

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION 2012

MATHEMATICS EXTENSION 1

General Instructions:

- Reading Time: 5 minutes.
- Working Time: 2 hours.
- Write in black or blue pen.
- Board approved calculators \& templates may be used

A Standard Integral Sheet is provided.

In every question, show all necessary working

- Marks may not be awarded for careless or badly arranged working.

Total Marks 70

Section I: 10 marks
Attempt Question 1-10.

- Answer on the Multiple Choice answer sheet provided.
- Allow about 15 minutes for this section.

Section II: 60 Marks
Attempt Question 11-14

- Answer on blank paper unless otherwise instructed. Start a new page for each new question.
Allow about 1 hours \& 45 minutes for this section.

The answers to all questions are to be returned in separate stapled bundles clearly labelled Question 11, Question 12, etc. Each question must show your Candidate Number.

SECTION I MULTIPLE CHOICE (10 marks)

Attempt Question 1 - 10 (1 mark each)
 Allow approximately 15 minutes for this section

1 A bowl of soup at temperature $T^{\circ} \mathrm{C}$, when placed in a cooler environment, loses heat according to the law $\frac{d T}{d t}=k\left(T-T_{0}\right)$ where t is the time elapsed in minutes and T_{0} is the temperature of the environment in degrees Celsius. A bowl of soup at $96^{\circ} \mathrm{C}$ is left to stand in a room at a temperature of $18^{\circ} \mathrm{C}$. After 3 minutes the soup cools down to $75^{\circ} \mathrm{C}$. What is the value of k correct to 4 decimal places?
(A) -0.0784
(C) -0.1046
(B) -0.0856
(D) -0.1236

2 Which of the following is an expression for $\int \cos ^{2} 2 x d x$?
(A) $x-\frac{1}{4} \sin 4 x+c$
(C) $\frac{x}{2}-\frac{1}{8} \sin 4 x+c$
(B) $x+\frac{1}{4} \sin 4 x+c$
(D) $\frac{x}{2}+\frac{1}{8} \sin 4 x+c$

3 The velocity of a particle moving in a straight line is given by $v=2 x+3$ where x metres is the distance from fixed point O and v is the velocity in metres per second. What is the acceleration of the particle when it is 4 metres from O ?
(A) $a=11 \mathrm{~ms}^{-2}$
(C) $a=22 \mathrm{~ms}^{-2}$
(B) $a=19 \mathrm{~ms}^{-2}$
(D) $a=23.5 \mathrm{~ms}^{-2}$

4 Which of the following is an expression for $\int x \sqrt{1-x^{2}} d x$?
Use the substitution $u=1-x^{2}$.
(A) $\frac{-\left(1-x^{2}\right)^{3}}{3}+c$
(C) $\frac{-\left(1-x^{2}\right)^{\frac{3}{2}}}{3}+c$
(B) $\frac{\left(1-x^{2}\right)^{3}}{3}+c$
(D) $\frac{\left(1-x^{2}\right)^{\frac{3}{2}}}{3}+c$

5 What are the solutions to the equation $e^{6 x}-7 e^{3 x}+6=0$?
(A) $x=1$ and $x=6$
(C) $x=0$ and $x=\frac{\ln 6}{3}$
(B) $x=0$ and $x=\frac{\ln 6}{2}$
(D) $x=1$ and $x=\frac{\ln 6}{2}$

6 A particle moving in a straight line obeys $v^{2}=-x^{2}+2 x+8$ where x is its displacement from the origin in metres and v is its velocity in ms^{-1}. The motion is simple harmonic. What is the amplitude?
(A) 2π metres
(C) 8 metres
(B) 3 metres
(D) 9 metres

7 How many distinct permutations of the letters of the word 'ATTAINS' are possible in a straight line when the word begins and ends with the letter T?
(A) 60
(C) 360
(B) 120
(D) 1260

8 If $f(x)=e^{x+2}$ what is the inverse function $f^{-1}(x)$?
(A) $f^{-1}(x)=e^{y-2}$
(C) $f^{-1}(x)=\log _{e} x-2$
(B) $f^{-1}(x)=e^{y+2}$
(D) $f^{-1}(x)=\log _{e} x+2$

