii) Find the value of r when the line $2 x-3 y+4=0$ intersects the interval $A B$.
(d) Evaluate $\int_{0}^{1}\left(x^{2}+1\right)^{3} d x$.

Question 2.

[START A NEW PAGE]
(a) A plate is initially heated to $55^{\circ} \mathrm{C}$, and it then cools to $41^{\circ} \mathrm{C}$ in 10 minutes. If the surrounding temperature, $S^{0} C$, is $22^{0} \mathrm{C}$ and assuming Newton's Law of Cooling:

$$
\frac{d T}{d t}=-k(T-S) .
$$

(i) Find the temperature of the plate 25 minutes from the start of cooling (to 1 decimal place).
(ii) Find the time for the plate to cool to $25^{\circ} \mathrm{C}$ (to 1 decimal place).
(iii) Sketch the graph of the rate of temperature, $\frac{d T}{d t}$, versus the temperature $T .1$
(b) The displacement x metres of a particle after t seconds, is given by:

$$
x=5 \sin 3 t-7 \cos 3 t .
$$

(i) Show that the motion of the particle is SHM.
(ii) Find the maximum displacement. 1
(iii) Find the time when the particle first passes through the centre of motion (correct to 1 decimal place).
(iv) Sketch the graph of the acceleration \ddot{x} versus displacement x.
(a) Differentiate $\cos ^{-1}\left(-\frac{1}{x}\right)$ with respect to x. Answer in simplified form.
(b) (i) On the same set of axes, sketch the graphs of $y=\sin ^{-1} x$ and $y=\tan ^{-1} x$.
(ii) Given that: $\int_{0}^{1} \sin ^{-1} x d x=\frac{\pi}{2}-1$, find the area of the region bounded by

$$
y=\sin ^{-1} x, y=\tan ^{-1} x \text { and } x=1 .
$$

(c) (i) Show that $y=e^{-x} \sin 2 x$ is a solution to the differential equation:

$$
y^{\prime \prime}+2 y^{\prime}+5 y=0
$$

(ii) Hence, or otherwise, find $\int e^{-x} \sin 2 x d x$.

Question 4.
 [START A NEW PAGE]

(a) A fire truck arrives at a burning building 10 metres high and 15 metres wide.

The water nozzle hose on the fire truck is 2 metres above the ground and d metres from the building, as shown in the diagram.

The angle of elevation of the hose, α, can be adjusted to range from 10° to 45°.
The parametric equations for the water particles from the nozzle are given by: $x=30 t \cos \alpha$ and $y=30 t \sin \alpha-5 t^{2}$, where t is the time in seconds when $g=10$.
(i) Show that the trajectory path of the water is given by the equation:

$$
y=x \tan \alpha-\frac{x^{2}}{180}\left(1+\tan ^{2} \alpha\right)
$$

(ii) The hose nozzle is adjusted to an angle of elevation of 45°.

Find the distance, d, from the building if the water is to reach the furthest point B on top of the building as shown (answer to the nearest centimetre).

Q 4 continues over the page
(iii) Find the angle of elevation α of the nozzle, for the water to reach position A, when the hose nozzle is 20 metres from the burning building (answer to nearest minute).
(b) Find $\int \frac{4 x-7}{2 x^{2}+1} d x$.
(c) (i) For $t>0$, find the limiting sum of: $e^{-t}+e^{-2 t}+e^{-3 t}+\ldots$.
(ii) Hence, find an expression for the series; $e^{-t}+2 e^{-2 t}+3 e^{-3 t}+\ldots . \quad \mathbf{1}$
(d) A semi-circle of radius r has the equation: $y=\sqrt{r^{2}-x^{2}}$.
(i) Find $\frac{d y}{d x}$ at the point $P(x, y)$.

1

1 perpendicular to the radius.

Question 5.

