
Name: Class:

TRIAL HIGHER SCHOOL CERTIFICATE **EXAMINATION 2013**

MATHEMATICS EXTENSION 1

General Instructions:

- · Reading Time: 5 minutes.
- Working Time: 2 hours.
- · Write in black or blue pen.
- Board approved calculators & templates may be
- · A Standard Integral Sheet is provided.
- · In every question, show all necessary working
- · Marks may not be awarded for careless or badly arranged working.

Total Marks 70

Section I: 10 marks

- Attempt Question 1 10.
- Answer on the Multiple Choice answer sheet provided.
- Allow about 15 minutes for this section.

Section II: 60 Marks

- Attempt Question 11 14
- Answer on blank paper unless otherwise instructed. Start a new page for each new question.
- Allow about 1 hour & 45 minutes for this section.

The answers to all questions are to be returned in separate *stapled* bundles clearly labelled Question 11, Question 12, etc. Each question must show your Candidate Number.

MULTIPLE CHOICE (10 marks) SECTION I

Attempt Question 1 – 10 (1 mark each) Allow approximately 15 minutes for this section

- An object is projected with a velocity of 40 ms⁻¹ at an angle of $\tan^{-1}\frac{8}{6}$ to the horizontal. If 1. air resistance is neglected and acceleration due to gravity is taken as 10 ms⁻², what is the initial vertical component of its velocity?
 - 32 ms⁻¹ (A)

(C) $40\tan\frac{8}{6}$ ms⁻¹

(B) 24 ms⁻¹

- (D) $40\sin{\frac{8}{10}}$ ms⁻¹
- For the function $f(x) = 3 \sin^{-1}(\frac{x}{4})$, the domain and range of y = f(x) (where x and 2. y are real numbers) are:
 - (A) $-4 \le x \le 4$; $-\frac{3\pi}{2} \le y \le \frac{3\pi}{2}$ (C) $-3 \le x \le 3$; $-2\pi \le y \le 2\pi$
 - (B) $-\frac{3\pi}{2} \le x \le \frac{3\pi}{2}$; $-4 \le y \le 4$
- (D) $-2\pi \le x \le 2\pi ; -3 \le y \le 3$
- A particle moves in a straight line. At time t seconds, where $t \ge 0$, its displacement x **3.** metres from the origin and its velocity v are such that $v = 25 + x^2$. If initially the particle is 5m to the right of the origin, then t is equal to:
 - (A) $\tan^{-1}(\frac{x}{5}) \frac{\pi}{4}$

(C) $25x + \frac{x^3}{3}$

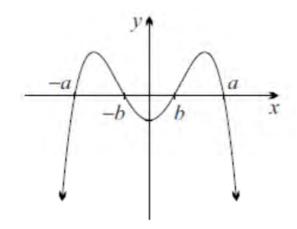
(B) $\frac{1}{5} \tan^{-1}(\frac{x}{5}) - \frac{\pi}{20}$

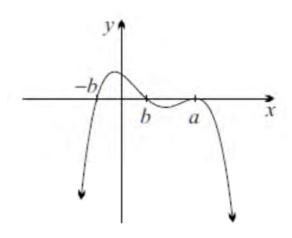
- (D) $25x + \frac{x^3}{3} + \frac{500}{2}$
- What are appropriate values of R and θ such that $\sqrt{3}cosx + sinx \equiv Rcos(x + \theta)$ 4.
 - (A)

R = 2 $\theta = \frac{\pi}{6}$ (C)

(B) $R = \sqrt{2}$ $\theta = \frac{11\pi}{6}$

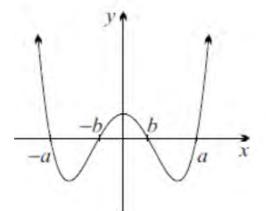
(D) R = 2 $\theta = \frac{11\pi}{6}$

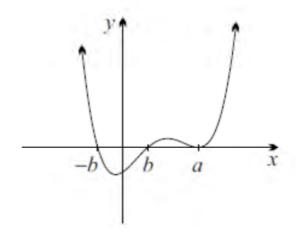

- 5. If cos2x < -sinx for $0 \le x \le \pi$, then:
 - (A) This is true for $\frac{\pi}{6} \le x \le \frac{5\pi}{6}$
- (C) This is true for all x values within this domain except $x = \frac{\pi}{2}$
- (B) There are no *x* values in this domain for which this is true
- (D) This is true for all *x* values within this domain
- **6.** (x-a) is a factor of the polynomial P(x), where a is an integer. If $P(x) = x^3 kx^2 + 2kx 8$, the values of k for which P(x) has real roots are:
 - (A) $-6 \le k \le 2$