9 What is the coefficient of x^{5} in the expansion of $\left(1-3 x+2 x^{3}\right)(1-2 x)^{6}$?
(A) -792
(B) -720
(C) 120
(D) 312

10 A die is tossed 3 times. What is the probability of 0 or 1 six turning up?
(A) $\frac{2}{27}$
(B) $\frac{25}{27}$
(C) $\frac{91}{216}$
(D) $\frac{125}{216}$

SECTION II EXTENDED RESPONSE (60 marks)

Total Marks is 60

Attempt Question 11-14.
Allow approximately 1 hour \& 45 minutes for this section.
Answer all questions, starting each new question on a new sheet of paper with your student ID number in the top right hand corner and the question number on the left hand side of your paper. All necessary working must be shown in each and every question.

QUESTION 11 (15 Marks)

Marks

(a) Solve $\frac{4}{3 x+1}<5$.
(b) If α, β and γ are the roots of the equation $x^{3}+2 x^{2}-3 x-5=0$, find the value of $\frac{1}{\alpha \beta}+\frac{1}{\beta \gamma}+\frac{1}{\alpha \gamma}$.
(c) Use the substitution $x=u^{2}+1$ for $u>0$ to evaluate the integral:

$$
\int_{1}^{5}(x+1) \sqrt{x-1} d x
$$

(d) A series is given by $1+\frac{1-p}{p}+\left(\frac{1-p}{p}\right)^{2}+\cdots$, where p is positive.
(i) Find the domain of p such that the series has a sum to infinity.
(ii) Find this sum to infinity in terms of p.
(e) Prove that the tangent to a parabola $x^{2}=4 a y$ at a given point $P\left(2 a p, a p^{2}\right)$ is equally inclined to the axis of the parabola and the focal chord through the point.
(a) Solve: $x^{3}+2 x^{2}-5 x-6=0$
(b) When the polynomial $P(x)$ is divided by $x^{2}-1$, the remainder is $3 x+1$.

What is the remainder when $P(x)$ is divided by $x+1$?
(c) In how many ways can 4 men and 4 women be arranged around a circular table if:
(i) All women sit together?
(ii) All the men are in pairs separated by two pairs of women?
(d) Find the general solution to: $\cos 5 \theta-\cos 2 \theta=0$
(e) A thin-walled cone-shaped cup is to hold $36 \pi \mathrm{~cm}^{3}$ of water when full.

What dimensions will minimize the amount of material needed for the cup?
[You may make use of the formula $A=\pi r s$, where s is the slant height of a cone]
(a) A is 205 metres above the horizontal plane $B P Q$. $A B$ is vertical. The angle of elevation of A from P is 37° and the angle of elevation of A from Q is 22°. P is due East of B and Q is South 47° East from B.

Calculate the distance from P to Q, to the nearest metre.

NOT TO SCALE
(b) Use mathematical induction to show:

$$
\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right)\left(1-\frac{1}{4^{2}}\right) \ldots\left(1-\frac{1}{n^{2}}\right)=\frac{n+1}{2 n}
$$

for $n \geq 2$ where n is an integer.
(c) A particle moves in SHM on a horizontal line and its acceleration is $\frac{d^{2} x}{d t^{2}}=36-9 x$, where x is the displacement after t seconds.
(i) Find the centre of its motion.
(ii) If the particle is initially at rest at $x=6$, find the amplitude.
(d) A hemi-spherical bowl has a radius of 3 m . Oil is poured in at a constant rate of $\frac{\pi}{3} \mathrm{~m}^{3} / \mathrm{min}$.

NOT TO
SCALE

$$
V=\frac{\pi}{3}\left(9 h^{2}-h^{3}\right) \mathrm{m}^{3}
$$

(ii) How deep is the oil after 8 minutes?
(iii) At what rate is h increasing at this time?
(a) A particle is moving in a straight line and its position x, in metres, from the origin O at time t seconds is given by

$$
x=3 \cos 2 t+4 \sin 2 t+2
$$

(i) Express $3 \cos 2 t+4 \sin 2 t$ in the form

$$
R \cos (2 t-\alpha) \quad \text { where } 0<\alpha<\frac{\pi}{2} \text { and } R>0
$$

(ii) Prove that the particle is undergoing simple harmonic motion.

Find the amplitude of the motion.
(iii) Find the maximum speed of the particle.