[START A NEW PAGE]
(a) Find the greatest coefficient in the expansion of $(4 x+5)^{11}$.
(Leave the answer in index form).
(b) A ping pong ball is initially placed 1 metre beneath the surface of the water, as shown in the diagram.

x	
0	\quad water surface
1 m	

The ping pong ball is released in the water with an acceleration of $\ddot{x} m / \mathrm{s}^{2}$, where $\ddot{x}=-625 x$, and where x metres is the displacement of the motion measured from the water surface.
(i) Is the motion of the ping pong ball only SHM? Give reasons.
(ii) Prove that: $\frac{d}{d x}\left(\frac{v^{2}}{2}\right)=\ddot{x}$.
(iii) Find the expression for the ping pong ball's velocity $v \mathrm{~m} / \mathrm{s} \quad 2$ when it is in the water.
(iv) Find the velocity of the ball at the water's surface. $\mathbf{1}$
(v) Assuming there is no air resistance and the acceleration due to gravity 2 is $10 \mathrm{~m} / \mathrm{s}^{2}$, derive an expression for the displacement in air in terms of v
(vi) Find the maximum height that the ping pong ball reaches above the surface of the water.

Question 6.
[START A NEW PAGE]
(a) How many groups of 2 men and 2 women can be hosen from 6 men and 8 women?
(b) Six letter words are formed from the letters of the word CYCLIC.
(i) How many different 6-letter words can be formed?
(ii) How many 6 letter words can be formed, if no ' \boldsymbol{C} 's are together? 2
(iii) What is the probability of all the ' \boldsymbol{C} 's together, if it is known a vowel is at the end?
(c) Prove, by the method of mathematical induction that:

$$
\sin q+\sin 3 q+\sin 5 q+\ldots+\sin (2 n-1) q=\frac{1-\cos 2 n q}{2 \sin q} \text {, for } n=1,2,3, \ldots
$$

Question 7.

[START A NEW PAGE]
(a) At the end of each month, for 15 years, a man invests $\$ 400$ at an interest rate Which is paid monthly at 6% pa.
(i) Show that the value of his first payment, at the end of 15 years, is $\$ 976.75$
(ii) Find the value of the man's total investment at the end of the 15 years.
(b) A circle, centre O with a constant radius r, is such that the chords $A C$ and $B D$ intersect at point $E, \angle C E D=\theta$ radians and $\angle B O C=\frac{2 \pi}{3}$ radians, as shown the diagram.

(i) Show that the sum of the arcs $A B$ and $C D$ equal $2 r \theta$, give reasons.
(ii) Show that the perimeter P of the shape $A B C D$, where $B C, A D$ are chords and $C D, A B$ are arc lengths, is given by:

$$
P=r\left(2 \theta+\sqrt{3}+2 \sin \left(\frac{\pi}{3}-\theta\right)\right)
$$

(iii) Find the value of θ, in the domain $0 \leq \theta \leq \frac{\pi}{2}$ for the perimeter of $A B C D$ to have a maximum value. Justify your answer.
¿2006 Mathematies Extension I Trial Exam.
(a)
$\frac{1}{x-2} \geqslant 2 \quad x \neq 2$

$$
(x-2) \geqslant 2(x-2)^{2}
$$

$$
(x-2)-2(x-2)^{2} \geqslant 0
$$

$$
(x-2)(1-2(x-2)) \geqslant 0
$$

$$
(x-2)(5-2 x) \geq 0
$$

\therefore Solution $2<x \leqslant 2 \frac{1}{2}$
b)

$$
\lim _{h \rightarrow 0}\left(\frac{\cos 3 h-1}{h}\right)\left(\frac{\cos 3 \cdot h x 1)}{(\cos 3 \cdot h+1)}\right.
$$

$$
=2 \frac{26}{35}
$$

$$
=\lim _{h \rightarrow 0} \frac{\cos ^{2} 3 \cdot h-1}{h[\cos 3 h+1]}
$$

$$
=\lim _{h \rightarrow 0} \frac{-\sin ^{2} 3 h}{h[\cos 3 h x+]}
$$

$=\lim _{h \rightarrow 0} \frac{\sin 3 h}{3 h} \frac{-3 \operatorname{sen} 3 h}{\cos 3 h+1}$