(C) $k \le -6 \text{ or } k \ge 2$

(B) $-2 \le k \le 6$

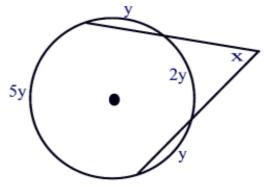
- (D) $k \le -2 \text{ or } k \ge 6$
- 7. Which diagram best represents y = P(x) if $P(x) = (x a)^2(b^2 x^2)$, and a > b?
 - (A)


(C)



(B)

(D)


- **8.** If $cos\theta = -\frac{3}{5}$ and $0 < \theta < \pi$, then $tan \frac{\theta}{2}$ is equal to:
 - (A) $-\frac{1}{3}$ or -3

(C) -2

(B) $\frac{1}{3}$ or 3

- (D) 2
- 9. Two secants of equal length intersect at an external point. Given the arc lengths shown in the diagram, the number of degrees in the angle labeled x is:

DIAGRAM NOT TO **SCALE**

(A) 40

80 (C)

(B) 60

- (D) 140
- 10. Two year 12 students are to be randomly selected from a pool of N year 12 students, n of whom are from James Ruse. If it is known that at least one student is from James Ruse, what is the chance that both students are from James Ruse?
 - (A)

(B)

(D)

END OF SECTION I

Total Marks is 60

Attempt Question 11 - 14.

Allow approximately 1 hour & 45 minutes for this section.

Answer all questions, starting each new question on a new sheet of paper with your student ID number in the top right hand corner and the question number on the left hand side of your paper. All necessary working must be shown in each and every question.

QUESTION 11 (15 Marks) START A NEW PAGE

Marks

- 3 The functions $y = 4x^3 + 3x - 1$ and $y = 1 - \ln(2x)$ intersect at $(\frac{1}{2}, 1)$. Find the acute angle between the tangents of the two curves at the point of intersection. Give your answer to the nearest minute.
- (b) State the range of $y = \tan^{-1} \frac{\sqrt{x^2-4}}{2}$ 1 (i)
 - Find $\frac{dy}{dx}$ for the function $y = \tan^{-1} \frac{\sqrt{x^2-4}}{2}$ 3 (ii)
- The concentration, C, of good bacteria in a healthy intestine is usually 110 bacteria per gram of intestinal contents. After a bout of food poisoning, this concentration drops to 15 bacteria per gram. The rate of increase of the concentration of good bacteria is proportional to the difference from the normal 110 bacteria per gram, that is,

$$\frac{dC}{dt} = k(110 - C)$$

where *t* is the number of hours since suffering food poisoning.

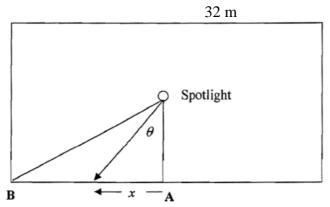
- Show that $C = 110 Ae^{-kt}$ satisfies the above equation. (i)
- (ii) 19 hours after suffering food poisoning, Harold has a concentration of 3 20 bacteria per gram. How long after suffering food poisoning will the concentration of good bacteria in his intestines reach 90% of its healthy state? Give your answer to the nearest hour.
- (d) PQ is the chord of contact of the parabola $x^2 = 4y$ from the external point $A(x_1, y_1)$ with equation $xx_1 = 2a(y + y_1)$.
 - Show that the midpoint, M, of PQ has the coordinates $(x_1, \frac{x_1^2}{2} y_1)$. 2 (i)
 - If A moves along the line 3x y 1 = 0, show that the equation of the 2 (ii) locus of *M* is a parabola of the form $(x - h)^2 = \pm 4a(y - k)$.

1

3

2

3


(b) Assume that, for all real numbers x and all positive integers n, $(1 + x)^n$ can be written as

 $\sum_{r=0}^{n} {}^{n}C_{r} x^{r}$

Find a simple expression for:

 $\sum_{r=0}^{n} r. {^{n}C_{r}}$

- (c) The water level at a harbour entrance approximates to simple harmonic motion. On a particular day high tide occurred at 6.00 am. There was a depth of 10 m of water at that time. At low tide, which occurred at 11.50 am, there was a depth of 3 m of water.
 - (i) Find, to the nearest cm, the depth of water at the harbour entrance at 2 am earlier that same day.
 - (ii) Write an expression, in exact form, for the general solution for the times, *t*, when the depth of water at the harbour entrance is 7.5 m.
 - (iii) What is the latest time before midnight that day that a ship can enter the harbour if a minimum depth of 7.5 m of water is required? Give your answer to the nearest minute.
- (d) A spotlight is in the centre of a rectangular room which measures 32 m by 22m. It is spinning in a clockwise direction at a rate of 25 revolutions/min. Its beam throws a spot which moves along the wall as it spins.