When does the particle first reach this maximum speed?
Provide your answer to 2 decimal places.
(b) Given the binomial expansion of

$$
\begin{aligned}
& (1+x)^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} \text { and } \\
& \quad(1+x)^{n+1}=b_{0}+b_{1} x+b_{2} x^{2}+\cdots+b_{n+1} x^{n+1}
\end{aligned}
$$

(i) Find the relationship for co-efficient b_{k} in terms of a_{r}.
(ii) Hence find the expression, in terms of n only, of:

$$
\frac{1}{a_{0} a_{1} \ldots a_{n}} \times\left(a_{0}+a_{1}\right)\left(a_{1}+a_{2}\right) \ldots\left(a_{n-1}+a_{n}\right) \quad \text { for } n=1,2,3 \ldots
$$

(c) (i) Show that $\tan ^{-1}(n+1)-\tan ^{-1}(n-1)=\tan ^{-1}\left(\frac{2}{n^{2}}\right)$ for $n \geq 1$.
(ii) Hence or otherwise show that:

$$
\sum_{r=1}^{n} \tan ^{-1}\left(\frac{2}{r^{2}}\right)=\tan ^{-1}\left(\frac{2 n+1}{1-n-n^{2}}\right)+\frac{3 \pi}{4}
$$

Section I

10 Marks

Attempt Question 1-10.
Allow approximately 15 minutes for this section.
Use the multiple choice answer sheet below to record your answers to Question 1-10.
Select the alternative: A, B, C or D that best answers the question.
Colour in the response oval completely.

Sample:

$2+4=?$
(A) 2
(B) 6
(C) 8
(D) 9
A \qquad B
C
\bigcirc
D

If you think you have made a mistake, draw a cross through the incorrect answer and colour in the new answer
ie
A
B
>
C
\bigcirc
D \bigcirc

If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word "correct" and draw an arrow as follows:

Trial HSC Examination
 Mathematics Extension 1, 2012

Multiple Choice Answer Sheet

Student id number:

Completely colour in the response oval representing the most correct answer.

Mark: /10

MATHEMATICS Extension 1 : Question...!

Marker's Comments
Marks
\square

* $1 / 2$ ak of f of the signs we sa wrong
* In upu only gest $x>-\frac{1}{15}, y+0$ 3 cored one ink only.
*A Id of students were confused with the signs!!
(b)

$$
\begin{aligned}
& \alpha+\beta+\gamma=-\sqrt{2}=-\alpha \\
& \alpha \beta \gamma=-d / a=5 \\
& \frac{1}{\alpha \beta}+\frac{1}{\beta \gamma}+\frac{1}{\alpha \gamma}=\alpha+\beta+\gamma \\
& =-2 / 5 \\
& \text { (c) } x=u^{2}+1 \\
& \frac{d x}{d u}=2 u \\
& d x=\text { kudu }
\end{aligned}
$$

\|CALLISTOIStaffHomesWOHUJRAH M Fac Admin\Assessment infolSuggested Mk solis template_V4_half Ls.doc
$2 / 5$
MATHEMATICS Extension 1 : Question...||.
when $x=1 \quad u=0$

$$
5 \quad x=5 \quad a=2
$$

$$
1 / 2 m k
$$

$$
1 / 2
$$

(d)
(b) For there to be sin to minty

* lost Ink if they wrote $0<r \ll$ or if theyurote $r<1 \Rightarrow$ link.
* lost ane marty If they squared the absolute. value expression. or $\left|\frac{1-p}{b}\right|<1$ $\frac{|1-p|}{|p|}<1$

IICALLISTOIStafffomeßIWOHNRAH M Fac Admin\Assessment infolSuggested Mk solis template_V4_half Ls.doc $11-t)<(p)$
she

$$
\begin{aligned}
& =\int_{0}^{0}\left(u^{2}+2\right) u \cdot 2 u d u \\
& =2 \int_{0}^{2}\left(u^{4}+2 u^{2} \int_{2}^{2} d u\right. \\
& =2\left[\frac{x^{5}}{5}+\frac{x^{3}}{3}\right]_{0}^{2} \\
& =2\left(\frac{32}{5}+\frac{2 \times 8}{3}-0\right) 1 / 2 \\
& =\frac{64}{5}+\frac{32}{3} \\
& =\frac{352}{15}
\end{aligned}
$$

35

\ICALLISTO\StaffHomeilWOHURAH M Fac Admin\Assessment infolSuggested Mk solns template_V4_half Ls.doc

MATHEMATICS Extension 1 : Question. .|.....