$$
\begin{equation*}
=1 \cdot \frac{0}{2} \tag{2}
\end{equation*}
$$

$$
=0
$$

c)
ril
(1) $A(-1,5) \quad B(3,-2)$

$$
P \equiv\left[\frac{3 r-1}{r+1}, \frac{-2 r+5}{r+1}\right]
$$

$\therefore 2\left[\frac{3 r-1}{x+1}\right]-3\left[\frac{-2 x+5}{x+1}\right]+4=0$
$6 r-2+6 r-15+4 r+4=0$ $16 r=13$
$x=\frac{13}{16}$
(2)
(ii)
(i)

$$
\begin{aligned}
& \text { (d) } \int_{0}^{1}\left(x^{2}+1\right)^{3} d x \\
& =\int_{0}^{1}\left(x^{6}+3 x^{4}+3 x^{2}+1\right) d x \\
& =\left[\frac{x^{7}}{7}+\frac{3}{5} x^{5}+x^{3}+x\right]_{0}^{1} \\
& =2 \frac{26}{35}
\end{aligned}
$$

$2 \frac{d T}{d t}=-h\left(T-T_{0}\right)$

$$
t=T_{0}+A e^{-k t}
$$

And $41=22+33 e^{-10 k}$
(1)
which is of the form $\ddot{x}^{\prime \prime}=-n^{2}(x-b)$

$$
n=3 \quad b=0
$$

\therefore motion 5 Hm .
i')

$$
\begin{aligned}
\text { Max desplacement } & =\sqrt{5^{2}+7^{2}} \\
& =\sqrt{25+49} \\
& =\sqrt{74} \text { vuts. }
\end{aligned}
$$

$$
\text { max velouty }=\sqrt{15^{2}+21^{2}}
$$

$$
T_{0}=22^{\circ} \quad \text { And } t=0 \quad T=55
$$

$$
=3 \sqrt{74} \mathrm{~m} / \mathrm{s}
$$

$$
\begin{align*}
e^{-10 k} & =\frac{19}{33} \\
k & =\frac{1}{10} \cdot \ln \frac{33}{14}-\frac{t}{10} \ln \left(\frac{33}{14}\right) \tag{2}\\
\therefore \quad T & =22+33 e \tag{1}
\end{align*}
$$

$$
\therefore 55=22+A e^{0}
$$

$$
\begin{align*}
t & =25 \quad-\frac{25}{10} \ln \frac{33}{14} \\
T & =22 \times 33 e^{0} \\
& =30.3^{\circ} \mathrm{C}-\frac{t}{10} \ln \frac{33}{19} \tag{c}
\end{align*}
$$

$$
25=22+33 e
$$

(1)

$$
e^{-\frac{t}{10}} \ln \frac{33}{14}=\frac{3}{33}
$$

$\frac{3}{(a)}$

$$
\begin{aligned}
-\frac{t}{10} \ln \frac{33}{14} & =-\ln 11 \\
x & =10 \ln
\end{aligned}
$$

$$
t=\frac{10 \ln 11}{\ln \frac{33}{17}}
$$

$$
\begin{aligned}
& \text { (2) } \begin{aligned}
\frac{3}{(a)} \frac{d}{d x} \cos ^{2}\left(\frac{-1}{x}\right) & =\frac{1}{x^{2}} \cdot \frac{-1}{\sqrt{1-\frac{1}{x^{2}}}} \\
& =\frac{-\sqrt{x^{2}}}{x^{2} \sqrt{x^{2}-1}} \\
& =\frac{-|x|}{x^{2} \sqrt{x^{2}-1}} \\
& =\frac{-1}{\mid x / \sqrt{x^{2}-1}}
\end{aligned} \text { (1) }
\end{aligned}
$$

iii)

$$
\begin{aligned}
& 5=22+A e \\
& A=33 \Rightarrow T=22 \times 33 e^{k k_{1} t}=10 . k
\end{aligned}
$$

$$
\begin{align*}
x=0 \quad 5 \operatorname{sen} 3 t-7 \cos 3 t & =0 \tag{2}\\
\tan ^{3} t & =\frac{7}{5} \\
3 t & =\operatorname{Tan}^{4} \frac{7}{5}
\end{align*}
$$

iv)