22 m

Top view NOT TO SCALE

- (i) Write the rate of rotation $\frac{d\theta}{dt}$ in radians/sec.
- (ii) Find an expression for the velocity $\frac{dx}{dt}$ in terms of x at which the spot appears to be moving along the wall from A to B.
- (iii) Amy stands at point A while Barry stands at point B. They notice that from their different positions in the room the speed at which the spot appears to be moving is also different. From whose position will the spotlight appear to be moving faster? Justify your answer.

1

- (a) The probability of winning a certain game is $\frac{1}{3}$. How many times should the game be played so that the probability of winning 4 times is 60 times the probability of winning 6 times?
- (b) (i) A particle moves in a straight line with acceleration $\frac{dv}{dt} = -3 + 9x$. Initially, the particle is at x = -1 with a velocity of $4 \, ms^{-1}$. Find x as a function of t.
 - (ii) Describe the motion of the particle when x = 3.

An archer stands at the edge of a cliff and shoots an arrow at a constant velocity of $V m s^{-1}$ and at an angle of θ to the horizontal, where $0^{\circ} < \theta < 90^{\circ}$. The arrow that he shoots is released from a point $\frac{V^2 \sin^2 \theta}{g}$ m vertically above the ground. At ground level, $\frac{V^2(1+\sqrt{3})}{4g}m$ away horizontally from the point of projection is a lake that is $\frac{V^2}{2g}m$ wide. The position of the arrow at time t seconds after it is projected is given by the equations:

$$x = Vtcos\theta$$
; and $y = -\frac{gt^2}{2} + Vtsin\theta + \frac{V^2 sin^2 \theta}{g}$

- (i) Show that the Cartesian equation of the path of the arrow is given by $y = \frac{-gx^2\sec^2\theta}{2V^2} + xtan\theta + \frac{V^2\sin^2\theta}{g}$
- (ii) Show that the horizontal range of the arrow on the ground is given by $x = \frac{V^2 \left(1 + \sqrt{3}\right) sin2\theta}{2g}$
- (iii) Find the values of θ for which the arrow will **not** land in the lake or on the edge of the lake.

Marks **QUESTION 14** (15 Marks) START A NEW PAGE Explain why for every positive integer n, n(n + 1) is even (no formal (a) (i) 1 proof required). (ii) Hence, using the Principle of Mathematical Induction, prove that for 3 every integer $n \ge 2$, $n^3 - n$ is a multiple of 6. (b) Find the volume of the solid formed when the region enclosed entirely by the 4 curves $y = \sin x$ and $y = \sin 2x$ over the domain $0 \le x \le \frac{\pi}{2}$ is rotated about the x-axis. (c) A, B and C are three points on the circumference of a circle. CB is produced to 3 meet the tangent from *A* at *T*. If *M* is the midpoint of *BC*, prove that $\angle AOT = \angle AMT$. The number of ways of arranging *n* students in a row such that no two boys sit together and no two girls sit together is m (m > 100). If one more student is added, the number of ways of arranging the students as above increases by 200%. (i) Explain why the difference between the number of boys and the number 1 of girls cannot be more than 1. (ii) Show that *n* cannot be odd. 2 Hence, or otherwise, find the value of n. 1 (iii)

END OF PAPER

★ JRAHS Mathematics | 2013 Extension 1 Trial – Solutions & Marking Guidelines

» Section I

1 mk for each question.

- 1. A
- 2. A
- 3. B
- 4. D
- 5. B
- 6. D
- 7. C
- 8. D
- 9. B
- 10. A

TRIAL 2013 XI MATHEMATICS: Question.!!		1814
Suggested Solutions	Marks	Marker's Comments
a) First curve $\frac{dy}{dx} = 12x^2 + 3$ $= 12(\frac{1}{2})^2 + 3$ $= 12(\frac{1}{2})^2 + 3$ $= 12(\frac{1}{2})^2 + 3$ $= -\frac{1}{2}(\frac{1}{2}) + 3$		Surprising number did not get the formula exactly correct for acute
acute angle between times given by $\tan 0 = \left \frac{m_1 - m_2}{1 + m_1 m_2} \right $ $= \left \frac{6 + 2}{1 - 11} \right = \frac{8}{11}$	1	/2 deducted for 36 1
0 = 36° 2' (nearest minute)		4-
b) i) Range $\{y: y \in \mathbb{R}, 0 \le y < T_2\}$ ii) Let $u = \sqrt{x^2-4}$ $y = \tan^2 u$		If the O was not given no mark. 1/2 of for inequality error at either end.
$\frac{du}{dn} = \frac{1}{2}(x^{2}-4)^{-1/2}2x \qquad dy = \frac{1}{1+u^{2}}$ $= \frac{x}{2\sqrt{x^{2}-4}} = \frac{1}{1+(\frac{x^{2}-4}{4})}$ $= \frac{4}{4+x^{2}-4}$ $= \frac{4}{2\sqrt{x^{2}-4}}$	1	Not many used the full chain rule I each for the main derivatives
dy = dy x du (Chain Rule) = $\frac{\chi}{2\sqrt{\chi^2-4}} \times \frac{4}{\chi^2}$		I for some simplification
= 2 / 1/21-4		