METHOO 2

gradiet of trang $=p$
gradient of foca shord $=\frac{a \rho-a}{2 a \rho-0}$

$$
=\frac{0\left(p^{2}-1\right)}{2 \operatorname{cap}}
$$

$I \sim \triangle S P T$,

$$
=\frac{p^{2}+1}{2 p}
$$

$$
t \sigma \theta=\left|\frac{M_{1}-m_{2}}{1+m_{m}}\right|
$$

$$
=\left|\rho-\frac{\left.p^{2}-1\right)}{1+\frac{r\left(p^{2}-1\right)}{2 \rho}}\right||\quad| 1 / 2
$$

1/2 mk for a decent diaggam with data rarked on 7 ! !
\qquad 2
\qquad
\qquad

NCALLISTOIStaffHopneSTWOHURAH M Fac Admin\Assessment infolSuggested Mk solns template_V4_half Ls.doc

$$
\begin{aligned}
& =\left|\frac{2 p^{2}-\left(p^{2}-1\right)}{\left.2 p+p p^{2}-1\right)}\right| \\
& \Rightarrow\left|\frac{p^{2}+1}{p^{3}+2 \beta-p}\right| \\
& =\left|\frac{p^{2}+1}{p^{3}+p}\right| \\
& =\left|\frac{p^{2}+1}{p\left(p^{2}+1\right)}\right|=\frac{1}{\rho}
\end{aligned}
$$

$$
\begin{aligned}
& \text { [the gradient of the taxis is undefined } \\
& \text { Op } \int N(a p, 0) \text { In } \triangle O N T \text {, } \\
& \tan \alpha=\frac{a p}{a p^{2}} \\
& \therefore \tan \alpha=\frac{1}{p} \\
& \therefore \tan \alpha=\tan \theta=\frac{1}{p} \\
& \text { conclusion }\{1 / 2 m k
\end{aligned}
$$

* Fudging resulted in a maximum of 2 mks .
* Students were making statements without any justifications, no evidence it they lost marks!!.

JRAtS MATH EXT TRIAL. 2012

\|CALLISTO\StaffHome\$IWOHVRAH M Fac Admin\Assessment infolSuggested Mk solns template_V4_half Ls.doc

MATHEMATICS Extension 1 : Question.......

\|CALLISTOIStaffHomeSIWOHWRAH M Fac Admin\Assessment infolSuggested Mk solns template_V4_half Ls.doc

IICALLISTO\StaffHome\$1WOHURAH M Fac Admin\Assessment infolSuggested Mk solns template_V4_half Ls.doc

MATHEMATICS Extension 1 : Question... 13.
a)

pg 1
Marker's Comments
Alternatively
BP could also be.

$$
B Q=\frac{205}{\tan 22}
$$

$$
B P=205
$$

$$
\tan 37
$$

drank for getting
Lengths of $B P$ and BQ
\checkmark Imarke calculating angle $P B Q$ as 43° \checkmark I mark for correct formula and working
b)

$$
\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3^{2}}\right)\left(1-\frac{1}{4^{2}}\right) \cdots\left(1-\frac{1}{n^{2}}\right)=\frac{n+1}{2 n}
$$

Step Prove true for $n=2: P(2)$

$$
\begin{aligned}
\frac{L H S}{1-\frac{1}{2^{2}}} & =1-\frac{1}{4} & & \frac{R 1+S}{\frac{2+1}{2 \times 2}} \\
& =3 / 4 & & =\frac{3}{4}
\end{aligned}
$$

$\therefore \therefore$ Statement is true for $n=2$.

- 1 mark step I mark for $\overline{2}$ steps $2 \rightarrow$ 2 step 3
Prove LITS $=$ RH $\frac{1}{2}$ mark for concussion statement must mention true for all integers $n \geq 2$ MI.