$$
\begin{aligned}
& \text { (d) }
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \text { Regian } \\
& \begin{array}{r}
\therefore \text { Regian } \int_{0}^{1} \operatorname{sen}^{4} x d x \int_{0}^{1} \tan ^{4} x d x \\
\quad=\frac{\pi}{2}-1-\left[\frac{\pi}{4}-\frac{1}{2} \ln 2\right]
\end{array} \\
& =\frac{\pi}{4}-1+\frac{1}{2} \ln 2 . \\
& \text { (c) (i) } y= \\
& \frac{d y}{d k}=-e^{-k} \mu \cos 2 x+2 e^{-k} \cos 2 x \\
& =e^{-k}[2 \cos 2 k-\operatorname{sen} 2 k] \\
& \frac{d^{2} y}{d x^{2}}=-e^{-k}[2 \cos 2 k-\sin 2 k] \\
& +e^{-x}[-4 \sin 2 x-2 \cos 2 x] \text { (1) } \\
& =e^{-x}[-3 \sin 2 x-4 \cos 2 x]
\end{aligned}
$$

[.] $y^{\prime \prime}+2 y^{\prime}+5 y=0$
3

$$
\begin{align*}
\int e^{-k} \sin 2 x d x & =\frac{-1}{5}\left[e^{-k}(2 \cos 2 x-\sin 2 k)+2 e^{-k} \sin 2 c\right]+c \\
& =\frac{-e^{-k}}{5}[2 \cos 2 x+\sin 2 k]+c \tag{1}
\end{align*}
$$

4(a) (i) $x=30 . t \cos \alpha$

$$
y=-5 t^{2}+30 . t \operatorname{sen} t
$$

$$
t=\frac{x}{30 \cos \alpha}
$$

$$
y=-5\left(\frac{x}{30 \cos \alpha}\right)^{2}+30 \operatorname{sen} \alpha \frac{x}{30 \cos \alpha}
$$

$$
y=\frac{-x^{2}}{180} \sec ^{2} \alpha+x \operatorname{Tan} \alpha
$$

OR $y=\frac{-x^{2}}{180}\left[1+7 \operatorname{con}^{2} \alpha\right]+x \operatorname{Tan} \alpha$
i)

$$
\begin{aligned}
& \alpha=45^{\circ} \quad y=8 \quad x=\alpha+15 \\
& \therefore 8=-\frac{x^{2}}{180} \cdot(1+1)+x \\
& x^{2}-90 x+720=0 \\
& x=\frac{20 \pm \sqrt{90^{2}-4 \times 72_{0}}}{2} \\
& \alpha+15=81.12 \text { or } 17.45 .
\end{aligned}
$$

$$
a=66.12 \mathrm{~m} \text { sirthict distome. }
$$

(2)
iii I $\quad A(20,8)$

$$
\begin{align*}
& 8=-\frac{400}{180}\left[1+\tan ^{2} \alpha\right]+20 \operatorname{Tan} \alpha \\
& 72=-20\left[1+\operatorname{Tan}^{2} \alpha\right]+180 \operatorname{Tan} \alpha \\
& 20 \operatorname{Tan}^{2} \alpha-180 \operatorname{Tan} \alpha+92=0 \\
& 5 \operatorname{Tan}^{2} \alpha-45 \operatorname{Tan} \alpha+23=0 \\
& \tan \alpha=\frac{45 \pm \sqrt{45^{2}-4 \times 5 \times 23}}{2 \times 5} \\
&=0.544 \operatorname{er} 8.46 \tag{2}
\end{align*}
$$

Angle $\alpha=28^{\circ} 33^{\prime}$ as $0 \leqslant \alpha \leqslant 45^{\circ}$.
(b)

$$
\begin{align*}
\int \frac{4 x-7}{2 x^{2}+1} d x & =\int\left(\frac{4 x}{2 x^{2}+1}-\frac{7}{2 x^{2}+1}\right) d x \\
& =\int\left(\frac{4 x}{2 x^{2}+1}-\frac{1}{2} \frac{1}{x^{2}+\frac{1}{2}}\right) d x \\
& =\ln \left(2 x^{2}+1\right)-\frac{1}{2} \cdot \frac{1}{\sqrt{\frac{1}{2}}} \tan ^{4} \frac{x}{\sqrt{\frac{1}{\sqrt{2}}}}+c \\
& =\ln \left(2 x^{2}+1\right)-\frac{1}{\sqrt{2}} \tan ^{1}(x \sqrt{2})+c \tag{2}
\end{align*}
$$