MATHEMATICS: Question		2 17 4
Suggested Solutions	Marks	Marker's Comments
c) 1) To show $C = 110 - Ae^{-kt}$ is a solution of $\frac{dC}{dt} = k(110 - c)$.	1	Fairly easy mak but some structure is
By substitution:))	reguired.
$LHS = \frac{dC}{at}$ $= (-k)(-Ae^{-kt}) = k(Ae^{-kt})$	9	•
$= \frac{(-k)(-Ae^{-kt})}{= kAe^{-kt}}$		
LHS=RHS So C=110-Ae-kt is a solution.		
ii) We $t=0$, $C=15$ $15=110-Ae^{\circ}$ A=95	Z	1/2 each for getting value of A and for correctly deciding 99 was
at $t=19$ $C=20$ $20=110-95e^{-19k}$ $e^{-19k}=90=18$ 95=19		the target value
Find t when $C = 0.9 \times 110 = 99$	1	I mak for k in exact form
Save 99=110-95e-kt	, <u>C</u>	
$e^{-kt} = \frac{11}{95}$ $t = -\frac{1}{k} \ln \left(\frac{11}{95} \right)$		
$= \frac{19 \ln \binom{95}{1}}{\ln \binom{19}{18}} = 757.64$		1/2 mach if final answer not rounded correctly.
Back to 90% after 758 hrs. (nearest hom)	1	

MATHEMATICS: Question		3014
Suggested Solutions	Marks	Marker's Comments
Suggested Solutions d) 1) P and Q are where chord crosses parabola. Solve these $x^2 = 4y$ $xx_1 = 2(y+y_1)$ Substitute $xx_1 = 2(\frac{x^2}{4} + y_1)$ $xx_1 = \frac{x^2}{2} + 2y_1$ $x^2 - 2x_1x + 4y_1 = 0$ The 2 solutions of this are the x values of P and Q . The x co-ord of P will be the average of these values i.e. " $x+\beta$ " where $x+\beta$ " = $-\frac{1}{2}(2x_1) = 2x_1$ $x^2 - \frac{1}{2}(2x_1) = x_1$	Marks	Essentially one mark for each value.
Substitute this into equation of chord: $x_{i}^{2} = 2(y_{i} + y_{i})$ $x_{i}^{2} = y_{m} + y_{i}$ $y_{m} = \frac{x_{i}^{2} - y_{i}}{2}$		

MATHEMATICS: Question!	l	+04
Suggested Solutions	Marks	Marker's Comments
ii) Since A moves along time, we have relationship $3x_1 - y_1 - 1 = 0$ $y_1 = 3x_1 - 1$ M is given by $x = x_1$ $y = \frac{x_1^2 - y_1}{2} = \frac{x_1^2 - (3x_1 - 1)}{2}$ i.e. $2y = x^2 - 6x + 2$ $2y = (x - 3)^2 - 7$ $\frac{2(y + 7)}{2} = (x - 3)^2$ Which is of the correct form.	2.	There was some carelessness with algebra at the end. Most attempts knew what they were doing.

MATHEMATICS Extension 1 : Question	n.12	
Suggested Solutions	Marks	Marker's Comments
$\frac{\partial}{\partial a^2 - x^2} \int_{-\infty}^{\infty} dx dx = \frac{\partial}{\partial a^2 - x^2} \int_{-\infty}^{\infty} dx dx = \frac{\partial}{\partial a^2 - a$	3	D Correct Substitution
= (COS 4 CL)		Correct simplification of Trug to tan u.
Ean San Jan Jan Jan Jan Jacob San Jan Jan Jan Jan Jan Jan Jan Jan Jan J		O complete Integration to correct solution No loss for Ignoring "+ e"
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 ncx ncx ncx	Consideration D of cocond its derivative D derivative of (1+20) and sub oc=1 into both sides