Slap I statement s s true for
$n=k+1$ if assumed true for $n=k$. Since the statement has been proven true for $n=2$, it is true for all integers $n \geqslant 2$. 05
il by the PMI $P(n)$ is to we for $M=2,3,4 \ldots$
Suggested Solutions \quad Marks
(i) $\frac{d^{2} x}{d t^{2}}=3 t-9 x$

Compare $\quad x=-n^{2}\left(x-x_{0}\right)$

$$
\ddot{x}=-9(x-4) \text { centre. }
$$

\therefore centre is $x=4$
ii)

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) & =36-9 x \\
\frac{1}{2} v^{2} & =\int(36-9 x) \cdot d x \\
\frac{v^{2}}{2} & =36 x-\frac{9 x^{2}}{x}+c
\end{aligned}
$$

when $x=6, v=0$

$$
\begin{aligned}
& 0=216-162+c \\
& \therefore \quad=-54 \\
& \text { is } \quad \frac{v^{2}}{2}=36 x-\frac{9 x^{2}}{2}-54 \\
& v^{2}=72 x-9 x^{2}-108 \\
&=9\left(8 x-x^{2}-12\right) \\
&=-9\left(x^{2}-8 x+12\right) \\
& v^{2}=\left.-9(x-4)^{2}-4\right) \\
&=-9\left(4-(x-4)^{2}\right) \\
& \text { compare } v^{2}=r^{2}\left(a^{2}-(x-x)^{2}\right) \\
& a^{2}=4 \\
& a=2 .(a>0) .
\end{aligned}
$$

Equation is $\frac{v^{2}}{2}=36 x-\frac{9 x^{2}}{2}-54$

OR
write it in the forms

$$
x=\frac{b}{x}+a c o s n t+c
$$

so $x=4+a \cos 3 t\binom{$ from part $(i))}{n^{2}=a}$ when $t=0, x=6$

$$
\begin{aligned}
& 0, x=b \\
& b=4+a \cos 3 t \\
& a \operatorname{acc} 3 t=2 \\
& a \cdot(1)=2 \\
& a=2
\end{aligned}
$$

For imaric be careful.

If students got $6-4=2$ only they
must justify and mentrom parities is at end point

$$
\begin{aligned}
& v^{2}=n^{2}\left[a^{2}-\left(x-x_{0}\right)^{2}\right] \\
& v^{2}=9\left[a^{2}-(x-4)^{2}\right] \\
& x=6 \quad v=0 \\
& \text { Lack to } a=2
\end{aligned}
$$

Because it is initially at rest and at end of Motion $c=0$

Using pythagoras

$$
\begin{aligned}
3^{2} & =r^{2}+(3-h)^{2} \\
r^{2} & =9-(3-h)^{2} \\
& =9-\left(9-6 h+h^{2}\right) \\
& =6 h-h^{2} \\
\text { Volume } & =\pi \int_{0}^{h}\left(6 h-h^{2}\right) d h \\
& =\pi\left[3 h^{2}-\frac{h^{3}}{3}\right]_{0}^{h} \\
& =\pi\left(3 h^{2}-\frac{h^{3}}{3}\right)
\end{aligned}
$$

$$
V=\frac{\pi}{3}\left(a h^{2}-h^{3}\right) \text { as required }
$$

\therefore volume is $\frac{\pi}{3}\left(a h^{2}-n^{3}\right) \mathrm{m}^{3}$
Alternatively
Rotated $x^{2}+y^{2}=9$ around
x axis between $x=3$ and $x=3-h$.

$$
\begin{aligned}
\therefore y^{2} & =a-x^{2} \\
\text { volume } & =\pi \int_{3-h}^{3}\left(y^{2}\right) d x \\
& =\pi \int_{3-h}^{3}\left(9-x^{2}\right) d x \\
& =\left[9 x-\frac{x^{3}}{3}\right]_{3-h}^{3} \\
& =\pi\left[(27-a)-\left\{9(3-h)-\frac{1}{3}(3-h)\right]\right. \\
& \left.=\pi\left(3 h^{2}-\frac{h^{3}}{3}\right)\right] \\
& =\frac{\pi}{3}\left(9 h^{2}-h^{3}\right) m^{3}
\end{aligned}
$$

2 marks

$$
\begin{aligned}
& x^{2}=9-y^{2} \\
& \therefore v=\pi \int_{0}^{h}(9-y)^{2}
\end{aligned}
$$

is incorrect. limits should be 3 and 3 -h.