(c) (i)

$$
\text { as }\left|e^{-t}\right|<1 \text { for } t>0 \text {. }
$$

(ii)

$$
\begin{align*}
& e^{-i t}+e^{-2 t}+e^{-3 t}=\frac{e^{-t}}{1-e^{-t}} \\
& =\frac{1}{e^{x}-1} \tag{1}\\
& \text { Now } \frac{d}{d t}\left[e^{-i t}+e^{-2 t}+e^{-3 t}+\ldots=\frac{d}{d t}\left(e^{t}-1\right)^{-1}\right. \\
& -e^{-t}-2 e^{-2 t}-3 e^{-3 t}+\cdots=-\left(e^{t}-1\right)^{-2} \cdot e^{t} \\
& \therefore \quad e^{-t}+2 e^{-2, t}+3 e^{-3 t} \cdots=\frac{e^{t}}{1 \cdot t \cdot 1^{2}}
\end{align*}
$$

(d)

Crrovent $m_{1}=\frac{d y}{d x}=\frac{-x}{\sqrt{r^{2}-x^{2}}}$.angent
cravient op $=\frac{y-0}{x-0}$

$$
=\frac{y}{x}
$$

$$
m_{2}=\frac{\sqrt{r^{2}-k^{2}}}{x}
$$

$$
\begin{align*}
\text { i. } m_{1} \times m_{2} & =\frac{-x}{\sqrt{x^{2}-x^{2}}}, \frac{\sqrt{x^{2}-x^{2}}}{x} \\
& =-1 \tag{1}
\end{align*}
$$

1. Tougent 1 rackies.

5

Fir lazest coeffieent $\frac{5(12-r)}{4 r} \geqslant 1$

$$
\begin{array}{rl}
60-5 r & \geqslant 4 r \tag{1}\\
9 r & \geqslant 60 \\
56 & r
\end{array} \quad T_{8}<T_{7}
$$

\therefore Langent coeffecient $\binom{11}{6} 4^{5} 5^{6}$
)

$$
\begin{align*}
& (a+b)^{n} \equiv \sum_{r=0}^{n}\binom{n}{r} a^{n-r} b^{r} \\
& \therefore \quad T_{n+1}=\binom{n}{r}(4 x)^{11-r} 5^{+} \\
& T_{4-}=\binom{4}{r-1}(4 x)^{12-r} 5^{r-1} \\
& \frac{T_{n+1}}{T_{r}}=\frac{11!}{r!(11-r)!} \frac{(r-r)!(12-r)!}{11!} \frac{4^{11-\mu}}{4^{12-\alpha}} \frac{5^{r}}{5^{n-1}} \frac{x^{11-\mu}}{x^{12-r}} \\
& =\frac{12-r}{r} \cdot \frac{5}{4} \cdot \frac{1}{x} \tag{1}
\end{align*}
$$

$$
\begin{align*}
& \frac{v^{2}}{2}=-10 x+C \quad x=0 \quad v=25 \\
& \therefore \frac{2 s^{2}}{2} \\
& \frac{v^{2}}{2}=-10 x+\frac{625}{2} \\
& v^{2}=-20 x+625 \\
& x=\frac{625-u^{2}}{20}
\end{align*}
$$

(1) Max heijht $v=0$

$$
\begin{align*}
k & =\frac{625}{20} \\
& =31.25 \mathrm{~m} . \tag{1}
\end{align*}
$$

$6(a) \quad$ Nays $=\binom{6}{2}\binom{8}{2}=420$
(di) (i) Nunber wonds $\frac{6!}{3!}=120$
(i^{\prime})

$$
\begin{align*}
& C \Delta C \Delta C \Delta \quad \Delta C \Delta C \Delta C \tag{2}\\
& C \Delta \Delta C \Delta C \\
& C \Delta C \Delta \Delta C \\
& \text { total }=4 \times 3! \tag{2}\\
&=24
\end{align*}
$$