MATHEMATICS Extension 1 : Questions Suggested Solutions	Marks	Marker's Comments
		- Outside State of the state of
(1) // 1	(3)	
g h=7.5		
6		
4		
2		
Λ		
t=0 $t=0$		
16am 6am 11.50 17:40		
nerrod = 2x (5 hrs 50min)		
= 11 hrs 40min		
= 35 20		O correct period
3		1) correct equation for depth (variable)
$T = 2\pi$ $\Omega = 2\pi$ $\Omega = 2\pi$		(comect equation
n = 7 $35/3$		for depth (vary
n = 67 <u>T</u>		304
35		t=0 time should
FROM CRAPH h = 6'5 + 3'5 COS (35 + x) x=0		begiven
$h = 6.5 + 3.5 \cos(\frac{8}{35} + \alpha) = 0$	'	
= 6:5+ 3:5 los (35+)		1 correct solution
ast=0 isat bam then zam = -4		
ast = 0 is at sam then $zam = -4h = 6.5 + 3.5 = (3.5 \times -4)$		todepth.
= 4057186		
depth = 4.57 (neavestcm)		
······································		
11) When h = 7.5		1 Correct Substitu
11) WNW 11-1-3 7:5		and general
$1 = \cos(6\pi t)$		solution
3:5		
$6T + = 3RT \pm \cos(77) REZ$	1	,
35 , 35 , , , , , , , , , , , , , , , ,		No loss of mark If (+ 6) not included
$t = 2\pi \left[2\kappa \right] \pm \cos \left(7 \right) \left[\frac{1}{2} \right]$	7	Nows
Actual time = 35/67 (2KIT. ± cos (3/2) +1	2	1 1f (+ 6) no
) Latest time before miolnight		included
from graph is when R=1		
and 4) sign		
$f = \frac{35}{27} \left[2\Pi + \cos^{-1}(27) \right] + 6$		
$t = \frac{1}{6\pi} \left[\alpha \Pi + \cos \left(\frac{1}{2} \right) \right] + 6$		
- 20.04532.		
7,me = 8:03 ρm		
······		

MATHEMATICS Extension 1 : Questio	n 17	
Suggested Solutions	Marks	Marker's Comments
$\frac{d}{dt} = \frac{5\pi}{6} rad/sec$	1	Ocorrect answer.
(u) de de de	2	
tano = z : z = //tano: Al = Sla = Q + Ean = Tano = Ean = Tano =		D do or do.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		10 correct answer
Alternature of S= Ean (II) Line Many alternatures John State of	2	No marks for just answer.
De At A $x=0$ $at = -6$ $= 28.8$ B $x=16$ $ax = 5577$ $121+16^{-1} = 89.7$ OP $ax = 577$ $x=121$ $at = 6$ at	n A	Evidence of explanation must be included
OR At = 5577 (38CO) The as a encreases of of a far at 134 The as a creases infaster at 134 The as a series of a far and a far a f	116 17 Card	

(CALLISTO\StaffHome\$\WOH\JRAH M Fag Admin\Assessment info\Suggested Mk solns template_V4.doc

(E) Bis further from light them it

: Sweeps out greater distance in Same time

: Sweeps out greater distance in Same time

as do is constant: Faster at B than A

 $(\frac{1}{3} + \frac{2}{3})$ $\frac{n!}{4!(n-4)!} \cdot (\frac{2}{3})^2 = 60 \times \frac{n!}{6!(n-6)!} \times (\frac{1}{3})$ $\frac{(n-6)!}{(n-4)!} = 60 \times 4! \times 4$ $\frac{1}{(n-4)(n-5)} = \frac{15\times 1}{6\times 5}$ $(0-4)(0-5) = \frac{1}{2}$ $0^{\circ} (n-4)(n-5) = 2$ $0^{2} - 90 + 20 = 2$ $0^{2} - 90 + 18 = 0$ (n-3)(n-6)=0 n=3 or n=6| but 17:6000 n=60 only

If stidents torget the 60 or the Cr they lost one toll mark. * no conclusion, lost 15 mk.

136)
$$\frac{dv}{dt} = -3 + 9x$$

$$v \frac{dv}{dn} = -3 + 9x$$

$$\int v \frac{dv}{dn} = \int -3 + 9x \frac{dn}{dn}$$

$$\frac{v^2}{2} = -3x + \frac{9x^2}{2} + A$$

$$v^2 = -6x + 9x^2 + B$$

When
$$x = -1$$
, $v = 4$
 $16 = 6 + 9 + 8$
 $B = 1$
 $V^2 = 9x^2 - 6x + 1$
 $V = (3x - 1)^2$
 $V = \pm (3x - 1)$