If recognised circle is rotated with correct limits

$$
\pi \int_{3^{3-4}}^{3} d x
$$

$i s .1$ mark.
and 1 mark
for correct
subsequent working without making the questroin simpler.

J:MathslSuggested Mk solns template. doc

MATHEMATICS: Question. $13 .$.

Suggested Solutions
d (ii) After \& minutes, $V=\frac{8 \pi}{3}$.

$$
\begin{gathered}
\therefore \frac{8 \pi}{3}=\frac{\pi}{3}\left(9 h^{2}-h^{3}\right) \\
8=9 h^{2}-h^{3} \\
h^{3}-9 h^{2}+8=0 \\
(h-1)\left(h^{2}-8 h-8\right)=0
\end{gathered}
$$

$h-1=0$ or $\quad h^{2}-8 h-8=0$

$$
\therefore h=1
$$

$$
\frac{8 \pm \sqrt{64-(-32)}}{2}
$$

$$
=\frac{8 \pm \sqrt{96}}{2}
$$

$$
\left.\begin{array}{l}
=4 \pm 2 \sqrt{6} \\
\text { as } 0 \leq h \leq 3
\end{array}\right\}
$$

$h=i$ is only iss solution $\Rightarrow \frac{y}{2}$ mark
dui)

$$
\begin{aligned}
\frac{d v}{d t} & =\frac{\pi}{3}(\text { given }) \\
\frac{d V}{d h} & =\frac{\pi}{3}\left(18 h-3 h^{2}\right) \\
& =\frac{\pi}{3}\left(6 h-h^{2}\right)
\end{aligned}
$$

$$
\frac{d h}{d t}=\frac{d h}{d v} \times \frac{d v}{d t}
$$

$$
=\frac{1}{\pi\left(6 h-h^{2}\right)} \times \frac{\pi}{3} . \downarrow \text { iravk. }
$$

$$
\frac{d h}{d t}=\frac{1}{3\left(6 h-h^{2}\right)}
$$

when $h=1 \quad \frac{d h}{d t}=\frac{1}{3(6-1}=\frac{1}{15} \checkmark$ infark.
\therefore when oil is 1 m deep, h is increasing at a rate of $1 /$ is metres/min.

$$
\begin{array}{r}
\frac{h^{2}-8 h-8}{h^{3}-9 h^{2}+8 h+8} \\
\frac{h^{3}-h^{2}}{-8 h^{2}+6 h} \\
\frac{-8 h^{2}+8 h}{-8 h+8} \\
\frac{-8 h+8}{0}
\end{array}
$$

Some ended up with $h^{2}-8$
instead of $h^{2}-8 h-8$

Some tested $h=1$ on $h^{3}-9 h^{2}+8$ only Did not mention other solutions: not working

$$
\begin{aligned}
& \frac{d v}{d t}=\frac{d v}{d u} \cdot \frac{d u}{d t} \\
& \frac{\pi}{3}=\frac{\pi}{3}\left(6 h-u^{2}\right) \frac{d u}{d t} \\
& \Rightarrow \frac{d u}{d t}=\frac{1}{3\left(6 h-h^{2}\right)}
\end{aligned}
$$

Some forgot to invert

$$
\begin{aligned}
& \frac{d v}{d h}=\pi\left(6 h-h^{2}\right) \\
& \therefore \frac{d h}{d v}=\frac{1}{\pi\left(6 h-h^{2}\right)}
\end{aligned}
$$

Souse calculated the first few steps in part (ii).
a)

$$
x=3 \cos 2 t+4 \sin 2 t+2
$$

(1)

$$
\begin{aligned}
& 3 \cos 2 t+4 \sin 2 t=R \cos (2 t-\alpha) \quad R>0 \\
& 3 \mathrm{~m} . . . \\
& 3 \cos 2 t+4 \sin 2 t=R \cos 2 t \cos \alpha+R \sin 2 t \sin \alpha \\
& \therefore R \cos \alpha=3 \\
& R \sin \alpha=4 \\
& R^{2}=z^{2}+4^{2} \\
& R=5 \\
& R>0 \text {. } \\
& \operatorname{CO} \& \propto=3 / 5 \\
& \sin \alpha=4 / 5 \quad=10<\alpha<\pi / 2
\end{aligned}
$$