(iii) (cec) Y L I or I cce YL
wengs $I=2!$
Wenys $C=1$

$$
\text { Ways }[\operatorname{CCCY} \text { Whys } I=2!
$$

$$
\text { Total }=2 \times 3!
$$

I end $=12$

$$
\begin{aligned}
\text { Tul } & =2 \times 20 \\
& =40
\end{aligned}
$$

(b) i'step $1 \quad n=1$

$$
\begin{aligned}
\text { LiHS }=\sin q \quad \text { RHS } & =\frac{1-\cos 2 \theta}{2 \operatorname{sen} q} \\
& =\frac{1-\left(1-2 \sin ^{2} q\right)}{2 \sin q} \\
& =\frac{2, \sin ^{2} q}{2 \sin q} \\
& =\sin q \\
& =L .45
\end{aligned}
$$

stap^{2} \therefore Tule $n=1$.

4 sisuc true $n=k \quad \sin z+\sin 3 g+\ldots \quad \sin (2 k-1) q=\frac{1-\cos 2 k g}{2 \sin q}$
To prove toue nek+1 $\operatorname{sen} y+\sin ^{3} g+\sin (2 k+1) q=1-\cos ^{2}(k+1) \varepsilon$

$$
\begin{align*}
& W=\sin q+\sin 3 q+\cdots+\operatorname{san}(2 k-1) \eta+\sin (2 k+1) q \\
&=\frac{1-\cos 2 k q}{2 \sin q}+\sin (2 k+1) q(B y \quad \text { cosurnption}) \\
&=\frac{1-\cos 2 k q}{2 \sin q}+2 \sin q \sin (2 k+1) q \tag{1}\\
& 2 \sin q
\end{align*}
$$

$$
=\frac{1-\cos [(2 k+1) q-q]+2 \sin q \sin (2 k+1) q}{2 \sin q}
$$

$$
\begin{equation*}
=\frac{1-\{\cos (2 k+1) q \cos q+\sin (2 k+1) y \sin q\}+2 \sin q \sin (2 k+1) q}{2 \sin q} \tag{1}
\end{equation*}
$$

$$
=1-\{\cos (2 k+1) q \cos q-\sin q \sin (2 k+1) q\}
$$

$$
\begin{equation*}
=\frac{1-\cos [(2 k+1) q+q]}{2 \sin q} \tag{1}
\end{equation*}
$$

$$
=\frac{1-\cos 2(k+1) q}{2 \sin g}
$$

i. If statiment true $n=$ ik it is also brue $n=k+1$. sunce trie for $n=1$ it is alo trice for $n=\mid t 1=2, n=2 \alpha 1=3$ aund so on
i) $\quad \frac{d p}{d \theta}=r\left[2-2 \cos \left(\frac{\pi}{3}-\theta\right)\right]$

$$
\frac{d^{2} p}{d \theta^{2}}=2 r \sin \left(\frac{\pi}{3}-\theta\right)
$$

For maxine Perimeter $\frac{d P}{d \theta}=0$

$$
\begin{aligned}
\pi\left[2-2 \cos \left(\frac{\pi}{3}-\theta\right)\right] & =0 \\
\cos \left(\frac{\pi}{3}-\theta\right) & =1 \\
\frac{\pi}{3}-\theta & =0 \quad \text { f } \theta \quad \theta<\theta<\pi / 2 \\
a \theta & =\frac{\pi}{3}
\end{aligned}
$$

For mature tent $\frac{d^{2} p}{d q^{2}}$ for concavity

$$
\text { at } \theta=\frac{\pi}{3} \quad \frac{\alpha^{2} p}{\alpha \theta^{2}}=\tau \times 0
$$

Tent gradients:

θ	1	$\frac{y}{3}$	1.1
$\frac{\alpha p}{u \theta}$	$2 \times 10_{r}^{-3}$	0	$2 \times 10_{r}^{-3}$

gradients sumac sign.
\therefore Inflexion posit at $\theta=\frac{\pi}{3}$ and monotonic increasing, intinsous for $0<\theta<\pi / 2$
i. Maximum pemeiter oft enol points of domain । ce $\theta=\frac{\pi}{2}$.