But
$$v = 4$$
 when $x = -1$... - sign

$$\frac{V = 1 - 3x}{V = 1 - 3x}$$

$$\frac{dx}{dt} = 1 - 3x$$

$$\frac{dx}{1 - 3x} = \int dt$$

$$-\frac{1}{3} \ln(1 - 3x) = \pm + C$$

When t=0, x=-1: C=-1 h4

$$3t = \ln \frac{4}{1-3x}$$

$$3t = \ln \frac{4}{1-3x}$$

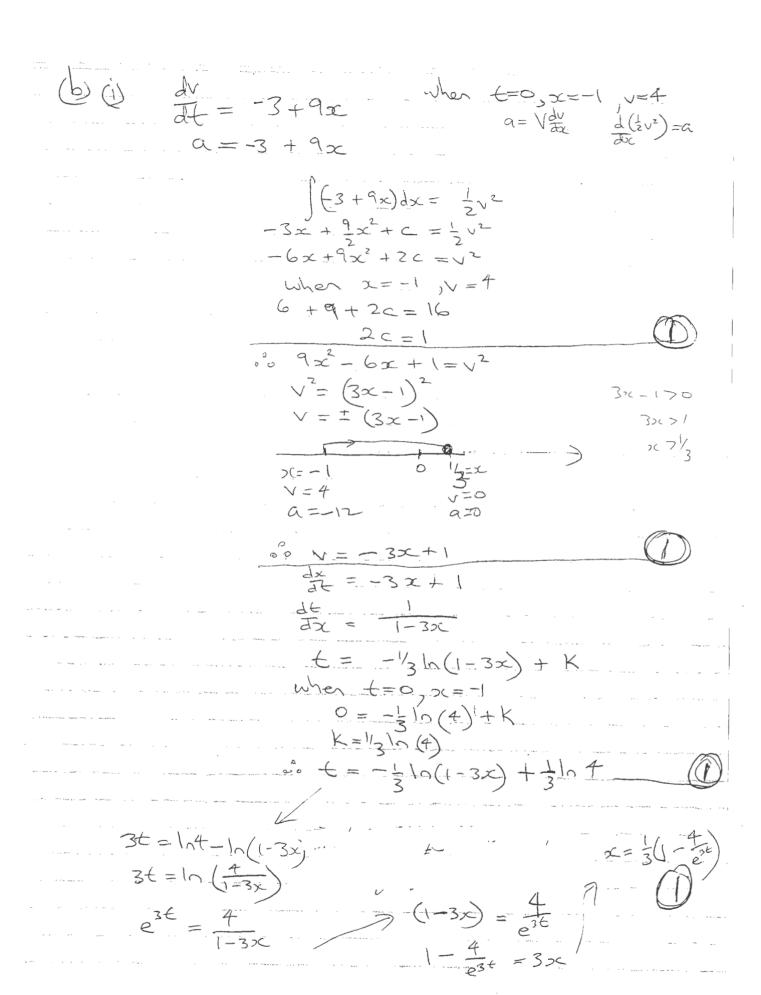
$$1-3x = e^{-3t}$$

$$x = \frac{1-4e^{-3t}}{2}$$

ERROR IF FIRST CONSTANT OF INTECATION NEGLECTED OR PUT GOVAL TO O.