(11)

$$
\begin{aligned}
& x=5 \cos \left(2 t-\tan _{1 / s}\right)+2 \text {. } \\
& \dot{x}=-10 \sin \left(2 t-t a n^{-1} 4 / 5\right) \\
& 20=-20 \cos (2 t-\operatorname{tax}-4) \\
& \stackrel{\dot{x}}{x}=-20 \quad\left(\frac{x-2}{5}\right) \\
& =-4(x-2) \\
& =-(2)^{2}(2 c-2) \\
& \text { Where } n=2 \quad b=2
\end{aligned}
$$

$$
\text { motion } s \text { SHM. }
$$

Amplunde is smetres
(iii) $x=-10 \sin (2 t-\tan 4 \tan)$ $\therefore \quad \therefore$ max speedis $10 \mathrm{~m} / \mathrm{s}$.

2

$$
=1 \cdot 25(2 d p)
$$

\qquad
\qquad
\qquad
b) (1) $b_{k}=a_{k}+a_{k} \quad$ from $a_{a s c a t s}$ trangle
 Taltematwely $b_{k}=\left[\frac{b t 1}{b t-k}\right]^{a_{k}}$
(ii) $\frac{1}{a_{0}-\cdots a_{n}}$

$$
\times\left[a_{0}+Q\right)\left(a_{1}+a_{2}\right) \cdots\left(a_{n-1}+a_{n}\right)
$$

\qquad
\qquad

(1) correct relation shup
(T) product of b 's
(1) $a_{0}=1$
(1) coefficients
(1) answer with working

MCALLISTOIStaffHome\$IWOHVRAH M Fac Admin\Assessment infolSuggested MK solns template_V4_half Ls.doc

c) $(1) T o$ show $\tan ^{-1}(n+1)-\tan ^{-1}(n-1)=\tan ^{-1}\left(\frac{2}{2} 2\right) n \geqslant 1$
comoceler $\tan (\alpha H S)$
Let $\tan ^{-1}(n+1)=\alpha \quad \therefore \tan x=n+1 \quad \pi /+<\alpha<\pi / 2$
$\tan ^{-1}(n-1)=\beta \quad \operatorname{tar} \beta=n-1 \quad 0 \quad<\beta \quad \pi / 2$
(ii) To show $\sum_{r=1}^{n} \tan ^{-1}\left(\frac{2}{r^{2}}\right)=\tan ^{-1}\left(\frac{2 n+1}{1-n-n^{2}}\right)+3 \frac{3 \pi}{4}$

$$
\begin{aligned}
\angle H S & =\sum_{r=1}^{n}\left[\tan ^{-1}(r+1)-\tan ^{-1}(r-1)\right] \\
& =\tan ^{-1} 2-\tan ^{-1} 0+\tan ^{-1} 3-\tan ^{-1} 1 \\
& \left.\cdots \tan { }^{-1} n+\tan ^{-1}(n-2)+\tan ^{-1} n+1\right)+\tan ^{-1}
\end{aligned}
$$

eomavier

$$
=\tan ^{-1}(n)+\tan ^{-1}(n+1)-\tan ^{-1} 1
$$

(1) answer with wortumay

$$
\begin{aligned}
& \begin{aligned}
\sum_{r=1}^{n} \tan ^{-1}\left(\frac{2}{r^{2}}\right) & \left.=\pi+\tan ^{1}+\left(\frac{2 n+1}{1-n-n^{2}}\right)-\tan _{2}{ }^{-1}(1)\right]+\pi+\tan ^{-1}\left(\frac{2 n+1}{1-n-n^{2}}\right)-\pi / \\
& =\pi+1
\end{aligned} \\
& =\tan ^{-1}\left(\frac{2 n 2+1}{1-n-n^{2}}\right)+\frac{3 \pi}{4}
\end{aligned}
$$

$$
\begin{aligned}
& -\tan ^{-1}+\tan ^{-1}(n+1)=K \pi+\tan ^{-1}\left(1-n+n^{2}\right) R \in Z
\end{aligned}
$$

$$
\begin{aligned}
& \text { tan } \\
& \tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{i \tan \alpha \tan \beta} \\
& =\frac{(n+1)-(n-1)}{1+(n+1)(n-1)} \\
& =\frac{2}{1+n^{2}-1}=\frac{2}{n^{2}}
\end{aligned}
$$