$$v^{2} = 9 \left(x^{2} - 2x\right)$$

$$v^{2} = 9 \left(\left(x - \frac{1}{3}\right)^{2} - \frac{1}{4}\right)$$

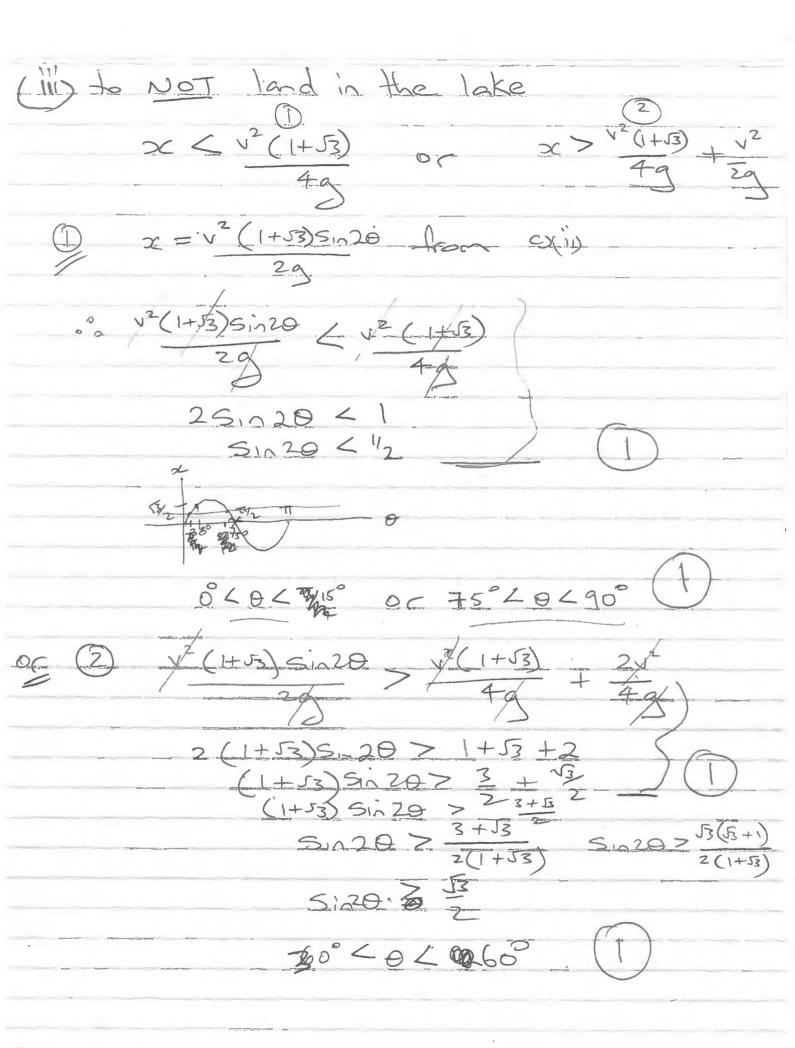

$$V = \pm 3 \cdot \sqrt{\left(x - \frac{1}{3}\right)^{2} - \frac{1}{4}}$$

* Another error here if a sign is assumed - otherwise they should get an error.

* Anothe problem sin (4) does not exist. So a fish should be smelt.

Error
$$C=0$$

 $3x-1=\sin 3t$
 $x=\frac{1+\sin 3t}{3}$


Even to get to this answer has required 3 errors.

(c) (1) >C=vt cos 0 y= -9t2 + vtsn0 + v25.30 from oc; t = rase sub, no y $= -\frac{9}{2!} \frac{3c^2}{\sqrt{2}} + \sqrt{x} + \sqrt{x} + \sqrt{2} \frac{3c^2}{\sqrt{2}} + \sqrt{x} +$ (ii) when y=0 ?? 4=? >c=?? method $0 = -9.6^2 + v.t. since + v.25.10$ one t = -v.since + v.25.10 $\frac{1}{12} = -v\sin\theta \pm \sqrt{v^2 \sin^2\theta - 4(-\frac{12}{2})(v^2 \sin^2\theta)}$ $= -v \sin \theta \pm \sqrt{v^2 \sin^2 \theta} + 2v^2 \sin^2 \theta$ = -q $= -vs_{1}n\theta \pm vs_{3}vs_{1}n\theta$ $= vs_{1}n\theta + vs_{3}vs_{1}n\theta$ $= vs_{1}n\theta + vs_{3}vs_{1}n\theta$ $= vs_{1}n\theta + vs_{3}vs_{1}n\theta$ $= vs_{1}n\theta + vs_{3}vs_{1}n\theta$ 0 t = 5 in (9 v (1+ v3) USIG (1-53) bit t > 0 = 1/2 = 5...ov(+13) $\frac{1}{3}$ = $\frac{1}$

(i) when y=0 method two when y=0 $10 = -95e^{2}\theta x^{2} + x + an\theta + \frac{V^{2}S_{1}^{2}}{a}$ 00 x = -tano+ Staro - 4 (-aseco) (v25,120) 2 (- 95ec 0) 0 ± 1 + 2 50 2 0 . Sin 0 = (tano + Jtaro + 2 taro) v2 - a secto - tano ± 53 tano) v2 tano (-1 ± 53) v2 x>0 os its a length $x = tan \Theta (1+J3)v^2$ $\frac{\sin \theta}{\cos \theta} \times \cos^2 \theta \left(1 + \sqrt{3}\right)$ Sino Cost (1+53) 12

20

JRHAS: 34 MATHS 2013 TRIAL

SOLUTION	MARKS	COMMENTS
QUESTION 14		
a) (i)		
If n=even, then n+1 = odd		Mast show
\Rightarrow $n(n+1) = even \times odd = even$		hoth cases
	1	for full marks
If n=odd, then n+1 = even		
\Rightarrow $n(n+1) = oddx even = even$		
(11) Let $S_n = n^2 - n / 6$		
Prove S2 is true 1.e. n=2		
When $n = 2$ $S_2 = 2^3 - 2 = 6$ which		
in divisible by 6		
i. true for n=2		
	ł	For initial setup
Assume true for n=12,2, & Z+		and assumption
1.e 123-R = 6Q, QEZ		statement
Prove SR+1 is true		-
1.e. (k+1)3-(k+1)=6P, PEZ		
CHS = (R+1) [(R+1)^2-1]		
= (R+1) (R2+2R)		
= (R+1) R(R+2)		correct
$= R^3 + 3R^2 + 2R$	1	Simplification of LHS of Sn
$= (h^3 - h) + 3h^2 + 3h$		of LHS of Sn

JRAHS: 34 MATHS 2013 TRIAL

	_	4
$= 6Q + 3k(k+1) \cdots by assumption$		
$D \cap D \cap B \cap $		
But from (i) & (k+1) is even.		
Therefore 3 k (k+1) is divisible		
hy 6 as 3xeven 6		
: LHS = 6Q + 3x2M		
=6Q+6M, MEZ		For correct
= 6(Q+M)	1	verification of
where Q+M & Z		LHS being
where $Q+M \in Z$ $\frac{(k+1)^3 - (k+1)}{(k+1)^3 - (k+1)}$ is divisible by 6		divisible by 6
1.e (R+1)3-(R+1) 6		0
i By the PMI, n3-n 16		
2		
	, ,	

JRAHS: 34 MATHS 2013: TRIAL

	1	
b) 1/2 y=Su22	ļ	
1 = Sinx		Note: POI:
		Sin222 = Sinx
		2514×2002 = 514×2
0 1 1 1 1 2		Sinx (2cos x -1) =0
0.173		SIUN =0 OF LOSIL = 1
V = T (Sin 2x - Sin x) c(x		2=0 or x= \(\frac{7}{3} \)
0		f00≤x ≤ 7/2
CTP3		
$= I \left[\frac{1}{2} (1 - (0) + 1) - \frac{1}{2} (1 - (0) 2 \times 1) \right] d \times 1$	1	Correct set up
0		for Vie
TP3		Signare
$= \pi \left(\frac{1}{2} \left(\cos 2x - \cos 4x \right) \right) dx$	1	(Cor 21- 404x
2		(Use of
_ 1P3		double 2)
$= \frac{\pi}{2} \left[\frac{1}{2} \sin 2x - \frac{1}{4} \sin 4x \right]$	1	Correct integration
26		V
= I [2xsin 2173 - sin 473 -0-0]		
$= \frac{11}{8} \left(2 \times \sqrt{3} / 2 - \left(-\sqrt{3} / 2 \right) \right)$		
= 3TT \(\frac{3}{3} \tag{3}		Correct evaluation of definite
16		of definite
		integral.



JRAHS: 34 MATHS

2013: TRIAL

c)		
A		
B M C		
COMT = 90° (fine from centre to		
mudpoint of chord is		
perpendicular to it)		
	Į.	for 2 right
< OAT = 90° (radius I tangent		for 2 right angles
at point of contact		Ü
: In quadrilateral ADMT		
< OMT + COAT = 90+900		correct
= 180°	1	for choice of
: quadrilateral ADMT is		Supplementary
cyclic ··· (opposite angles		angle or
are nupplementary)		exterior and
		sum of interior
In cyclic quadrilateral ADMT		angla
CAOT = CAMT ··· (angles		U
in same segment subtended by	1	for correct
same hard/arc are equal)		Rason for
		Amal Apult.
		,

JRHAS: 34 MATHS 2013: TRIAL

$\left(d\right)$		
(i) he condition that no 2		Easily obtained
girls or boys sit together		0
implies that they be seated	1	
implies that they be seated B, G, B, G, etc elternately		
(11) Jet		Poorly answered
or = number of boys, then		due to either
X+1 = number of girls		ambiguity of
So total umber of arrangements		question or
is BGBG		poor interretation
org BGB		,
1-e 2 x! (5c+1)!		Generally,
1.e. 2 x(x+1)!		proof by
1.e. $m = 2 \pi! (\chi + i)!$		contradiction
		has accepted
If 1 is added, then the		or any
number of arrangements is		sensible
2 x (>(+1)! (2+1)!		argument.
But an increase of 200%	-	
\Rightarrow m \rightarrow 3m		For setting up
1.e. 3.x! (>(+1)! = 2 (>(+1)! (>(+1))).	argument
3 x! = 2(x+1)!	1	U
(b) x = ½ (How?)		
1		,

which is impossible!		For justification
Hence a contradiction.	1	0
in cannot be odd.		
(iii) Initial number of arrangements		
inhen n is even is		
2 x! x!		
But increases three fold (200%)		
Final number of		
arrangements is 3x2x1x1.		for final
when I more is added	1	answer of 10
1.e $x!(x+1)! = 6x!x!$		
1.e. $(x+1)! = 6x!$		
$\Rightarrow (x+1) x! = 6$		
χ = 5		
$\chi = 5$ of one gencler		
Hence n = 2x5		
= 10 people		
,	_	
	_	